Difference between revisions of "Prompted Self-explanation"
(→Brief statement of principle) |
|||
Line 38: | Line 38: | ||
|} | |} | ||
+ | Note. PROMPT = "Please begin your self-explanation." | ||
== Experimental support == | == Experimental support == | ||
Line 62: | Line 63: | ||
== References == | == References == | ||
+ | |||
+ | Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explain with a computer-based Cognitive Tutor. Cognitive Science, 26, 147-179. [http://dx.doi.org/10.1016/S0364-0213%2802%2900061-7] | ||
Chi, M. T. H., DeLeeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477. [http://www.pitt.edu/~chi/papers/ChiBassokLewisReimannGlaser.pdf] | Chi, M. T. H., DeLeeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477. [http://www.pitt.edu/~chi/papers/ChiBassokLewisReimannGlaser.pdf] | ||
Line 68: | Line 71: | ||
Hausmann, R. G. M., & VanLehn, K. (2007). Explaining self-explaining: A contrast between content and generation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Artificial intelligence in education: Building technology rich learning contexts that work (Vol. 158, pp. 417-424). Amsterdam: IOS Press. [http://learnlab.org/uploads/mypslc/publications/hausmannvanlehn2007_final.pdf] | Hausmann, R. G. M., & VanLehn, K. (2007). Explaining self-explaining: A contrast between content and generation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Artificial intelligence in education: Building technology rich learning contexts that work (Vol. 158, pp. 417-424). Amsterdam: IOS Press. [http://learnlab.org/uploads/mypslc/publications/hausmannvanlehn2007_final.pdf] | ||
+ | |||
+ | McNamara, D. S., Levinstein, I. B., & Boonthum, C. (2004). iSTART: Interactive strategy training for active reading and thinking. Behavioral Research Methods, Instruments, and Computers, 36, 222-233. [http://www.ingentaconnect.com/content/psocpubs/brm/2004/00000036/00000002/art00007] | ||
Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21(1), 1-29. [http://dx.doi.org/10.1016/S0364-0213(99)80017-2] | Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21(1), 1-29. [http://dx.doi.org/10.1016/S0364-0213(99)80017-2] |
Revision as of 13:53, 11 December 2007
Contents
Brief statement of principle
Many empirical studies have shown that there is a large amount of variance when it comes to individually produced self-explanations. Some students have a natural tenancy to self-explain, while other students do little more than repeat the content of the example or expository text. The quality of the self-explanations themselves can be highly variable (Renkl, 1997). One instructional intervention that has been shown to be effective is to prompt students to self-explain (Chi et al., 1994). Prompting can take many forms, including verbal prompts from human experimenters (Chi et al., 1994), prompts automatically generated by computer tutors (McNamara, 2004; Hausmann & Chi, 2002; Koedinger & Aleven, 2002), or embedded in the learning materials themselves (Hausmann & VanLehn, 2007).
Description of principle
Operational definition
Examples
Here are the prompts from Chi et al. (1994):
- What new information does each step provide for you?
- How does it relate to what you've already seen?
- Does it give you a new insight into your understanding of how to solve the problems?
- Does it raise a question in your mind?
Now that all the given information has been entered, we need to apply One way to start is to ask ourselves, “What quantity is the problem seeking?” We know that there is an electric field. If there is an electric field, We use the Force tool from the vector tool bar to draw the electric force. [ PROMPT ] Now that the direction of the electric force has been indicated, we can work on the electric force to the strength of the electric field, and the charge on the [ PROMPT ] |
Note. PROMPT = "Please begin your self-explanation."
Experimental support
Laboratory experiment support
In vivo experiment support
- Does it matter who generates the explanations? (Hausmann & VanLehn, 2006)
- The effects of interaction on robust learning (Hausmann & VanLehn, 2007)
- Deep-level questions during example studying (Craig, VanLehn, & Chi, 2006)
Theoretical rationale
(These entries should link to one or more learning processes.)
Conditions of application
Caveats, limitations, open issues, or dissenting views
Variations (descendants)
Generalizations (ascendants)
References
Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explain with a computer-based Cognitive Tutor. Cognitive Science, 26, 147-179. [1]
Chi, M. T. H., DeLeeuw, N., Chiu, M.-H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477. [2]
Hausmann, R. G. M., & Chi, M. T. H. (2002). Can a computer interface support self-explaining? Cognitive Technology, 7(1), 4-14. [3]
Hausmann, R. G. M., & VanLehn, K. (2007). Explaining self-explaining: A contrast between content and generation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Artificial intelligence in education: Building technology rich learning contexts that work (Vol. 158, pp. 417-424). Amsterdam: IOS Press. [4]
McNamara, D. S., Levinstein, I. B., & Boonthum, C. (2004). iSTART: Interactive strategy training for active reading and thinking. Behavioral Research Methods, Instruments, and Computers, 36, 222-233. [5]
Renkl, A. (1997). Learning from worked-out examples: A study on individual differences. Cognitive Science, 21(1), 1-29. [6]