Booth

From LearnLab
Revision as of 18:12, 13 September 2006 by Julie-Booth (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

1. Abstract

2. Glossary

3. Research Question

Students tend to learn overgeneralized knowledge components and apply them on problems with incorrect features. How can we help them to learn correct knowledge components?

4. Background and Significance

Siegler’s overlapping waves theory suggests that there are two important steps that are necessary to improve knowledge (Siegler, 1996): 1) Weaken the incorrect knowledge component, and 2)Construct and strengthen correct knowledge component. Two common instructional methods (procedural practice and self-explanation of correct examples) do not highlight situations in which the knowledge components are not applicable, which will not help students weaken their overgeneralized knowledge components. Self-explanation of incorrect examples (why they’re wrong) can weaken students’ overgeneralized knowledge components by helping them to understand both that the knowledge components are incorrect and what relevant features make them incorrect (e.g., Siegler, 2002)

5. Dependent Variables

Near transfer—immediate. Normal posttest in which isomorphic problems to instruction are included for students to solve. (e.g., 3x + 10 = 20, 4x/3 + 4 = 16, 2/(-5x) = 14)

Near transfer—retention. Embedded assessment within instruction by the Cognitive Tutor. We will collect log data from the review portion of the next equation-solving Tutor unit to determine whether correct knowledge components are applied.

Transfer. Problems included on the posttest in two forms: 1)Procedural format with more difficult problems/problems with additional features (e.g., 2x - 7 = -5x + 9, 4/(6x) – 7 = 32). 2) Conceptual format assessing knowledge of features (e.g., State whether each of the following is the same as 3 – 4x: a. 3 + 4x b. 3 + (-4x) c. 4x – 3 d. 4x + 3)

Accelerated Future Learning. We will collect log data during tutor instruction in the next equation-solving Tutor unit when treatment is no longer in place to determine whether the slope of the learning curve is greater for students who received the corrective self-explanation treatment.

6. Independent Variables

Two types of self-explanation exercises: 1) Typical self-explanation (explanation of correct worked examples), 2) Corrective self-explanation (explanation of incorrect worked examples)

7. Hypothesis

Self-explanation of incorrect examples (why they’re wrong) combined with procedural practice can lead to robust learning through two processes: 1) Weaken low-feature validity knowledge components (know that they’re wrong and why they’re wrong) 2) Facilitate construction of high-feature validity knowledge components

8. Findings

None currently available

9. Explanation

10. Descendents

None

11. Further Information