Difference between revisions of "Interactive Communication"
Line 2: | Line 2: | ||
== Abstract == | == Abstract == | ||
− | The studies in the Interactive Communication deal primarily with learning environments where there are two interacting, communicating agents, one of which is the student. The other [[agent]] is typically a second student, a human tutor or a tutoring system. They communicate, either in a natural language or a formal language, such as mathematical expression or menus. We are trying to find out why such instructional, dyadic, interactive communication is sometimes highly effective and sometimes less effective. Sometimes we study highly constrained forms of communication in order to vary isolated aspects, and sometimes we compare whole forms of communciation. Our hypothesis is simply that interactive communication is effective if it | + | The studies in the Interactive Communication deal primarily with learning environments where there are two interacting, communicating agents, one of which is the student. The other [[agent]] is typically a second student, a human tutor or a tutoring system. They communicate, either in a natural language or a formal language, such as mathematical expression or menus. We are trying to find out why such instructional, dyadic, interactive communication is sometimes highly effective and sometimes less effective. Sometimes we study highly constrained forms of communication in order to vary isolated aspects, and sometimes we compare whole forms of communciation. Our hypothesis is simply that interactive communication is effective if it guides students to attend to the right [[knowledge components]]. |
== Background and Significance == | == Background and Significance == |
Revision as of 02:24, 4 May 2007
The PSLC Interactive Communication cluster
Abstract
The studies in the Interactive Communication deal primarily with learning environments where there are two interacting, communicating agents, one of which is the student. The other agent is typically a second student, a human tutor or a tutoring system. They communicate, either in a natural language or a formal language, such as mathematical expression or menus. We are trying to find out why such instructional, dyadic, interactive communication is sometimes highly effective and sometimes less effective. Sometimes we study highly constrained forms of communication in order to vary isolated aspects, and sometimes we compare whole forms of communciation. Our hypothesis is simply that interactive communication is effective if it guides students to attend to the right knowledge components.
Background and Significance
Although instructional dialogue has been studied in classrooms (e.g., Lave & Wenger, 1991; Leinhardt, 1990) and workplaces (e.g., Hutchins, 1995; Nunes, Schliemann & Carraher, 1993), we are focusing on more tractable albeit still complex situations: dyadic instructional dialogues, namely dialogues between: (a) a human tutor and a human student, (b) two human students, or (c) A computer tutor and a human student. Moreover, the dialogue are task-oriented (Grosz & Sidner, 1986) in that the participants are working together on a task rather than simply conversing with no shared goals or with opposing goals.
Early studies focused on the structure of dyadic instructional dialogue (e.g., Fox, 1993; Graesser, Person & Magliano, 1995; MacArthur, Stasz, & Zmuidzinas, 1990). When later studies compared the learning that occurred during dialogue vs. less interactive instruction (e.g., VanLehn, Graesser et al., 2007; Katz, Connelly & Allbritton, 2003; Evens & Michael, 2006; Cohen, Kulik & Kulik, 1982), they found surprisingly mixed results. Only 60% of the studies showed that interactive communication caused larger learning gains than less interactive instruction.
The interactive communication cluster is undertaking the next step in this important line of research by investigating when different types of interactive communication are effective and why. Sometimes we compare highly constrained forms of communication in order to vary isolated aspects, and sometimes we compare constrained interactive communication to passive communication (e.g., reading).
Glossary
See Interactive Communication Glossary
Research question
What properties of interactive communication promote robust learning?
Independent variables
- Some studies in the Interactive Communication cluster examine the impact on robust learning of different types of interactive communication, by contrasting two forms of interactive communication. Examples include compare scripted vs. unscripted peer collaborative problem solving.
- Other studies compare instruction with and without specific kinds interactive communication, e.g., by having students work alone or in pairs, or comparing self-explanation done alone to dyadic, interactive explanation generation.
- A third class of manipulation holds most of an interactive communication constant and varies only a small part of it. For instance, a video may be viewed with and without interactive prompts inserted at key points. It should perhaps be noted that, as in the physical sciences, this study-it-in-isolation strategy is risky. Just as a heart extracted from an animal doesn’t behave exactly like one that still resides in the animal, the process studied in isolation may not behave exactly like the one that occurs in interactive communication. Nonetheless, significant progress has been made in the physical sciences by using this isolation strategy, so it may help the science of learning as well.
Dependent variables
Measures of normal and robust learning.
Hypothesis
Our central hypothesis is just a special case of the Knowledge component hypothesis: interactive communication is effective if it guides students to attend to the right knowledge components. The key words here are “guide” and “attend” because they may oppose each other. A dialogue that strongly guides the student may also cause the student to disengage and thus not attend to the knowledge component even if the student’s dialogue partner mentions them. On the other hand, an unguided dialogue may increase the student’s engagement but may skirt around the right knowledge components. That is, the assistance dilemma surfaces as the degree of learner control (a term from the older educational literature) or student initiative (a nearly synonymous term from the natural language dialogue literature).
Explanation
If we view a short episode of interactive communication as a learning event space, there could be three reasons why one treatment might be more effective than another:
(1) The learning event spaces might have different paths with different content. For instance, if one person contributes critical information that the other person lacks, then their joint learning event space has paths that are absent in the learning event space of the second person if that person were working solo. That is, the topology of one space might be better than the topology of the other.
(2) If the learning event spaces in the two conditions are the same, then the interactive communication treatment might cause the students to traverse different paths than the control students. That is, the path choices of one treatment might be better than the path choices of the other.
(3) If the learning event spaces are the same and the students take the same paths, they still might learn more in one condition than another because of the way that they traversed the path. For instance, having a partner observe the student as the student traverse a path might cause the student to be more attentive to details and to remember more. That is, the path effects might differ in the treatment vs. the control.
Descendents
Collaboration
When and how does collaboration between peers can increase robust learning? Problem solving, example studying and many other activities can be done alone, in pairs, or in pairs with various kinds of assistance, such as collaboration scripts. From the standpoint of an individual learner, having a partner offers more assistance than working alone, and having a partner plus other scaffolding offer even more assistance. Thus, the Assistance Hypothesis predicts an interaction between various forms of peer collaboration and students' prior competence.
Questioning
When and how can asking the student questions increase the student's robust learning? What kinds of questions are best?
Which agent?
Should the tutor or the student do the steps in solving a problem? Should the tutor or the student explain the steps of a problem’s solution? Should students detect their own errors or should the tutor point them out? In general, assistance is higher when the tutor does a portion of the instructional activity than when the student does it.
- Tutoring a meta-cognitive skill: Help-seeking (Roll, Aleven & McLaren) [Also relevant to Refinement & Fluency, Knowledge component analysis]
- Understanding culture from film (Ogan, Aleven & Jones) [Also relevant to Refinement & Fluency, Explicit instruction and manipulations of attention & discrimination]
- Does learning from worked-out examples improve tutored problem solving? (Renkl, Aleven & Salden) [Also relevant to Coordinative Learning, Examples]
Implicit vs. explicit instruction
Should the instruction present knowledge explicitly (e.g., as hints or explanations) or let the student infer it from multiple instances? The explicit instruction often provides more assistance, but not always.
- Scaffolding Problem Solving with Embedded Example to Promote Deep Learning (Ringenberg & VanLehn) [Also relevant to Coordinative Learning, Examples]