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ABSTRACT Cognitive task analysis: Interview and observation

This chapter presents an overview of the current state
of cognitive task analysis (CTA) in research and prac-
tice. CTA uses a variety of interview and observation
strategies to capture a description of the explicit and
implicit knowledge that experts use to perform com-
plex tasks. The captured knowledge is most often
transferred to training or the development of expert
systems. The first section presents descriptions of a
variety of CTA techniques, their common characteris-
tics, and the typical strategies used to elicit knowledge
from experts and other sources. The second section
describes research on the impact of CTA and synthe-
sizes a number of studies and reviews pertinent to
issues underlying knowledge elicitation. In the third
section, we discuss the integration of CTA with train-
ing design. Finally, in the fourth section, we present a
number of recommendations for future research and
conclude with general comments.

KEYWORDS

Automated knowledge: About how to do something;
with repetition, it operates outside of conscious
awareness and executes much faster than conscious
processes.
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protocols for extracting implicit and explicit
knowledge from experts for use in instruction and
expert systems.

Complex tasks: Tasks where performance requires the
integrated use of both controlled and automated
knowledge to perform tasks that often extend over
many hours or days.

Declarative knowledge: Knowledge about what or
why; hierarchically structured; formatted as prop-
ositional, episodic, or visuospatial information that
is accessible in long-term memory and consciously
observable in working memory.

Subject-matter expert (SME): A person with extensive
experience who is able to perform a class of tasks
rapidly and successfully.

INTRODUCTION

Cognitive task analysis is the extension of traditional task
analysis techniques to yield information about the knowl-
edge, thought processes and goal structures that underlie
observable task performance. [It captures information
about both] ... overt observable behavior and the covert
cognitive functions behind it [to] form an integrated
whole. (Chipman et al., 2000, p. 3)



Cognitive task analysis (CTA) uses a variety of inter-
view and observation strategies to capture a description
of the knowledge that experts use to perform complex
tasks. Complex tasks are defined as those for which
their performance requires the integrated use of both
controlled (conscious, conceptual) and automated
(unconscious, procedural, or strategic) knowledge to
perform tasks that often extend over many hours or
days (van Merriénboer et al., 2002). CTA is often only
one of the strategies used to describe the knowledge
required for performance. It is a valuable approach
when advanced experts are available who reliably
achieve a desired performance standard on a target task
and the goal is to capture the cognitive knowledge used
by them (Clark and Estes, 1999). Analysts use CTA to
capture accurate and complete descriptions of cogni-
tive processes and decisions. The outcome is most
often a description of the performance objectives,
equipment, conceptual knowledge, procedural knowl-
edge, and performance standards used by experts as
they perform a task. The descriptions are formatted so
they can be used as records of task performance and
to inform novices in a way that helps them achieve the
performance goals in any context. CTA is most often
performed before (or as an integral part of) the design
of instruction, work, job aids, or tests. The descriptions
are then used to develop expert systems, tests to certify
job or task competence, and training for acquiring new
and complex knowledge for attainment of performance
goals (Chipman et al., 2000; Jonassen et al., 1999).

TYPES OF COGNITIVE TASK
ANALYSIS CURRENTLY IN USE

Researchers have identified over 100 types of CTA
methods currently in use, which can make it difficult
for the novice practitioner to choose the appropriate
method (Cooke, 1994). The number and variety of CTA
methods are due primarily to the diverse paths that the
development of CTA has taken. It has origins in behav-
ioral task analysis, early work in specifying computer
system interfaces, and in military applications—each
with its own demands, uses, and research base. Over
the past 20 years, CTA has been increasingly informed
by advances in cognitive science and has become an
important component for the design of systems and
training in many domains. The growing body of liter-
ature describing CTA methods, applications, and
results mirrors the diverse application and development
of CTA methods; however, reviews and classifications
are available to guide those interested in exploring and
applying CTA, including a comprehensive review of
reviews provided by Schraagen et al. (2000).

Cognitive Task Analysis

Cognitive Task Analysis Families

Cooke (1994) conducted one of the more extensive
reviews of CTA. She identified three broad families of
techniques: (1) observation and interviews, (2) process
tracing, and (3) conceptual techniques. Observations
and interviews involve watching experts and talking
with them. Process tracing techniques typically cap-
ture an expert’s performance of a specific task via
either a think-aloud protocol or subsequent recall. In
contrast, conceptual techniques produce structured,
interrelated representations of relevant concepts within
a domain.

Cooke’s (1994) three families of techniques differ
in terms of their specificity and formality. Generally,
observations and interviews are informal and allow
knowledge elicitors much flexibility during elicitation.
Process tracing methods have more structure and spec-
ificity, although some analysis decisions are left to the
elicitor. Conceptual techniques are well specified and
formal, with few judgments on the part of the elicitor.
As a further comparison, more formal methods require
greater training on the mechanisms and produce more
quantitative data compared to the informal methods,
which focus on interview skills and generate qualita-
tive output. Because different techniques may result in
different aspects of the domain knowledge, Cooke rec-
ommends the use of multiple methods, a recommen-
dation often echoed throughout the CTA literature
(Ericsson and Simon, 1993; Russo et al., 1989; Vos-
niadou, 1994).

Wei and Salvendy’s (2004) review of CTA meth-
ods introduced a fourth family—formal models—
which uses simulations to model tasks in the cognitive
domain. Their review further differs from others in that
they provided practical guidelines on how to use the
classifications of CTA methods to select appropriate
techniques to accomplish various objectives. One
guideline, for example, suggests that when tasks or
jobs do not have a defined domain, observations and
interviews are especially useful in the initial phase of
CTA to generate a more explicit context and identify
boundary conditions.

VARIETIES OF CTA METHODS
AND THEIR APPLICATIONS

These reviews provide a starting point to explore the
numerous varieties of CTA methods and their applica-
tions. We examine the overall CTA process and describe
in depth some methods that have particular application
to instructional design. Although there are many variet-
ies of CTA methods, most knowledge analysts follow a
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five-stage process (Chipman et al., 2000; Clark, 2006;
Coffey and Hoffman, 2003; Cooke, 1994; Crandall et
al., 2006; Hoffman et al., 1995; Jonassen et al., 1999).
The five common steps in most of the dominant CTA
methods are performed in the following sequence:

* Collect preliminary knowledge.

* Identify knowledge representations.

* Apply focused knowledge elicitation meth-
ods.

* Analyze and verify data acquired.

* Format results for the intended application.

The following sections contain descriptions of com-
mon CTA methods and brief explanations of each type
as it is used during each stage of the general process.

Collect Preliminary Knowledge

In this initial stage, the analyst identifies the sequence
of tasks that will become the focus of the CTA. Ana-
lysts attempt to become generally familiar with the
knowledge domain and identify experts to participate
in the knowledge elicitation process. Although knowl-
edge analysts and instructional developers do not need
to become subject-matter experts (SMEs) themselves,
they should be generally familiar with the content,
system, or procedures being analyzed. If possible, two
or more subject-matter experts should be selected to
participate in the process (Chao and Salvendy, 1994;
Lee and Reigeluth, 2003). Although specific criteria
for identifying experts may change depending on cir-
cumstances,* all SMEs must have a solid record of
successful performance at the tasks being analyzed.
Experts are most often interviewed separately to avoid
premature consensus regarding the knowledge and
skills necessary for effective performance. Techniques
typically used during this phase include document
analysis, observation, and interviews (structured or
unstructured). The analyst uses the results of this stage
to identify the knowledge types and structures involved
in performing the tasks.

Document Analysis

Analysts often begin their reviews by collecting any
available written resources describing the tasks and
related subject matter. This can include a wide variety
of documents, such as promotional literature, bro-

* See extensive discussions of appropriate definitions of expertise and
criteria for identifying experts in Cooke (1992), Dawes (1994), Ericsson
and Smith (1991), Glaser and Chi (1988), Mullin (1989), and Sternberg
and Horvath (1998).
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chures, manuals, employee handbooks, reports, glossa-
ries, course texts, and existing training materials. These
documents are analyzed for orientation on the tasks,
preparation of the in-depth analysis, and confirmation
of preliminary ideas (Jonassen et al., 1999). This ori-
entation prepares analysts for subsequent task analysis
activities; for example, the information elicited during
structured interviews may be more robust when ana-
lysts are already familiar with experts’ terminology.
Documentation analysis also allows comparison of
existing materials on a procedure with accounts of
expert practitioners to identify any immediate discrep-
ancies between doctrine and typical implementation.

Observations

Observation is one of the most frequently used and
most powerful tools of knowledge elicitation. It can
be used to identify the tasks involved, possible limita-
tions and constraints for subsequent analysis, and
available information necessary to perform the task. It
also allows analysts to compare an expert’s description
of the task with actual events. In many CTA systems,
analysts will unobtrusively observe experts while they
are performing the tasks under examination to expand
their understanding of the domain. Analysts observe
and record the natural conditions and actions during
events that occur in the setting (Cooke, 1994).
Although definitive identification of an expert’s mental
operations cannot be accomplished through observa-
tion, analysts may note the occasions on which it
seems that experts must make decisions, assess situa-
tions, or engage in analysis.

Unstructured Interviews

“The most direct way to find out what someone knows
is to ask them” (Cooke, 1999, p. 487). In addition to
observation, unstructured interviews are also common
early in the CTA process to provide an overview of
the domain and to raise issues and questions for explo-
ration in subsequent structured interviews. In unstruc-
tured interviews, analysts may not dictate the content
or sequence of conversation. In other instances, how-
ever, they may ask an expert to focus on a task, event,
or case with instructions to “tell me everything you
know about....”

Identify Knowledge Representations

Using the information collected during the preliminary
stage, analysts examine each task to identify subtasks
and types of knowledge required to perform the task.
Most CTA approaches are organized around knowl-



edge representations appropriate for the task, such as
concept maps, flow charts, semantic nets, and so forth.
These representations provide direction and order to
latter stages in the CTA process because knowledge
elicitation methods map directly to knowledge types.
Some are best used to elicit procedural knowledge,
while others are more successful for capturing declar-
ative knowledge (Chipman et al., 2000). A learning
hierarchy is one example of a method to organize the
types of knowledge required to perform a task.

Learning Hierarchy Analysis

A learning hierarchy analysis represents the content of
skills ordered from more complex problem-solving
skills at the top to simpler forms of learning (Gagné,
1962, 1968; Jonassen et al., 1999), so, for example,
problem solving is followed by rule learning, which is
followed by concepts. Thus, the basic idea is that peo-
ple can only learn rules if they have already mastered
the prerequisite concepts necessary to learn the rules.
Analyzing a learning hierarchy begins by identifying
the most complex (highest) learning outcome and then
determining the underlying skills that must be mas-
tered to achieve the target outcome. A hierarchy of
skills is represented as a chart of tasks for each intel-
lectual skill that is acquired to progress to increasingly
complex skills. The learning hierarchy constructed at
this stage of the CTA process provides the guide to
structure the next stage of knowledge elicitation by
identifying the information that must be captured from
the SMEs. Thus, it reflects the reiterative nature of the
CTA process, in which the details of the knowledge,
skills, and cognitive strategies necessary for complex
learning are revealed, refined, and confirmed.

Apply Focused Knowledge Elicitation Methods

During knowledge elicitation, the analyst applies var-
ious techniques to collect the knowledge identified in
the prior stage. Past research indicates that different
elicitation methods yield different types of knowledge
and that knowledge is rarely articulated without being
the focus of elicitation (Crandall et al., 2006; Hoffman
et al., 1998). Analysts attempt to choose methods
appropriate to the targeted knowledge type as deter-
mined by the knowledge representations identified for
each task; consequently, most elicitation efforts entail
multiple techniques. Among the many types of knowl-
edge elicitation methods, variations of structured and
semi-structured interviews are most commonly
involved in CTA because they are relatively easy to
use and require less training than more formal methods
such as protocol analysis (Ericsson and Simon, 1993)

Cognitive Task Analysis

or the use of repertory grids (Bradshaw et al., 1993).
It is the variation in these specific techniques that
defines the major differences between specific CTA
models. Although the methods may differ in focus,
they share a common purpose in capturing the condi-
tions and cognitive processes for necessary for com-
plex problem solving. Following are descriptions of
two CTA models that have been documented to effec-
tively elicit experts’ knowledge in a manner that is
particularly effective for instruction (Crandall and
Getchell-Reiter, 1993; Velmahos et al., 2004).

Concepts, Processes, and Principles

Gathering concepts, processes, and principles (CPPs)
(Clark, 2004, 2006) involves a multi-stage interview
technique that captures the automated and unconscious
knowledge acquired by experts through experience and
practice. Multiple SMEs describe the same procedure,
followed by cycles of expert self-review and peer
review. The initial, semi-structured interview begins
with a description of the CTA process by the analyst.
The SME is then asked to list or outline the perfor-
mance sequence of all key subtasks necessary to per-
form the larger task being examined. SMEs are also
asked to describe (or help the interviewer locate) at
least five authentic problems that an expert should be
able to solve if they have mastered the task. Problems
should range from routine to highly complex whenever
possible. The resulting sequence of tasks becomes the
outline for the training to be designed or the job
description produced after the CTA is completed.
Starting with the first subtask in the sequence, the
analyst asks a series of questions to collect:

* The sequence of actions (or steps) necessary
to complete the subtask

* The decisions that have to be made to com-
plete the subtask, when each must be made,
the alternatives to consider, and the criteria
used to decide among the alternatives

* All concepts, processes, and principles that
are the conceptual basis for the experts’
approach to the subtask

* The conditions or initiating events that must
occur to start the correct procedure

* The equipment and materials required

* The sensory experiences required (e.g., the
analyst asks if the expert must smell, taste,
or touch something in addition to seeing or
hearing cues in order to perform each sub-
task)

* The performance standards required, such as
speed, accuracy, or quality indicators
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The interview is repeated for each SME; each inter-
view is recorded and transcribed verbatim for later
analysis.

Critical Decision Method

The critical decision method (CDM) (Klein et al.,
1989) is a semi-structured interview method that uses
a set of cognitive probes to determine the bases for
situation assessment and decision making during crit-
ical (nonroutine) incidents (for a full procedural
description, see Hoffman et al., 1998). CDM is based
on the concept of expert decision making as the rec-
ognition of cue patterns in the task environment with-
out conscious evaluation of alternatives; thus, situa-
tional awareness plays a dominant role in experts’
selection of courses of action. The speed with which
such decisions are made suggests that experts uncon-
sciously assess feasible goals, important cues, situa-
tional dynamics, courses of action, and expectancies.
To elicit this knowledge, CDM uses a retrospective,
case-based approach with elicitation occurring in mul-
tiple sweeps to gather information in progressively
deepening levels of detail.

The technique begins by selecting a critical inci-
dent from the expert’s task experience that was unusual
in some way. The experts involved provide unstruc-
tured accounts of the incident, from which a timeline
is created. Next, the analyst and the experts identify
specific points in the chronology at which decisions
were made. These decision points are defined as
instances when other reasonable alternative courses of
action were possible. The decision points are then
probed further using questions that elicit: (1) the per-
ceptual cues used in making the decision, (2) prior
knowledge that was applied, (3) the goals considered,
(4) decision alternatives, and (5) other situation assess-
ment factors. The reports are recorded and transcribed
verbatim.

Analyze and Verify Data Acquired

As noted above, CTA methods vary in structure, for-
mality, and results. Because the knowledge elicitation
techniques described here are less formal, they require
that the analyst code and format the results for verifi-
cation, validation, and applicability for use in their
intended application. When conducting interviews
with experts, practitioners recommend recording the
interviews and transcribing them for review at a later
time, rather than trying to take detailed notes during
the interview, which may distract from the process.
Transcripts may be coded to summarize, categorize,
or synthesize the collected data.
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Following coding, the formatted output is pre-
sented to the participating SMEs for verification,
refinement, and revision to ensure that the representa-
tions of tasks and their underlying cognitive compo-
nents are complete and accurate. Once the information
in the formatted output has been verified or revised by
the expert, the analyst should then compare it with the
output of other experts to verify that the results accu-
rately reflect the desired knowledge representation.

The analysis stage in CPP (Clark, 2004, 2006)
begins with the analyst preparing a summary of the
interview in a standard format that includes the task,
a list of subtasks, and the conditions, standards, equip-
ment, and materials required. For each subtask, the
analyst then writes a procedure that includes each
action step and decision step required to perform the
task and gives the procedure to the SME to review. To
verify the individual CTAs, the analyst gives each sub-
ject-matter expert’s product to one of the other SMEs
and asks that person to edit the document for accuracy
and efficiency (that is, to determine the fewest steps
necessary for a novice with appropriate prior knowl-
edge to perform the task). In the final stage, the analyst
edits the individual CTAs into one formatted descrip-
tion of how to accomplish all tasks. After final approval
by the SME:s, this final, formatted document provides
the information for the instructional design process.
Clark (2006) provides the format of the protocol.

The critical decision method prescribes no single
method for coding the transcripts that are transcribed
verbatim from the recorded interviews, as each specific
research question defines how the transcripts are coded
(Klein et al., 1989). The coding scheme, however,
should be domain relevant and have cognitive func-
tionality; in other words, it should tag information that
represents perceptual cues, decision points, and situa-
tional assessments. A sample of a coded protocol can
be found in Hoffman and colleagues (1998).

Format Results for the Intended Application

The results of some highly structured CTA methods
(e.g., cognitive modeling) are readily applied to expert
systems or computer-assisted tutoring applications.
For less formal CTA methods, such as those described
here, the results must be translated into models that
reveal the underlying skills, mental models, and prob-
lem-solving strategies used by experts when perform-
ing highly complex tasks. Further, these models inform
the instructional design of curriculum, training and
other performance applications. The concepts, pro-
cesses, and principles (Clark, 2004, 2006) method gen-
erates a description of the conceptual knowledge, con-
ditions, and a detailed list of the actions and decisions



necessary to perform a task. These products can be
incorporated into an instructional design system. Sim-
ilarly, products resulting from the application of the
critical decision method have been used for a variety
of instructional applications, including building and
evaluating expert systems and identifying training
requirements. CDM can provide case studies and
information regarding which aspects of a task depend
on explicit knowledge and which depend on tacit
knowledge (Klein et al., 1989).

CURRENT RESEARCH EVIDENCE
FOR THE IMPACT OF
COGNITIVE TASK ANALYSIS

Modern CTA evolved from a behavioral approach to
analyzing performance. As the understanding of occu-
pational demands evolved from a focus on physical
performance to a focus on cognitive performance, evi-
dence suggested that key aspects of performance
entailed knowledge that was not directly observable
(Ryder and Redding, 1993; Schneider, 1985). Appli-
cations of behavioral task analysis to training resulted
in incomplete descriptions that led to decision errors
during job performance (Schraagen et al., 2000). Early
versions of CTA were designed to capture the deci-
sions and analyses that could not be directly observed
as well as the deeper conceptual knowledge that served
as the basis for analytical strategies and decisions
(Clark and Estes, 1999). Thus, training shifted from
the reinforcement of associations between perceptual
stimuli and behaviors to the development of declara-
tive and procedural knowledge.

Research evidence indicates that the accurate iden-
tification of experts’ cognitive processes can be
adapted into training materials that are substantially
more effective than those developed through other
means (Merrill, 2002; Schaafstal et al., 2000; Velma-
hos et al., 2004). When content is inaccurate or incom-
plete, any instruction based on that knowledge will be
flawed (Clark and Estes, 1996; Jonassen et al., 1999).
Such flaws interfere with performance and with the
efficacy of future instruction (Lohman, 1986; Schwartz
and Bransford, 1998). Resulting misconceptions resist
correction, despite attempts at remediation (Bargh and
Ferguson, 2000; Chinn and Brewer, 1993; Thorley and
Stofflet, 1996).

Declarative Knowledge and CTA

Declarative knowledge is hierarchically structured,
propositional, episodic, visuospatial information that
is accessible in long-term memory and consciously

Cognitive Task Analysis

observable in working memory (Anderson, 1983;
Anderson and Lebiere, 1998; Gagné et al., 1992). This
type of knowledge supports performance through the
conceptual understanding of processes and principles
related to a task and the role that the task plays within
its broader context (Gagné, 1982). SMEs possess
extensive declarative knowledge of their domains in
the form of principled frameworks of abstract,
schema-based representations. These frameworks
allow experts to analyze complex problems efficiently
(Glaser and Chi, 1988; Zeitz, 1997). These elaborate
schemas enable experts to retain and recall informa-
tion, events, and problem states with a high degree of
accuracy (Cooke et al., 1993; Dochy et al., 1999;
Ericsson and Kintsch, 1995). Further, broad, princi-
pled understandings of their domains facilitate skill
transfer to solve related novel and complex problems
(Gagné and Medsker, 1996; Hall et al., 1995; van
Merriénboer, 1997).

When communicated to novices, the organization
of experts’ knowledge also impacts training outcomes.
In an examination of experts’ instructions to novices,
Hinds et al. (2001) found that trainees who received
explanations from experts performed better on transfer
tasks than trainees who received their explanations
from non-experts. The experts provided explanations
that were significantly more abstract and theoretically
oriented than those of the non-experts, so learners in
the expert-to-novice instructional condition were able
to solve transfer problems more quickly and effectively
than their counterparts in the non-expert-to-novice
instructional condition.

Conceptual knowledge alone, however, is insuffi-
cient for generating effective performance. The non-
expert instructors in the study provided more concrete,
procedural explanations, which facilitated higher per-
formance by trainees when they attempted to perform
the original target task. The abstractions provided by
the experts lacked key details and process information
necessary for optimal performance. This finding is
consistent with many others in the training literature,
suggesting that the most effective learning occurs
when all necessary information is available to the
learner in the form of instruction and/or prior knowl-
edge (for a review, see Kirschner et al., 2006).

Findings from a variety of studies indicate that
without CTA to facilitate knowledge elicitation,
experts in many fields unintentionally misrepresent the
conceptual knowledge on which they base their per-
formance. In a study by Cooke and Breedin (1994),
for example, expert physicists attempted to predict the
trajectories of various objects and provided written
explanations of the methods by which they reached
their conclusions; however, when the researchers
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attempted to replicate the physicists’ predictions on
the basis of the explanations provided, they were
unable to attain the same results. The calculated tra-
jectories were significantly different from those pro-
vided by the experts.

In a similar study, expert neuropsychologists eval-
uated hypothetical patient profiles to determine their
theoretical levels of intelligence (Kareken and Will-
iams, 1994). Participants first articulated the relation-
ships between various predictor variables (e.g., educa-
tion, occupation, gender, and age) and intelligence.
They then estimated 1Q scores on the basis of values
for the predictor variables they identified; however,
their estimates differed significantly from the correla-
tions they provided in their explanations of the rela-
tionships among predictor variables. Many were com-
pletely uncorrelated. Clearly, the experts’ performance
relied on processes that were very different from their
declarative knowledge of their practice.

Procedural Knowledge and CTA

Procedural knowledge is required for all skilled per-
formance. Skill acquisition often begins with learning
declarative knowledge about discrete steps in a proce-
dure; yet, the development of automaticity occurs as
we practice those procedures. The automatization pro-
cess involves learning to recognize important environ-
mental cues that signal when the skill is to be applied
and the association of the cues to the discrete covert
(cognitive) and overt (action) steps required to attain
a goal or subgoal (Neves and Anderson, 1981).
Through practice, these associations and steps increase
in reliability and speed of performance. Over time, the
procedures require diminishing levels of mental effort
or self-monitoring to perform until they utilize very
few, if any, cognitive resources (Wheatley and Wegner,
2001). This consistent, repeated mapping of condi-
tional cues and steps manifests as an integrated if—then
decision rule between the cue (if) and the procedure
(then) necessary to attain a goal from a particular prob-
lem state (Schneider and Shiffrin, 1977). This repre-
sentation is a production within the ACT-R cognitive
model of learning proposed by Anderson (Anderson,
1995; Anderson and Lebiere, 1998).

During complex tasks, multiple if-then produc-
tions are strung together to generate more sophisticated
hierarchies of performances. Each individual produc-
tion attains a subgoal that is a component of the overall
goal. To move from one production to the next in a
sequence, the new subgoal must be identified and an
appropriate production selected. For novices, the iden-
tification and selection process for nearly every sub-
goal is a conscious, deliberate decision; however,
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experts automate this process, so they cannot con-
sciously identify many of these decision points (Bless-
ing and Anderson, 1996).

Automaticity has two primary properties that limit
the effectiveness of unassisted explanations by experts.*
First, automated knowledge operates outside of con-
scious awareness, and executes much faster than con-
scious processes (Wheatley and Wegner, 2001). As such,
it is not available for introspection or accurate self-
monitoring. Second, automated processes are typically
uninterruptible, so they cannot be effectively changed
once they are acquired (Hermans et al., 2000); conse-
quently, experts’ unaided self-reports of their problem-
solving processes are typically inaccurate or incom-
plete** (Chao and Salvendy, 1994; Feldon, 2004).

Cues

Each element of an if—then production has great impor-
tance for effective training. For learners to develop
effective procedures, they must attend to relevant cues
to determine correctly which subgoals and procedures
are appropriate. Thus, incorporating experts’ knowl-
edge of these cues is important for optimal instruction
(Fisk and Eggemeier, 1988; Klein and Calderwood,
1991). Crandall and Getchell-Reiter (1993), for exam-
ple, investigated the procedural knowledge of expert
nurses specializing in neonatal intensive care for new-
born or premature babies. The participants were 17
registered nurses who averaged 13 years of overall
experience and 8.1 years of specialization. Without a
formal knowledge elicitation technique, they
attempted to recall highly detailed accounts of critical
incidents or measures they had implemented that they
believed had positively influenced a baby’s medical
condition. After completing a free recall phase, the
researchers used CTA to identify additional relevant
information that the nurses did not articulate. Analysis
of the transcripts revealed that the CTA probes elicited
significantly more indicators of medical distress in the
babies than were otherwise reported. Before CTA, the
nurses’ explanations of the cues they used were either

* The literature on expertise has not reached a consensus on the role
of automaticity. however, much empirical evidence suggests that it plays
a defining role. See Feldon (in press) for an extensive review. Until the
article reaches publication, it can be found on the SpringerLink website
under digital object identifier (DOI) 10.1007/s10648-006-9009-0. A
prepublication draft can also be located at http://www.cogtech.usc.edu/
recent_publications.php.

** When experts attempt to solve novel problems, the elements of their
decision-making processes that are newly generated are less likely to
be reported inaccurately; however, preexisting processes that were
applied to those problems will continue to be subject to self-report errors
(Betsch et al., 1998).



omitted or articulated vaguely as “highly generalized
constellations of cues” (Crandall and Getchell-Reiter,
1993, p. 50).

Comparison of the elicited cues to those described
in the available medical and nursing training literature
of the time revealed that more than one third of the
cues (25 out of 70) used by the expert nurses in the
study to correctly diagnose infants were absent from
that literature. These cues spanned seven previously
unrecognized categories that were subsequently
incorporated into standard training for novice nurses
entering neonatal intensive care (Crandall and Gam-
blian, 1991).

Decision Points

In addition to knowing which cues are important for
decision making, it is also necessary to correctly iden-
tify the points at which those decisions must be made.
Much of the research on decision making suggests that
many decisions are made prior to awareness of the
need to make a decision (Bargh et al., 2001; Wegner,
2002). Abreu (1999) found that practicing psychother-
apists evaluated fictitious case studies more negatively
when they were primed with material about African-
American stereotypes than when they rated the same
information without priming. Similarly, when Bargh
et al. (2001) subconsciously primed participants with
goals of either cooperation or high performance, the
actions of the participants in a variety of tasks typically
conformed to the subliminal goal despite their being
completely unaware of either the content of the prime
or the fact that they held the goal itself.

In professions, automaticity presents significant
problems for training if experts are relied upon to
explain the points at which decisions must be made.
In medicine, for example, studies of the reliability of
diagnoses by expert physicians for identical symptoms
presented at different times only correlated between
40 and .50 (Einhorn, 1974; Hoffman et al., 1968).
Despite self-reports suggesting that the participants
considered extended lists of symptoms, analysis of the
symptoms in the cases presented indicated that only
one to four symptoms actually influenced diagnosis
decisions (Einhorn, 1974).

Some experts freely acknowledge that they are
unable to accurately recall aspects of their problem-
solving strategies. Johnson (1983) observed significant
discrepancies between an expert physician’s actual
diagnostic technique and the technique that he articu-
lated to medical students. Later, he discussed with the
physician why his practice and his explanation dif-
fered. The physician’s explanation for the contradic-
tion was, “Oh, I know that, but you see, I don’t know
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how I do diagnosis, and yet I need things to teach
students. I create what I think of as plausible means
for doing tasks and hope students will be able to con-
vert them into effective ones” (Johnson, 1983, p. 81).

Cognitive Skills

Correctly identifying and explaining the sequences
of cognitive and psychomotor actions that are trig-
gered by cues at decision points are likewise crucial
to effective instruction. Although psychomotor
aspects of a task are relatively simple for learners to
observe, cognitive operations require articulation for
a learner to successfully replicate an expert’s perfor-
mance; however, automaticity often impairs this pro-
cess. As an example, a team of engineers and tech-
nicians with expertise in the assembly of
sophisticated research equipment attempted unsuc-
cessfully to generate a complete set of assembly
instructions, despite extensive and repeated efforts to
include every relevant fact, process, and heuristic
(Collins et al., 1985). When scientists who purchased
the equipment attempted to assemble it according to
the instructions, the equipment did not function. After
many discussions with the engineers, the scientists
eventually discovered that the expert team had acci-
dentally omitted a necessary step from the instruc-
tions. The step turned out to be a universally imple-
mented practice among the engineers and technicians
that they had failed to articulate.

Chao and Salvendy (1994) systematically docu-
mented the rates at which experts omit cognitive skills
from self-reports. Six expert programmers were asked
to complete a series of challenging troubleshooting
tasks, and all of their actions were recorded. The
programmers were then asked to explain their proce-
dures using a variety of different knowledge elicita-
tion methods. No single expert was able to report
more than 41% of their diagnostic actions, 53% of
their debugging actions, or 29% of their interpreta-
tions, regardless of the knowledge elicitation method
used; however, when the researchers began compiling
the elicited explanations from different experts, they
found that the percentage of actions explained
increased. When explanations from all six experts
were aggregated, the percentages of verbalization for
each category of actions increased to 87%, 88%, and
62%, respectively. The improvement in information
elicited reflects the experts’ individual differences in
which subgoal productions had been automated to
greater and lesser extents. Thus, one promising prac-
tice for instruction based on expert knowledge is to
employ CTA methods with multiple experts prior to
developing instruction.
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Instructional Evidence

Several studies provide direct evidence for the efficacy
of CTA-based instruction. In a study of medical school
surgical instruction, an expert surgeon taught a proce-
dure (central venous catheter placement and insertion)
to first-year medical interns in a lecture/demonstra-
tion/practice sequence (Maupin, 2003; Velmahos et al.,
2004). The treatment group’s lecture was generated
through a CTA of two experts in the procedure. The
control group’s lecture consisted of the expert instruc-
tor’s explanation as a free recall, which is the tradi-
tional instructional practice in medical schools. Both
conditions allotted equal time for questions, practice,
and access to equipment. The students in each condi-
tion completed a written post-test and performed the
procedure on multiple human patients during their
internships. Students in the CTA condition showed
significantly greater gains from pretest to post-test than
those in the control condition. They also outperformed
the control group when using the procedure on patients
in every measure of performance, including an obser-
vational checklist of steps in the procedure, number of
needle insertion attempts required to insert the catheter
into patients’ veins, frequency of required assistance
from the attending physician, and time to completion
for the procedure.

Similarly, Schaafstal et al. (2000) compared the
effectiveness of a preexisting training course in radar
system troubleshooting with a new version generated
from cognitive task analyses. Participants in both ver-
sions of the course earned equivalent scores on knowl-
edge pretests; however, after instruction, students in the
CTA-based course solved more than twice as many mal-
functions, in less time, as those in the traditional instruc-
tion group. In all subsequent implementations of the
CTA-based training design, the performance of every
student cohort replicated or exceeded the performance
advantage over the scores of the original control group.

Merrill (2002) compared CTA-based direct
instruction with a discovery learning (minimal guid-
ance) format and a traditional direct instruction format
in spreadsheet use. The CTA condition provided direct
instruction based on strategies elicited from a spread-
sheet expert. The discovery learning format provided
authentic problems to be solved and made an instructor
available to answer questions initiated by the learners.
The traditional direct instruction format provided
explicit information on skills and concepts and guided
demonstrations taken from a commercially available
spreadsheet training course. Scores on the post-test
problems favored the CTA-based instruction group
(89% vs. 64% for guided demonstration vs. 34% for
the discovery condition). Further, the average times to
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completion also favored the CTA group. Participants
in the discovery condition required more than the allot-
ted 60 minutes, the guided demonstration participants
completed the problems in an average of 49 minutes,
and the participants in the CTA-based condition
required an average of only 29 minutes.

Generalizability of CTA-Based
Training Benefits

Lee (2004) conducted a meta-analysis to determine
how generalizable CTA methods are for improving
training outcomes across a broad spectrum of disci-
plines. A search of the literature in ten major academic
databases (Dissertation Abstracts International, Article
First, ERIC, ED Index, APA/PsycInfo, Applied Sci-
ence Technology, INSPEC, CTA Resource, IEEE,
Elsevier/AP/Science Direct) using keywords such as
“cognitive task analysis,” “knowledge elicitation,” and
“task analysis” yielded 318 studies. Seven studies
qualified, based on the qualifications of (1) training
based on CTA methods with an analyst, (2) conducted
between 1985 and 2003, and (3) reported pre- and
post-test measures of training performance. A total of
39 comparisons of mean effect size for pre- and post-
test differences were computed from the seven studies.
Analysis of the studies found effect sizes between .91
and 2.45, which are considered to be large (Cohen,
1992). The mean effect size was d = +1.72, and the
overall percentage of post-training performance gain
was 75.2%. Results of a chi-square test of indepen-
dence on the outcome measures of the pre- and post-
tests (x> = 6.50, p < 0.01) indicated that CTA most
likely contributed to the performance gain.

Cost—Benefit Studies of CTA

There are few published cost-effectiveness or
cost-benefit studies that compare CTA with other task
analysis approaches. One exception, reported by Clark
and Estes (1996), described a field-based comparison
of traditional task analysis and cognitive analysis by a
large (10,000+ employees) European organization that
redesigned a required training course in emergency
and safety procedures for approximately 500 manag-
ers. The old and new versions of the course continued
to be offered after the new version of the course was
designed so the relative efficacy of the two approaches
could be compared. All objectives and test items were
similar in both the old and new versions. As Table 43.1
indicates, the use of CTA required a greater front-end
investment of time (the organization refused to release
salary data) both for the CTA itself and the training of
instructors for the course (data on the time required to
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TABLE 43.1

Cost Comparison of Behavioral and Cognitive Task Analysis

Behavioral Task Analysis Cognitive Task Analysis

Comparison Activities and Design Days?* and Design Days
Task analysis and design 7 38
Training of presenters 0 18
Delivery by trainers 80 34
Subtotal 87 90
Total time for 500 trainers 1000 500
Total training days® 1087 590

2 Day = person work day to design and present safety course.
b Total savings with CTA: 1087 days—590 days = 497 days, or 2.5 person years.

Source: Clark, R.E. and Estes, F., Int. J. Educ. Res., 25,403-417, 1996. With permission.

train instructors for the old course were not available).
Yet, even with the approximately 85% more front-end
time invested in design, development, and instructor
training, the new course resulted in 2.5 person-years
of time savings, because it could be offered in 1 day
(compared with 2 days for the previous course) with
equal or greater scores on the performance posttest.
Although these data are only suggestive, the time sav-
ings reported by Clark and Estes (1996) reflect similar
time savings reported above by Velmahos et al. (2004)
and Merrill (2002).

INTEGRATING COGNITIVE TASK
ANALYSIS AND TRAINING DESIGN

Optimal Integration of CTA
and Training Design

For optimal application to instruction, CTA methods
should be fully integrated with a training design model
to facilitate the alignment between learning objectives,
knowledge (declarative and procedural) necessary for
attaining the objectives, and instructional methods
appropriate to the required knowledge. Currently, three
major systems take this approach: the Integrated Task
Analysis Model (ITAM) (Redding, 1995; Ryder and
Redding, 1993), Guided Experiential Learning (GEL)
(Clark, 2004, 2006), and the Four-Component Instruc-
tional Design (4C/ID) system (van Merriénboer, 1997,
van Merriénboer and Kirschner, 2007; van Merrién-
boer et al., 2002). Of these, the 4C/ID model is the
most extensively developed. It can be distinguished
from other instructional design models in three ways.
First, the emphasis of the model is on the integrated
and coordinated performance of task-specific constit-
uent skills rather than specific knowledge types or

sequenced performance of tasks. Second, a distinction
is made between supportive information, which helps
learners perform the nonrecurrent aspects of a complex
skill, and procedural or just-in-time (JIT) information,
which is presented to learners during practice and
helps them to perform the recurrent aspects of a com-
plex skill. Third, the 4C/ID model is based on learners
performing increasingly complex skills as a whole
task, with part-task practice only of the recurrent skills;
in contrast, traditional design methods emphasize the
deconstruction of a complex task into part tasks,
which, once learned separately, are compiled as whole-
task practice. The assumption of the 4C/ID model is
that environments supporting complex skill learning
can be described in terms of four interrelated compo-
nents: learning tasks, supportive information, just-in-
time information, and part-task practice.

Learning Tasks

Learning tasks are concrete, authentic, whole-task
experiences that are organized sequentially from easy
to difficult. Learning tasks at the same level of diffi-
culty comprise a task class, or group of tasks that draw
upon the same body of knowledge. Learning tasks
within a class initially employ scaffolding that fades
gradually over subsequent tasks within the class.
Learning tasks foster schema development to support
nonrecurrent aspects of a task. They also facilitate the
development of automaticity for schemata used during
recurrent aspects of a task.

Supportive Information

Supportive information assists the learner with inter-
preting, reasoning, and problem-solving activities that
comprise the nonrecurrent aspects of learning tasks. It
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includes mental models demonstrated through case
studies, cognitive strategies modeled in examples, and
cognitive feedback. Through elaboration, supportive
information helps learners to apply their prior knowl-
edge when learning new information they need to per-
form the task.

Just-in-Time information

Just-in-time information consists of rules, procedures,
declarative knowledge, and corrective feedback
required by learners to perform recurrent aspects of
the task. JIT information is presented in small units as
“how-to” instruction, with demonstrations of proce-
dures and definitions of concepts illustrated with
examples. As learners perform the recurrent aspects of
a task and acquire automaticity, the amount of JIT
information provided diminishes.

Part-Task Practice

Part-task practice opportunities are provided for repeti-
tive performance of the recurrent aspects of a task when
a high degree of automaticity is required. Part-task prac-
tice is repeated throughout instruction and mixed with
other types of practice. Part-task practice includes items
that vary from very familiar to completely novel.

COGNITIVE TASK ANALYSIS
AND 4C/ID MODEL

The 4C/ID model utilizes CTA to accomplish four
tasks: (1) decomposing complex skills into skill hierar-
chies, (2) sequencing the training program within task
classes, (3) analyzing nonrecurrent aspects of complex
skills to identify cognitive strategies and mental models,
and (4) analyzing recurrent aspects of the complex skill
to identify rules or procedures and their prerequisite
knowledge that generate effective performance. In gen-
eral, these activities occur within the framework of the
five-stage CTA process; however, because this process
is highly integrated with the 4C/ID model, the instruc-
tional design model guides the CTA activities. This
integration with the instructional design process tends
to highlight the reiterative nature of the CTA process.

Decomposition of the Complex Skill

In the first group of task analysis activities, complex
skills are broken down into constituent skills, and their
interrelationships are identified.* Performance objec-
tives are specified** for all constituent skills, and the
objectives are classified as recurrent or nonrecurrent.
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Objectives are classified as nonrecurrent if the desired
behavior varies from problem to problem and is guided
by the use of cognitive strategies or mental models.
Objectives are recurrent if the desired behavior is
highly similar from problem to problem and is guided
by rules or procedures. Sometimes recurrent constitu-
ent skills require a high degree of automaticity; these
skills are identified for additional part-task practice.

Documentation analysis, observation, and unstruc-
tured interviews with SMEs provide the information
for building a preliminary skills hierarchy to guide
further knowledge elicitation efforts. Data collection,
verification, and validation of the skills hierarchy
require multiple iterations of knowledge elicitation
using multiple SMEs. The verified skills hierarchy then
serves as a guide for deeper CTA techniques, such as
Clark’s concepts, principles, and processes (Clark,
2004, 2006). The CPP data identify constituent skills
and their interrelationships, performance objectives for
each constituent skill, and the classification of the skill
as recurrent or nonrecurrent. The CPP method also
identifies problems ranging from easy to difficult to
assist in sequencing task classes.

Sequencing Task Classes

The second group of task analysis activities involves
categorizing learning tasks into task classes. The skills
hierarchy and classified performance objectives deter-
mine the sequence of training for individual constitu-
ent skills. The 4C/ID-model employs a whole-task
approach, in which trainees learn all constituent skills
at the same time. In the first task class, learners perform
the simplest version of the whole task. As the condi-
tions under which the task is performed become
increasingly complex, the whole task scenarios
become more authentic and reflective of those encoun-
tered by experts in the real world. CTA processes are
used both to verify the skills hierarchy and to confirm
the sequencing of task classes from simple to complex.

Analyze the Nonrecurrent
Aspects of the Complex Skill

The third set of analytic activities identifies the sup-
portive information necessary for each task class in the
form of mental models (how is the problem domain

* The three categories of interrelationships are coordinate (performed
in temporal order), simultaneous (performed concurrently), and trans-
posable (performed in any order).

** Performance objectives reflect the performance as a result of learning
and include an action verb, a description of tools used, conditions, and
standards for performance.



organized?) and cognitive strategies (how to approach
problems in the domain?). Knowledge elicitation
methods commonly used with SMEs to capture data
for nonrecurrent aspects of a complex skill include
interviews and think-aloud protocols. The CTA meth-
ods are repeated for both simple versions and complex
versions of the task to capture the knowledge required
for performing the nonrecurrent aspects of the task.

Analyze the Recurrent
Aspects of the Complex Skill

The final set of task analysis activities in the 4C/ID
model is an in-depth analysis of the recurrent constit-
uent skills. These are identified during the skill decom-
position process to identify the JIT information required
for the recurrent aspects of the learning tasks. Each
constituent skill that enables the performance of another
constituent skill is identified in a reiterative process,
until the prerequisite knowledge already mastered by
learners at the lowest level of ability is identified.

Analysts employ CTA techniques to identify task
rules and generate highly specific, algorithmic descrip-
tions of task performance. Next, the prerequisite
knowledge required to apply the procedure is identi-
fied. The analysis of concepts occurs through the cre-
ation of feature lists that identify the characteristics of
all instances of a concept. At a lower level, facts (which
have no prerequisites) are identified. At a higher level,
processes and principles are identified. When com-
pleted, the analyst incorporates these prerequisite
knowledge components into the rules or procedures
for performing the task.

In sum, the results of the four sets of CTA activities
in the 4C/ID model provide detailed and in-depth infor-
mation about the skills, sequence, cognitive strategies,
mental models, rules, and prerequisite knowledge
required for complex skill learning through the instruc-
tional design of its four interrelated components: (1)
learning tasks, (2) supportive information, (3) JIT
information, and (4) part-task practice. Combined, they
form a fully integrated system for problem-based learn-
ing in complex domains. A complete description and
procedure for implementing the 4C/ID model can be
found in van Merriénboer and Kirschner (2007).

THE NEXT GENERATION
OF RESEARCH ON
COGNITIVE TASK ANALYSIS

Although CTA appears to have significant potential to
improve various kinds of performance, it shares many
of the challenges reported in studies of instructional

Cognitive Task Analysis

design theories and models (Glaser, 1976; Salas and
Cannon-Bowers, 2001). We need many more well-
designed studies that systematically compare the
impact of different forms of CTA on similar outcome
goals and measures. We also need to understand the
efficacy of different CTA methods when used with
different training design models and theories.

So many types of CTA have been used and
reported, and variation in the application of methods
is so overwhelming that it is doubtful that any gener-
alization about CTA will satisfy basic standards of
construct validity. Researchers are cautioned to look
carefully at the description of the methods used to
implement CTA to classify the family origin of the
technique being replicated. We attempted to describe
five common elements of most CTA methods in the
first part of this chapter, but the specific strategies used
to implement each of these elements varies across stud-
ies. The elements we described are focused on the
common steps used to implement CTA. This is a
sequence model and is similar to the Analysis, Design,
Development, Implementation, and Evaluation
(ADDIE) model for instructional design. Schraagen et
al. (2000) and Cooke (1994) have discussed this prob-
lem in detail and have attempted to organize the vari-
ous methods into families based on the type of out-
come being pursued (e.g., training, job design, and
assessment). Wei and Salvendy (2004) have suggested
11 very useful guidelines for selecting the best CTA
method to achieve a goal (see Table 43.2).

First Principles of Cognitive Task Analysis

A different and equally valuable strategy for tackling
the multiplicity of CTA methods would be to apply
Merrill’s (2002) first principles approach to a similar
problem with instructional design models. Merrill
classified what appeared to be the most psychologi-
cally active instructional methods in a group of popu-
lar, evidence-based instructional design models. One
of the principles he suggested is that designs that help
learners connect with prior knowledge are more suc-
cessful. An attempt to identify first principles of CTA
would be a benefit to researchers and practitioners by
identifying the active ingredients in key CTA methods;
for example, nearly all CTA methods seem to place a
heavy premium on the identification of the environ-
mental or contextual cues that indicate the need to
implement a skill. The study of neonatal nurses by
Crandall and Getchell-Reiter (1993) involved generat-
ing more accurate diagnostic symptoms (cues)
expressed by very sick babies. Because the recognition
of conditional cues may be automated and unconscious
for many SME:s, the need for accurate and exhaustive
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TABLE 43.2
Guidelines for Selecting CTA Methods

When To Use Various CTA Methods

Tasks and domain are not well defined in the initial stages.
Procedures to perform a task are not well defined.
Tasks are representative, and the process is clear.
Task process and performance require tracking.
Verbal data are easily captured without compromising performance.
Domain knowledge and structures require defining.
Multiple task analyzers are used, and task requires less verbalization.
Task requires quantitative predication, and task models change little
when the scenario changes.
Task performance is affected or distracted by interference.
Task analyzers lack significant knowledge and techniques.
Tasks are:
Skill-based
Rule-based
Knowledge-based

Families of CTA Methods

Observations Conceptual
and Interviews  Process Tracing Techniques Formal Models
X
X
X
X
X
X
X
X
X X X
X X X
X X
X X
X X

Source: Adapted from Wei, J. and Salvendy, G., Behav. Inform. Technol., 23(4), 273-299, 2004.

identification of important cues may be one of the most
important principles of CTA. In the case of the neo-
natal nursing studies, the cues captured during CTA
have changed the textbook instructions for future neo-
natal nurses. Other principles may be associated with
the identification of the sequence in which productions
must be performed and the decisions that must be made
(including the alternatives that must be considered and
the criteria for selecting alternatives). Principles may
also be related to the protocols that are used to observe
and interview experts to capture the most accurate and
exhaustive description of their task-based knowledge.
It is also likely that a separate set of principles would
be needed to characterize team or organizational CTAs
(Schraagen et al., 2000).

Research on Automated, Unconscious
Expert Knowledge

Concerns about experts’ awareness of their own exper-
tise and the strategies used to capture unconscious
knowledge are arguably the most important research
issues associated with CTA. The body of research on
unconscious, automated knowledge has yet to be widely
integrated into instructional design or the practice of
educational psychologists. Most of the research in this
area has been conducted by those interested in psycho-
therapy and the dynamics of stereotypes and bias in
decision making (Abreu, 1999; Bargh and Ferguson,
2000; Wheatley and Wegner, 2001) and motivation
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(Clark et al., 2006). Yet, we have ample evidence of the
importance of this issue in CTA and training from the
results of current research by, for example, Velmahos
et al. (2004) and Chao and Salvendy (1994). We need
to know much more about how unconscious expertise
influences the accuracy of task analysis. We also need
to know much more about how to modify automated,
unconscious knowledge when people must learn to
modify skills. Clark and Elen (2006) have reviewed past
research and made suggestions for further study.

Cost Effectiveness and Cost—Benefit Research

Another promising area of future research is cost-
effectiveness and cost—benefit analysis (Levin and
McEwan, 2000). Existing studies have not explored
this issue systematically, but very promising prelimi-
nary analyses indicate significant learner time savings
and decreases in significant performance errors (Clark
and Estes, 1996; Merrill, 2002; Schaafstal et al., 2000;
Velmahos et al., 2004). These data are important in
part because many key decision makers have the
impression that CTA is an overly complex process that
requires a great deal of time to conduct and should be
avoided due to its cost (Cooke, 1994, 1999). It is accu-
rate to state that CTA increases the time and effort
required for front-end design—particularly when a
number of experts who share the same skill must be
observed and interviewed; yet, it is also possible that
these costs may be offset by delivery-end savings due



to increased learner accuracy and decreased learning
time. People in formal school settings seldom consider
decreased learning time as a benefit, but in business
and government settings time is a valuable commodity.
The conditions under which savings are, and are not,
available would be a valuable adjunct to continued
development of CTA. Many other suggestions are pos-
sible but are beyond the scope of this chapter.

CONCLUSION

Cognitive task analysis is one of the major contribu-
tions to instructional technology that have resulted
from the cognitive revolution in psychology and edu-
cation beginning in the 1970s. CTA does not seek to
replace behavioral task analysis (or the analysis of doc-
uments and research to support training) but instead
adds to existing methods that help capture the covert
mental processes that experts use to accomplish com-
plex skills. The importance of CTA is based on com-
pelling evidence that experts are not fully aware of
about 70% of their own decisions and mental analysis
of tasks (Clark and Elen, 2006; Feldon and Clark, 2006)
and so are unable to explain them fully even when they
intend to support the design of training, assessment,
job aids, or work. CTA methods attempt to overcome
this problem by specifying observational and interview
strategies that permit designers to capture more accu-
rate and complete descriptions of how experts succeed
at complex tasks. Research evidence described in this
chapter strongly suggests huge potential benefits for
designers and learners when CTA-based performance
descriptions are used in training and job aids.

Many designers are apparently not aware of or are
not using CTA. In January 2007, we searched Goo-
gle™ Scholar for the terms “task analysis” or “task
analysis models” and then “cognitive task analysis™ or
“cognitive task analysis models.” The former terms
returned about nine to ten times more hits than the
cognitive task analysis terms. We looked at a number
of the texts used to teach instructional design and could
not find any references to CTA.

Cognitive task analysis has been the subject of
research more often than it has been applied in prac-
tice, so we suspect that few designers have been trained
to conduct effective cognitive task analyses. It is also
possible that the assumptions underlying CTA conflict
with the assumptions that underlie some of the cur-
rently popular design theories such as constructivism
and problem-based learning (Kirschner et al., 2006).
Educators who avoid direct instruction in favor of
expert-supported group problem solving or communi-
ties of practice would not be inclined to conduct CTA

Cognitive Task Analysis

to support a constructivist context for learning new
skills or to teach CTA in graduate programs. Our
review of the research evidence for CTA strongly indi-
cates that if it is adopted it might make a huge contri-
bution to learning and performance. It is also clear that
many questions about CTA remain to be answered.
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