Difference between revisions of "Roll - Inquiry"
(→Background & Significance) |
(→Background & Significance) |
||
Line 31: | Line 31: | ||
In this project I evaluate whether supporting students’ metacognitive behavior in inquiry tasks helps students acquire better domain and scientific reasoning skills, without reducing the motivational benefits and high agency that students have in inquiry tasks. I focus on the Invention as Preparation for Learning framework (IPL; Schwartz & Taylor, 2004; Roll, Aleven & Koedinger, 2009). In IPL students are asked to invent novel mathematical procedures prior to receiving direct instruction on the canonical procedures. IPL was shown to improve students’ domain knowledge and motivation (Kapur & Lee, 2009; Roll, Aleven & Koedinger, 2009; Schwartz & Taylor, 2004). At the same time, students demonstrated poor metacognitive behavior, and lack of learning at the metacognitive level (Roll, 2009). | In this project I evaluate whether supporting students’ metacognitive behavior in inquiry tasks helps students acquire better domain and scientific reasoning skills, without reducing the motivational benefits and high agency that students have in inquiry tasks. I focus on the Invention as Preparation for Learning framework (IPL; Schwartz & Taylor, 2004; Roll, Aleven & Koedinger, 2009). In IPL students are asked to invent novel mathematical procedures prior to receiving direct instruction on the canonical procedures. IPL was shown to improve students’ domain knowledge and motivation (Kapur & Lee, 2009; Roll, Aleven & Koedinger, 2009; Schwartz & Taylor, 2004). At the same time, students demonstrated poor metacognitive behavior, and lack of learning at the metacognitive level (Roll, 2009). | ||
+ | |||
the current project first seeks to identify the SRL skills that are being practiced in IPL. The second stage of the project assesses the transferability of these skills (across domain topics, and along time). Last, I will investigate the effect of supporting these skills on students' domain and metacognitive learning. | the current project first seeks to identify the SRL skills that are being practiced in IPL. The second stage of the project assesses the transferability of these skills (across domain topics, and along time). Last, I will investigate the effect of supporting these skills on students' domain and metacognitive learning. |
Revision as of 22:01, 4 December 2009
Contents
Helping Students Become Better Scientists Using Structured Inquiry Tasks
Summary Table
PIs | Ido Roll |
Other Contributers | Doug Bonn, James Day |
Study Start Date | Jan. 1, 2010 |
Study End Date | May. 31, 2010 |
Site | UBC (not a LeanLab site) |
LearnLab Course | Physics |
Number of Students | N = ~200 |
Total Participant Hours | ~1,000. |
DataShop | no data yet |
Abstract
Background & Significance
This project focuses on SRL behavior during scientific inquiry, and relationships between SRL behavior and domain learning and motivation. While traditional inquiry tasks have inherent benefits of letting students practice key self-regulatory skills, they were shown to be inefficient, and often unproductive, means of instruction. In the absence of adequate support, students often flounder and are lost within the infinite range of possibilities (Veermans, de Jong & van Joolingen, 2000). Consequently, students often fail to learn the target concepts, or at least do not learn them as efficiently as with direct instruction (Kirschner, Sweller & Clark, 2006).
In this project I evaluate whether supporting students’ metacognitive behavior in inquiry tasks helps students acquire better domain and scientific reasoning skills, without reducing the motivational benefits and high agency that students have in inquiry tasks. I focus on the Invention as Preparation for Learning framework (IPL; Schwartz & Taylor, 2004; Roll, Aleven & Koedinger, 2009). In IPL students are asked to invent novel mathematical procedures prior to receiving direct instruction on the canonical procedures. IPL was shown to improve students’ domain knowledge and motivation (Kapur & Lee, 2009; Roll, Aleven & Koedinger, 2009; Schwartz & Taylor, 2004). At the same time, students demonstrated poor metacognitive behavior, and lack of learning at the metacognitive level (Roll, 2009).
the current project first seeks to identify the SRL skills that are being practiced in IPL. The second stage of the project assesses the transferability of these skills (across domain topics, and along time). Last, I will investigate the effect of supporting these skills on students' domain and metacognitive learning.
Glossary
- Structured Invention Tasks
- Self-Regulated Learning
- Scientific Reasoning
- Inquiry tasks
Research questions
The project has 3 steps, each of which focuses on a different research question:
Step 1: What SRL skills are being used and practiced during structured invention tasks?
Step 2:
Independent Variables
Dependent Variables
Hypothesis
Results
Explanation
Further Information
Connections to Other Studies
Annotated Bibliography
References
Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.
Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12(1), 1-48.
Roll, I., Aleven, V., & Koedinger, K. R. (2009). Helping students know 'further' - increasing the flexibility of students' knowledge using symbolic invention tasks. In N. A. Taatgen, & H. van Rijn (Eds.), Proceedings of the 31st annual conference of the cognitive science society. (pp. 1169-74). Austin, TX: Cognitive Science Society.
Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129-184.
Veermans, K., de Jong, T., & van Joolingen, W. R. (2000). Promoting self-directed learning in simulation-based discovery learning environments through intelligent support. Interactive Learning Environments, 8(3), 229-255.
Future Plans
Spring 2010: Do an ethnography in in a 1st year physics lab that uses invention tasks as a normal classroom practice.