Difference between revisions of "Accurate knowledge estimates principle"
Line 8: | Line 8: | ||
In the first incarnations of [[mastery learning]], students alternated between learning and assessment activities. However, [[intelligent tutoring systems]] such as those used in LearnLabs made it possible to conduct mastery learning for individual KCs and to track KC acquisition during learning (cf. Corbett & Anderson, 1995). | In the first incarnations of [[mastery learning]], students alternated between learning and assessment activities. However, [[intelligent tutoring systems]] such as those used in LearnLabs made it possible to conduct mastery learning for individual KCs and to track KC acquisition during learning (cf. Corbett & Anderson, 1995). | ||
+ | |||
+ | Mastery learning in intelligent tutoring systems is highly dependent on the quality of the underlying KC model. If the model infers that a student has learned the KC at a given time, and terminates practice, but the student HAS NOT acquired the KC, the student may be advanced to material for which that KC was prerequisite, without knowing it. Similarly, if the model delays in inferring that the KC has been acquired, the student may waste time "overpracticing" that skill. Over-practice has been shown to have little benefit to robust learning (cf. Cen et al, 2007). | ||
===Operational definition=== | ===Operational definition=== | ||
Line 22: | Line 24: | ||
==Generalizations (ascendants)== | ==Generalizations (ascendants)== | ||
==References== | ==References== | ||
+ | |||
+ | Cen, H., Koedinger, K.R., Junker, B. (2007) Is Over Practice Necessary? - Improving Learning Efficiency with the Cognitive Tutor through Educational Data Mining. Proceedings of AIED 2007, 511-518 | ||
+ | |||
[[Category:Glossary]] | [[Category:Glossary]] | ||
[[Category:Instructional Principle]] | [[Category:Instructional Principle]] |
Revision as of 14:35, 16 May 2009
Contents
Brief statement of principle
Student learning of a set of knowledge components is more likely to be complete (all KCs fully acquired) and efficient (minimum necessary time is used) when estimates of student knowledge of each component are as accurate as possible at any given time.
Description of principle
In the 1970s, mastery learning became a popular instructional technique within schooling (Bloom, 1978). In mastery learning, a student continues a learning activity until he or she has acquired all of the relevant knowledge components, and terminates the activity as soon as all knowledge components are acquired.
In the first incarnations of mastery learning, students alternated between learning and assessment activities. However, intelligent tutoring systems such as those used in LearnLabs made it possible to conduct mastery learning for individual KCs and to track KC acquisition during learning (cf. Corbett & Anderson, 1995).
Mastery learning in intelligent tutoring systems is highly dependent on the quality of the underlying KC model. If the model infers that a student has learned the KC at a given time, and terminates practice, but the student HAS NOT acquired the KC, the student may be advanced to material for which that KC was prerequisite, without knowing it. Similarly, if the model delays in inferring that the KC has been acquired, the student may waste time "overpracticing" that skill. Over-practice has been shown to have little benefit to robust learning (cf. Cen et al, 2007).
Operational definition
Examples
Experimental support
Laboratory experiment support
In vivo experiment support
Level of support
Theoretical rationale
(These entries should link to one or more learning processes.)
Conditions of application
Caveats, limitations, open issues, or dissenting views
Variations (descendants)
Generalizations (ascendants)
References
Cen, H., Koedinger, K.R., Junker, B. (2007) Is Over Practice Necessary? - Improving Learning Efficiency with the Cognitive Tutor through Educational Data Mining. Proceedings of AIED 2007, 511-518