Difference between revisions of "Prompted Self-explanation"
Line 8: | Line 8: | ||
=== Examples === | === Examples === | ||
− | Here are the | + | Here are the instructions to self-explain, taken from Chi et al. (1994): |
+ | |||
+ | "We would like you to read each sentence out loud and then explain what it means to you. That is, what<br> | ||
+ | new information does each line provide for you, how does it relate to what you've already read, does it give<br> | ||
+ | you a new insight into your understanding of how the circulatory system works, or does it raise a question<br> | ||
+ | in your mind. Tell us whatever is going through your mind–even if it seems unimportant."<br> | ||
+ | |||
+ | These prompts were reworded to be used in Hausmann & VanLehn (2007): | ||
* What new information does each step provide for you? | * What new information does each step provide for you? |
Revision as of 13:55, 11 December 2007
Contents
Brief statement of principle
Many empirical studies have shown that there is a large amount of variance when it comes to individually produced self-explanations. Some students have a natural tenancy to self-explain, while other students do little more than repeat the content of the example or expository text. The quality of the self-explanations themselves can be highly variable (Renkl, 1997). One instructional intervention that has been shown to be effective is to prompt students to self-explain (Chi et al., 1994). Prompting can take many forms, including verbal prompts from human experimenters (Chi et al., 1994), prompts automatically generated by computer tutors (McNamara, 2004; Hausmann & Chi, 2002; Koedinger & Aleven, 2002), or embedded in the learning materials themselves (Hausmann & VanLehn, 2007).
Description of principle
Operational definition
Examples
Here are the instructions to self-explain, taken from Chi et al. (1994):
"We would like you to read each sentence out loud and then explain what it means to you. That is, what
new information does each line provide for you, how does it relate to what you've already read, does it give
you a new insight into your understanding of how the circulatory system works, or does it raise a question
in your mind. Tell us whatever is going through your mind–even if it seems unimportant."
These prompts were reworded to be used in Hausmann & VanLehn (2007):
- What new information does each step provide for you?
- How does it relate to what you've already seen?
- Does it give you a new insight into your understanding of how to solve the problems?
- Does it raise a question in your mind?
Now that all the given information has been entered, we need to apply One way to start is to ask ourselves, “What quantity is the problem seeking?” We know that there is an electric field. If there is an electric field, We use the Force tool from the vector tool bar to draw the electric force. [ PROMPT ] Now that the direction of the electric force has been indicated, we can work on the electric force to the strength of the electric field, and the charge on the [ PROMPT ] |
Note. PROMPT = "Please begin your self-explanation."
Experimental support
Laboratory experiment support
In vivo experiment support
- Does it matter who generates the explanations? (Hausmann & VanLehn, 2006)
- The effects of interaction on robust learning (Hausmann & VanLehn, 2007)
- Deep-level questions during example studying (Craig, VanLehn, & Chi, 2006)
Theoretical rationale
(These entries should link to one or more learning processes.)
Conditions of application
Caveats, limitations, open issues, or dissenting views
Variations (descendants)
Generalizations (ascendants)
References
Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explain with a computer-based Cognitive Tutor. Cognitive Science, 26, 147-179. [1]
Chi, M. T. H., DeLeeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477. [2]
Hausmann, R. G. M., & Chi, M. T. H. (2002). Can a computer interface support self-explaining? Cognitive Technology, 7(1), 4-14. [3]
Hausmann, R. G. M., & VanLehn, K. (2007). Explaining self-explaining: A contrast between content and generation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Artificial intelligence in education: Building technology rich learning contexts that work (Vol. 158, pp. 417-424). Amsterdam: IOS Press. [4]
McNamara, D. S., Levinstein, I. B., & Boonthum, C. (2004). iSTART: Interactive strategy training for active reading and thinking. Behavioral Research Methods, Instruments, and Computers, 36, 222-233. [5]
Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21(1), 1-29. [6]