Continuous Improvement of Educational Technology through Discoveries with Big Data

John Stamper Human-Computer Interaction Institute Carnegie Mellon University

Carnegie Mellon University

AI, ML, and Big Data

- Educational systems are now generating data at scale (Big Data)
- We can harness Machine Learning and Data Mining to improve these systems.

Carnegie Mellon University

DataShop

- Central Repository
 - Secure place to store & access research data
 - Supports various kinds of research
 - Primary analysis of study data
 - Exploratory analysis of course data
 - Secondary analysis of any data set
- Analysis & Reporting Tools
 - Focus on student-tutor interaction data
 - Data Export
 - Tab delimited tables you can open with your favorite spreadsheet program or statistical package
 - Web services for direct access

How big is DataShop?

Domain	Files	Papers	Datasets	Student Actions	Students	Student Hours	
Language	72	14	170	18,222,928	19,117	33,728	
Math	300	91	613	148,608,998	216,258	415,364	
Science	192	19	297	30,887,757	69,704	93,458	
Other Subjects	122	32	300	42,827,103	79,655	162,680	
Unspecified	172	4	683	60,996,194	81,845	176,358	
Total	858	160	2,063	301,542,980	466,579	881,590	

As of July 2019

Carnegie Mellon University

What kinds of data?

- By domain based on studies from the Learn Labs
- Data from intelligent tutors
- Data from online instruction
- Data from games

The data is fine grained at a transaction level!

Carnegie Mellon University

DataShop Terminology

- KC: Knowledge component
 - also known as a skill/concept/fact
 - a piece of information that can be used to accomplish tasks
 - tagged at the step level
- KC Model:
 - a computational cognitive model or skill model
 - a mapping between correct steps and knowledge components

Getting the KC Model Right!

The KC model drives instruction in adaptive learning

- Problem and topic sequence
- Instructional messages
- Tracking student knowledge

What makes a good KC Model?

- A correct expert model is one that is consistent with student behavior
- Predicts task difficulty
- Predicts transfer between instruction and test

The model should fit the data!

Good KC Model = Good Learning Curve

- An empirical basis for determining when a KC model is good
- Accurate predictions of student task performance & learning transfer
 - Repeated practice on tasks involving the same skill should reduce the error rate on those tasks

A declining error rate learning curve should emerge

A Good Learning Curve

How do we make the Models?

Traditionally Cognitive Task Analysis

But CTA interview methods have some issues...

- Extremely human driven
- Highly subjective
- Leads to differing results from different analysts

And these human discovered models are often wrong!

If human centered intuitive design is not the answer...

How should student models be designed?

They shouldn't!

Student models should be discovered **not** designed!

Solution – Use Data

Today we have lots of log data from edtech

Sienalia .	- 🗆 🖌 🗧	Worksheet					
le Edit Tutor Windows Help	Fi	le Edit Tutor Work:	sheet Windows	Help			
		2	radius of the end of the can	length of the square ABCD	Area of the scrap metal	AREA OF SQUARE ABCD	AREA OF END OF CAN
	te	Unit	inches	inches	square inches	SQUARE INCHES	SQUARE INCHES
	2	Diagram Label		AB	-		-
A B End of Can Metal Square	eces of	Question 1	4	8	13.76	64	50.24
	3	Question 2	8	16	55.04	256	200.96
To make metal cans, the ends for the cans are stamped out of square pieces of metal. The part of the square that is left over is then recycled as scrap. The		Question 3	12	24	123.84	576	452.16
manufacturer needs to know the area of the scrap for each end. Then the weight of the scrap can be figured out.					-	A	4
 The can end has a radius of 4 inches. If an end is punched out of a squ piece of metal measuring 8 inches on a side, find the square inches of th scrap. The can end has a radius of 8 inches. If an end is punched out of a squ piece of metal measuring 16 inches on a side, find the square inches of scrap. The can end has a radius of 12 inches. If an end is punched out of a sc piece of metal measuring 24 inches per side, find the square inches of th scrap. 	e Iare he Iuare	Spreadment thre scrai with code mus	e original ste e values in th o metal" colu the compos es for situation t find an are er areas	ne key "Area umn were as ie-by-additio ons where su	of the sociated n KC that udents	These two careas of the circle ("end not initially (making this unscaffolder	square and of can") wer oresent an

We can harness this data to validate and improve existing student models

Human-Machine Student Model Discovery

(Stamper & Koedinger, 2011)

DataShop provides easy interface to add and modify student models and ranks models

Human-Machine Student Model Discovery

- 3 strategies for discovering improvements to the student model
- Lack of smooth learning curves
- No apparent learning
- Problems with unexpected error rates

Inspect curves for individual knowledge components (KCs)

No apparent Learning

KC Values For Textbook Model

Carnegie Mellon University

KC Name	KC Category	Intercept (logit)	Intercept (probability)	Slope
Circle-area		0.47	0.61	0.02
Circle-circumference		0.1	0.53	0.11
Circle-diameter		1.07	0.74	0.02
Compose-by-addition		0.28	0.57	0
Compose-by-multiplication		0.77	0.68	0.01
Done		3.49	0.97	0.01
Geometric-Name		0.16	0.54	0.02
Given-unit-conversion		-1.78	0.14	0.01
Parallelogram		1.57	0.83	0
Pentagon		-0.28	0.43	0.03
Trapezoid		0.6	0.65	0.08
Triangle		0.08	0.52	0.03
Unit-name		0.88	0.71	0.04

These strategies suggest an improvement

- Hypothesized there were additional skills involved in some of the compose by addition problems
- A new student model (better AIC/BIC values) suggests the splitting the skill.

Decompose created by system on 2008-11-21 12:48:05.0	15 KCs	export	
mapping type: correct transaction to kc LFA values AIC: 14697.59 BIC: 15237.72	status: ready to use		
14875 observations labeled with KCs show model details			
Textbook created by system on 2008-11-21 12:48:05.0	13 KCs	export	
mapping type: correct-transaction to-kc	status: ready to use		
LFA values - AIC: 14865.38 BIC: 15375.07 14875 observations labeled with KCs			
show model details			

What does a better fit really mean?

The new model should be better at driving instruction to the students!

Redesign of the technology can be guided by the findings of the new model.

Redesign based on Discovered Model

Our discovery suggested changes needed to be made to the tutor

- Re-sequencing put problems requiring fewer skills first
- Knowledge Tracing adding new skills
- Creating new tasks new problems
- Changing instructional messages, feedback or hints

Carnegie University

Closing the Loop, (Koedinger, Stamper, McLauglin, 2013)

We implemented a new version of the Carnegie Learning Cognitive Tutor in Geometry

- Knowledge Tracing added new skills for decomposing combined shapes
- Created new tasks new problems isolating the new skills
- Changing instructional messages, feedback or hints

Carnegie Mellon University

- Significantly less time to mastery (25% less time) though more time on critical decomposition skills
- Better posttest performance on composition skills indicating better learning of decomposition skills

Carnegie Mellon University

Other Data Driven Projects

- Learning Linkages: Integrating data streams of multiple modalities and timescales.
 - How to link multiple streams of data
 - What predicts what
- Data-Driven Methods to Improve Student Learning from Online Courses.
 - Applying previous methods to online courses
 - Tools for MOOCs

LearnSphere

"a community software infrastructure around the analysis of educational data that supports sharing and collaboration across the wide variety of educational data"

http://learnsphere.org

THE UNIVERSITY OF MEMPHIS.

Data Silos \rightarrow Data Integration

Carnegie Mellon University

Distributed deployment and storage

Central LearnSphere portal Multiple "myLearnSphere"

installations

- Individual installations curate their own data or replicate to central repository
- Outside researchers can identify existing datasets through metadata provided by local versions

Carnegie Mellon University

Learning Analytics Workflow Authoring Environment

Take Aways

- The amount of data coming from educational technology is growing exponentially (Big Data is here in Education)
- Students are going to rely more and more on technology, so improving the learning in edtech systems is critical
- Human-Centered, Data-Driven approaches are most likely to be the ones that succeed in actionable improvements in edtech

Carnegie Mellon University

32

Questions?

Contact me: jstamper@cmu.edu

Methods & Results -

ProblemType Learning Curves

Carnegie Mellon University

Methods & Results -Addition KC Decomposition

Methods & Results -Addition KC Decomposition

Methods & Results -Addition KC Decomposition

