Roll - Inquiry

From LearnLab
Revision as of 21:52, 4 December 2009 by Idoroll (talk | contribs) (References)
Jump to: navigation, search

Helping Students Become Better Scientists Using Structured Inquiry Tasks

Summary Table

PIs Ido Roll
Other Contributers Doug Bonn, James Day
Study Start Date Jan. 1, 2010
Study End Date May. 31, 2010
Site UBC (not a LeanLab site)
LearnLab Course Physics
Number of Students N = ~200
Total Participant Hours ~1,000.
DataShop no data yet


Abstract

Background & Significance

This project focuses on SRL behavior during scientific inquiry, and relationships between SRL behavior and domain learning and motivation. While traditional inquiry tasks have inherent benefits of letting students practice key self-regulatory skills, they were shown to be inefficient, and often unproductive, means of instruction. In the absence of adequate support, students often flounder and are lost within the infinite range of possibilities (Veermans, de Jong & van Joolingen, 2000). Consequently, students often fail to learn the target concepts, or at least do not learn them as efficiently as with direct instruction (Kirschner, Sweller & Clark, 2006). This project evaluates whether supporting students’ metacognitive behavior in inquiry tasks helps students acquire better domain and scientific reasoning skills, without reducing the motivational benefits and high agency that students have in inquiry tasks. I focus on the Invention as Preparation for Learning framework (Schwartz & Taylor, 2004; Roll, Aleven & Koedinger, 2009). In Invention as Preparation for Learning students first attempt to invent a mathematical procedures to evaluate a target property (e.g., variability, probability, etc). Following the invention attempt students receive direct instruction on the canonical procedure, and practice it. Invention as Preparation for learning was shown to improve students’ domain knowledge and motivation (Kapur & Lee, 2009; Roll, Aleven & Koedinger, 2009; Schwartz & Taylor, 2004). At the same time, students demonstrated poor metacognitive behavior, and lack of learning at the metacognitive level (Roll, 2009).

Glossary

  • Structured Invention Tasks
  • Self-Regulated Learning
  • Scientific Reasoning
  • Inquiry tasks

Research questions

The project has 3 steps, each of which focuses on a different research question:

Step 1: What SRL skills are being used and practiced during structured invention tasks?

Step 2:

Independent Variables

Dependent Variables

Hypothesis

Results

Explanation

Further Information

Connections to Other Studies

Annotated Bibliography

References

Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75-86.

Klahr, D., & Dunbar, K. (1988). Dual space search during scientific reasoning. Cognitive Science, 12(1), 1-48.

Roll, I., Aleven, V., & Koedinger, K. R. (2009). Helping students know 'further' - increasing the flexibility of students' knowledge using symbolic invention tasks. In N. A. Taatgen, & H. van Rijn (Eds.), Proceedings of the 31st annual conference of the cognitive science society. (pp. 1169-74). Austin, TX: Cognitive Science Society.

Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129-184.

Veermans, K., de Jong, T., & van Joolingen, W. R. (2000). Promoting self-directed learning in simulation-based discovery learning environments through intelligent support. Interactive Learning Environments, 8(3), 229-255.

Future Plans

Spring 2010: Do an ethnography in in a 1st year physics lab that uses invention tasks as a normal classroom practice.