Post-practice reflection
Brief statement of principle
Post-practice reflection involves activities that follow successful completion of a quantitative problem aimed at helping students to understand the concepts associated with that problem and to develop abstract problem-solving schema. Such schema are a kind of knowledge component that if acquired with high feature validity will help students with solving similar (near transfer) problems, and perhaps also far-transfer problems.
Post-practice reflection activities often involve some kind of dialogue between the student and another agent (teacher, peer, or computer tutor).
Here are the instructions to self-explain, taken from Chi et al. (1994):
"We would like you to read each sentence out loud and then explain what it means to you. That is, what
new information does each line provide for you, how does it relate to what you've already read, does it give
you a new insight into your understanding of how the circulatory system works, or does it raise a question
in your mind. Tell us whatever is going through your mind–even if it seems unimportant."
These prompts were reworded to be used in Hausmann & VanLehn (2007):
- What new information does each step provide for you?
- How does it relate to what you've already seen?
- Does it give you a new insight into your understanding of how to solve the problems?
- Does it raise a question in your mind?
These prompts were then included as text, just below a worked-out example. The example was presented as a video taken of the Andes interface, with a voice-over narration describing the user-interface actions (see Table below). In this example, the student is learning how to solve the following problem:
A charged particle is in a region where there is an electric field E of magnitude
14.3 V/m at an angle of 22 degrees above the positive x-axis. If the charge on the particle
is -7.9 C, find the magnitude of the force on the particle P due to the electric field E.
Now that all the given information has been entered, we need to apply One way to start is to ask ourselves, “What quantity is the problem seeking?” We know that there is an electric field. If there is an electric field, We use the Force tool from the vector tool bar to draw the electric force. Now that the direction of the electric force has been indicated, we can work on |
Note. PROMPT = "Please begin your self-explanation."