Difference between revisions of "Visual Feature Focus in Geometry: Instructional Support for Visual Coordination During Learning (Butcher & Aleven)"

From LearnLab
Jump to: navigation, search
(Study 2)
(Abstract)
Line 50: Line 50:
  
 
=== Abstract ===
 
=== Abstract ===
 
+
Is visual-verbal integration a major source of difficulty for students learning geometry? Further, how can coordinative learning with visual and verbal knowledge components in geometry be supported by instructional events that vary the support for and type of sense making in which learners engage during problem solving? In geometry, students may have difficulty integrating visual and verbal information sources for two reasons: first, they may lack deep understanding of geometry concepts (e.g., what is an interior angle?) that are relevant to problem-solving principles (e.g., the interior angles theorem for circles); second, students may be unable to coordinate visual problem features with verbal principles during problem solving. Our research explores the robust learning effects associated with visual-verbal training of geometry features and varied levels of instructional assistance in coordinating visual diagram features with verbal geometry principles during problem solving.
  
 
=== Background & Significance ===
 
=== Background & Significance ===

Revision as of 16:28, 15 January 2008

Visual Feature Focus in Geometry: Instructional Support for Visual Coordination During Learning

Kirsten Butcher & Vincent Aleven

Summary Table

Study 1

PIs Kirsten R. Butcher & Vincent Aleven
Other Contributers Research Programmers/Associates: Octav Popescu (Research Programmer, CMU HCII), Thomas Bolster (Research Associate, CMU HCII), Michael Nugent, Research Programmer CMU HCII)
Study Start Date December 2007
Study End Date February 2008
LearnLab Site Riverview High School
LearnLab Course Geometry
Number of Students Approximately 60
Total Participant Hours Approximately 240
DataShop N/A (Study is still being run)


Study 2

PIs Kirsten R. Butcher & Vincent Aleven
Other Contributers Research Programmers/Associates: Octav Popescu (Research Programmer, CMU HCII), Thomas Bolster (Research Associate, CMU HCII), Michael Nugent, Research Programmer CMU HCII)
Study Start Date January 28, 2008
Study End Date March 2008
LearnLab Site Central Westmoreland Career & Technology Center (CWCTC)
LearnLab Course Geometry
Number of Students Approximately 90
Total Participant Hours Approximately 360
DataShop N/A (Study has not yet begun)


Abstract

Is visual-verbal integration a major source of difficulty for students learning geometry? Further, how can coordinative learning with visual and verbal knowledge components in geometry be supported by instructional events that vary the support for and type of sense making in which learners engage during problem solving? In geometry, students may have difficulty integrating visual and verbal information sources for two reasons: first, they may lack deep understanding of geometry concepts (e.g., what is an interior angle?) that are relevant to problem-solving principles (e.g., the interior angles theorem for circles); second, students may be unable to coordinate visual problem features with verbal principles during problem solving. Our research explores the robust learning effects associated with visual-verbal training of geometry features and varied levels of instructional assistance in coordinating visual diagram features with verbal geometry principles during problem solving.

Background & Significance

Glossary

Research questions

Hypotheses

Explanation

Further Information

Connections

Annotated Bibliography

References

Future Plans

  1. To be added