Using learning curves to optimize problem assignment
Contents
Abstract
This study examined the effectiveness of an educational data mining method – Learning Factors Analysis (LFA) – on improving the learning efficiency in the Cognitive Tutor curriculum. LFA uses a statistical model to predict how students perform in each practice of a knowledge component (KC), and identifies over-practiced or under-practiced KCs. By using the LFA findings on the Cognitive Tutor geometry curriculum, we optimized the curriculum with the goal of improving student learning efficiency. With a control group design, we analyzed the learning performance and the learning time of high school students participating in the Optimized Cognitive Tutor geometry curriculum. Results were compared to students participating in the traditional Cognitive Tutor geometry curriculum. Analyses indicated that students in the optimized condition saved a significant amount of time in the optimized curriculum units, compared with the time spent by the control group. There was no significant difference in the learning performance of the two groups in either an immediate post test or a two-week-later retention test. Findings support the use of this data mining technique to improve learning efficiency with other computer-tutor-based curricula.
Glossary
Data mining, intelligent tutoring systems, learning efficiency
Research question
Background and significance
Dependent variables
Independent variables
Hypothesis
Findings
Explanation
Knowledge component hypothesis
Descendants
Annotated bibliography
- Cen, H., Koedinger, K. R., & Junker, B. (2006). Learning Factors Analysis: A general method for cognitive model evaluation and improvement. In M. Ikeda, K. D. Ashley, T.-W. Chan (Eds.) Proceedings of the 8th International Conference on Intelligent Tutoring Systems, 164-175. Berlin: Springer-Verlag.