Why does writing help reading in Chinese learning: Evidence from an fMRI study

Fan Cao 9/24/2010

Visual forms of Chinese

Complex spatial relationships

- left-right, 吐/tu4/
- -up-down, 杏/xing4/
- inside-out, 团/kun4/

Mapping systems of Chinese

(Tan, et al., 2005)

Predictors of reading achievements

 Visual-orthographic skills have a greater unique contribution than phonological skills in Chinese reading acquisition

(Huang & Hanley, 1995; Siok & Fletcher, 2001; Ho & Bryant, 1999; McBride-Chang, 2005; Ho & Chan, 2007).

Reading depends on writing (Tan, 2005).

Neural correlates for Chinese and English

(Cao, 2009, 2010; Bolger, Perfetti, 2005; Tan, Laird, 2005; Kuo, 2001; Chee, 1999; Booth, Lu, 2006)

Regions identified using meta-analysis as greater for Chinese as compared to alphabetic languages in Tan et al., 2005.

Anatomical Region	Н	ВА	x	у	z
Inferior Occipital Gyrus	L	18	-32	-84	-5
Middle Frontal Gyrus	L	9	-46	17	31
Premotor Cortex	L	6	-44	5	18
Cingulate Gyrus	Cingulate	32	-2	19	45
Inferior Occipital Gyrus	R	18	36	-84	-19
Fusiform Gyrus	L	19	-34	-52	-6
InferiorParietal Lobe	L	40	-36	-46	50
Fusiform Gyrus	R	37	34	-61	-25
Precentral Gyrus	L	6	-46	0	48

How about second language learning?

- Use L1 network—assimilation?
- Use L2 network accommodation?
- Both but depends on what L1 and L2 are?

Assimilation

Accommodation

English speakers viewing English

English speakers viewing Chinese

viewing Chinese-English

Assimilation and accommodation

Assimilation and accommodation

- Chinese L1 learning English Assimilation
- English L1 learning Chinese -- Accommodation

Study 2010 Spring

 The goal of this study was to find a training method that helps accommodation at both the visual form level and the mapping level in English speakers learning Chinese.

Methods

- Within-subject design
 Character writing orthography
 Pinyin writing -- phonology
- 17 undergraduate students from CMU or Pitt
 English monolingual speakers
 taking Chinese level 1 class
 no exposure to Chinese before taking the class

Training Procedures

Day 1	Day 2	Day 3	Day 4	Day 5
Pre-test training	training	training	training	training
test	test	test	test	Test Post-test

Training Procedures

Tests

- lexical decision -- Orthography
- character-sound matching -- Phonology
- character-meaning matching -- Semantics

Post test before fMRI

	Character Writing	Pinyin Writing
Meaning	0.96	0.95
Pronunciation	0.92	0.96

fMRI tasks

- Passive viewing
- Lexical decision
- Implicit writing

Results Accommodation—Passive Viewing

Chinese>English

English>Chinese

Results Behavioral—Lexical Decision

	Writing	Pinyin	Novel	Baseline
Acc	0.91	0.80	0.66	0.97
	(0.09)	(0.08)	(0.14)	(0.04)
RT	755 (72)	759 (82)	781 (96)	563 (69)

Writing effects -- LD

Writing > Pinyin

Bilateral SPL

Writing effects -- LD

Writing > Pinyin

Right pre-motor, motor cortex

Pinyin effect -- LD

Pinyin > Writing

Right IFG

Writing effects -- LD

Writing > pinyin = novel

Learning effects -- LD

Writing = Pinyin > Novel

Bilateral occipital cortex

Learning effects -- LD

Writing > Pinyin > Novel

Left MTG

Learning effects -- LD

Writing = pinyin > novel

Summary

- Character writing enhances visual-spatial representation of characters
- Character writing add additional motorrelated representation to the network
- Character writing enhances semantic representation
- Pinyin writing enhances phonological representation

Implicit writing task

Writing>pinyin

Implicit writing task

Writing>pinyin

Implicit writing task

Writing>pinyin

Summary

 Writing helps to establish high quality representation of orthography, which facilitates the mapping to semantics and phonology and the integration between them as well.

Conclusions

- Character writing training invoked greater activation in the Chinese network (bilateral SPL, motor cortex, right FG, left MFG), suggesting greater accommodation.
- Pinyin writing training is more helpful with phonological representation.

Thanks!

Charles Perfetti

Yi Xu

- Qun Guan
- Derek Chan
- Lindsay Harris
- Jason Lawrence
- Marianne Vu
- Laura Halderman
- Christina Poulin
- Joseph Stafura