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For the academic linguist and educational sociologist, the language of
mathematics fascinates. It is a language unlike any other: an amalgam of
symbols and images with spoken and written English, which constructs
forms of knowledge — ways of modelling the world — which are unlike any
other and which have seemingly endless applications. In the mathematics
classroom, language is used to construct knowledge and regulate access to
that knowledge in ways totally different from those used in other pedagog-
ical contexts.

For language educators, those with the job of sharing knowledge about
language with teachers and students, the language of mathematics terri-
fies. Its very uniqueness means that one cannot bring in understandings
about language from other fields of activity. There are no essays to write in
mathematics, no great chunks of written prose in textbooks. Moreover, the
whole field of mathematics education is so strongly insulated from other
fields that the language educator often suffers from ‘impostor syndrome’,
feeling out-of-place in the company of those who control the arcane and
mysterious language of mathematics.

Like the language itself, research on the language of mathematics is itself
very different from research on other areas of language education. Most
descriptions of mathematical language are to be found in journals of
mathematics education, not in journals of language education. To the
mathematician, the research on mathematical language in language edu-
cation journals frequently appears to be woefully inadequate in its under-
standing of mathematical knowledge. To the linguist, the research in
mathematics journals seems horribly simplistic in the role it assigns to
language in learning. The result of all this is that language educators and
mathematicians rarely talk to one another.

This chapter takes steps towards synthesizing these two areas of
concern: that the nature of mathematical knowledge be well understood
and that the role of language in constructing and exchanging this knowl-
edge be fully appreciated. The educational sociology developed by Basil
Bernstein and his colleagues over the last thirty or so years (Bernstein
1977, 1990, 1996) and the systemic-functional linguistics (SFL) devel-
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oped by Michael Halliday and his colleagues over a similar period (Eggins
1994; Halliday 1977, 1994; Halliday and Hasan 1985; Martin 1992;
Mattheissen 19g6) provide useful models for attempting this synthesis.
Bernstein’s sociology has as one of its central concerns the role of lan-
guage in constructing knowledge through pedagogical discourse. Halli-
dayan linguistics is particularly sensitive to the dialectical relationship
between forms of language and types of social context. Bernstein’s sociol-
ogy and Halliday’s linguistics have, of course, been used together to syn-
thesize the linguistic and sociological concerns of a number of other sites
of pedagogical activity, including the primary school classroom (see
Williams, Chapter 4, and Christie, Chapter 5 this volume), early schooling
(Williams 19g5) and mother/child interaction (Hasan 19gb6).

The first part of the chapter identifies and describes some of the distinc-
tive features of language in the mathematics classroom, using descriptions
from SFL. The texts and descriptions are taken from research conducted
between 1992 and 1996 in socio-economically disadvantaged secondary
schools in the inner suburbs of Sydney. The second part reflects on the
nature of mathematical discourse as it is recontextualized in secondary
schools using some of the insights of Bernstein’s sociology.

Linguistic perspectives on mathematical discourse

There is much that can be, and has been, said about the linguistic forms
to be found in mathematical texts and it is not intended to try and report
on all aspects of mathematical language here. It is possible, however, to
enumerate a number of linguistic features which make the kind of
language used in mathematics classrooms distinctive. It should be noted
that the discussion below is of limited scope and in no way should be con-
sidered a complete account of the language of mathematics. The discus-
sion is limited in at least two ways. First, it is concerned mainly with how
the language of mathematics is different from the language used to
explore and construct other bodies of knowledge in the school context.
Thus the meaning of ‘distinctive’ linguistic features is limited here to
those linguistic features which make the language of mathematics differ-
ent from the language of other school disciplines. There has been consid-
erable research within SFL of the specific language features of a range of
schools subjects which can be contrasted with the language of school
mathematics. These include English (Cranny-Francis 1996; Martin 1996;
Rothery 1994, 1996), geography (van Leeuwen and Humphrey 1996),
history (Veel and Coffin 19g6) and science (Martin 1993; Veel 1997,
1998). There are many other possible ways of describing the ‘salience’ or
‘distinctiveness’ of mathematical language in schools — how it is different
from the language of university and research mathematics (i.e. the pres-
sures put on language through pedagogical recontextualization), how it is
different from ‘everyday’ language in non-pedagogical contexts (i.e. the
pressures of institutional recontextualization), how it is different from
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child language (i.e. ontological pressures), gender, etc. Second, the dis-
cussion of mathematical text is restricted to the use of spoken and written
language in mathematical ‘texts’. It has been convincingly argued (Kress
and van Leeuwen 1996, Lemke 1998, McInnes and Murison 1992, O’Hal-
loran 1996) that mathematical texts are ‘multimodal’, consisting of semi-
otically rich configurations of images, diagrams and physical activity as
well as Janguage. The meaning potential of multimodal mathematical text
is thus far greater than that of any single element viewed in isolation,
although Hasan (19g6) has argued convincingly for the pre-eminent role
of language in the great majority of multimodal texts, especially those
used in schooling. Figure 7.1 illustrates a multimodal text in the written
medium. Thus the claims being made here about mathematical language
are necessarily only part of the overall picture, albeit an essential part.

The distinctive linguistic features to be discussed here are:

® The predominance of teacher spoken language

® The predominance of distinctive patterns of spoken language inter-
action

® The technical fields of knowledge construed through spoken and writ-
ten language

® The hierarchical ordering of mathematical concepts through language

® The gap between student use of mathematical language and teacher/
textbook use of mathematical language

The predominance of teacher spoken language

Compared to other subject areas in the secondary school, mathematics
relies extraordinarily on spoken language as the channel of communi-
cation for construing uncommonsense mathematical knowledge.'
Whereas most other subject areas rely on an extensive canon of written
prose (to be found in textbooks, encyclopedias and school libraries) to
provide an impression of the stability and permanence of knowledge, this
is noticeably absent in mathematics. Textbooks tend to be pastiches of
repetitive activities and fragments of knowledge, and encyclopedia-style
reference works are not present in the school context.

In a great number of mathematics classrooms there is a distinctive divi-
sion of ‘semiotic labour’ between the spoken and the written modes. The
written mode, through the use of the blackboard or (occasionally) the
overhead projector, is mainly used for symbolic and wvisual construals of
mathematical knowledge. The teacher’s spoken language, on the other
hand, provides a commentary on the visual and symbolic language being
used on the blackboard. This commentary is often a vital aspect of the
teaching situation, for it allows teachers to explain the meaning of the
highly elaborated code of the symbolic and visual construals and to make
links between students’ (usually more ‘everyday’) construals of knowledge
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and those officially recognized in the pedagogic field. It is spoken lan-
guage which provides the link between the symbolic and visual represen-
tations for students, and is therefore a powerful agent in the learning
process. Text 1 exemplifies the ‘bridging’ role played by spoken language
in mathematics classrooms. The class is one of senior students (16 to 17 ),
studying circle geometry and the teacher is explaining the meaning of
radians as a unit of measurement.

Text 1

If we look at any circle, normally we take the unit circle to keep it simple. Any
circle will do, if we draw in two radii, then we have the section of circumference
between those two radii that is an arc length, and we have the angle subtended
by that arc length at the centre of the circle, so we have that length we call it 5, a
section of the arc and the angle B at the centre of the circle. When we talk
about a radian and we want to define what it means we want a radian to be a
relationship between the length on the circumference, an arc length and the
angle at the centre. Alright, so instead of talking about degrees and how much
of a rotation we make, we’re talking about this angle in terms of, if this is the
angle how big will the arc length be, and for the unit circle we want it to be to
correspond one to one, we want to say if this is one radian, then arc, that arc
length is three. On any other circle, you take the arc length divided by what the
radius is, if we’re taking the radius to be one we don’t have to worry about that,
so it’s a ratio between the arc length and the radius. Now, in our case, (sound of
chalk) . .. one radian (sound of chalk) . . . subtends an arc (sound of chalk) ...
of length one unit (sound of chalk) . .. on the unit circle.

This reliance on the spoken mode has important social and linguistic
consequences. It privileges particular forms of interaction in mathematics
classrooms and it encourages ‘strongly framed’ teaching sequences. Over
time, it has probably limited the kinds of knowledge written texts can con-
strue and, therefore, what learners can achieve without access to a living,
talking teacher. Text 2 illustrates what happens when a publisher attempts
to provide through written language what a teacher will normally do in
spoken language. The shift from the spoken to the written mode turns
what is usually a fairly straightforward technique in algebra into an almost
impenetrable theoretical piece. The text comes from a book which was
designed for independent learning and aimed at adults who have little
formal education in mathematics!

Text 2

Be an expert
Study this definition

An axiom is a general statement which is accepted as true without proof.

Axiom 1: If equal quantities are added to equal quantities, the sums are equal.



190 ROBERT VEEL
This is called the addition axiom.
The addition axiom is used in solving an equation such as:
x—3=y
To solve this equation we must first find a value of x that will make the equation
a true statement when substituted for the unknown quantity ‘x’. Let us deal with
the left hand member in such a way that all numerical terms are removed, leav-

ing only the letter x. If we add +3 to —3, the sum is o (zero). But, to maintain
our mathematical balance, we must also add +3 to the right member.

x-3=9
+3=43
X=10

By adding an equal value to both sides of the equation, we have changed it to
an equivalent equation which is simpler in form and, in this problem, gives us
the root.
In order to be certain, we must check the value which we found, by substitut-
ing it into the original equation.
x-3=9
10-3=7y

7=17
(Herrick et al. 1962: 126)

The predominance of distinctive patterns of spoken language interaction

When one examines the spoken language of mathematics classrooms a
second distinctive feature emerges. In those parts of the lesson where the
spoken language consists of teacherstudent dialogue, the interaction
tends to be of a highly ritualized form, relying heavily on Input-Response-
Evaluation (IRE) exchanges of the type first identified by Sinclair and
Coulthard (1g975). Extended sequences of IRE exchanges render the
spoken interaction into a kind of catechism in which mathematical facts,
previously introduced by the teacher, are elicited from students and then
evaluated. The following extract from Text g (below) illustrates a typical
IRE exchange:

Input: T: If I have something multiplied together, what do I do to get
rid of it?

Response: ~ Ps: Divide.

Evaluation: T: Divide.

As researchers note, the question asked by the teacher is not a ‘genuine’
one, in the sense that the teacher is not seeking information which she
does not already know.z Thus the student’s role is typically one of a cate-
chistic parrot, rather than a genuine ‘knower’.

Extending this analysis beyond IRE sequences, Martin (1992: 31-91),
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in his examination of ‘negotiation’ in spoken interaction, distinguishes
between ‘primary’ knowers and actors (encoded in the analysis as K1 or
A1) and ‘secondary’ knowers and actors (encoded as K2, A2). Drawing on
research by Ventola (1987), Martin further distinguishes other kinds of
conversational moves in terms of whether they are ‘delayed’(d), ‘follow-
up’(f), ‘confirmation’(cf), reconfirmation (rcf) or ‘clarification (cl). In
Martin’s analysis, the IRE sequence is coded in the following way:

dKi: T: IfI have something multiplied together, what do I do to get rid of
it?

Ka2: Ps: Divide.

Ki: T: Divide.

Thus for Martin it is in the ‘evaluation’ move of the IRE that the teacher
declares herself to be the primary knower - the one with the answers.
Even though students do provide information, the teacher’s evaluation
move relegates them to the role of ‘secondary knowers’. Martin’s analysis
allows us to move beyond individual IRE sequences and see how conversa-
tional roles are ascribed in extended pieces of interaction. Text g is an
excerpt from an extended piece of classroom interaction, coded using
Martin’s analysis.

Text 3 (from a Year 11 mathematics lesson)

Move Analysis Text

1. dK1 T:  What do I mean by opposite operations?

2. cf P:  Pardon?

3. rcf T: What do I mean by opposite operations?

4. K2 P:  It’s opposite.

5. K1 T: Yeah,

6. dK1 so if I have plus what do I do?

7. K2 Ps:  Minus.

8. K1 T:  Okay,

9. K1 that’s what I mean by opposite operations.

10. K2 P:  Soyou’re going to have to take . ..

11. dK1 T: If I have something multiplied together, what do 1
do to get rid of it?

12. K2 Ps: Divide.

13. K1 T: Divide. All right,

14. K1 so that’s what I mean by opposite operations.

15. K2 P:  Are you going to put $ equals a certain number
and D equals a certain number?

16. K1 T: No, I'm not going to substitute yet.

17. K1 What I'm going todo is . . .

18. dK1 All right, Jim you tell me what the subject of that
formula is?

19. cf P:  Subject?

20. rcf T:  Mmmm.
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21. dK1 What'’s the subject? Which pronumeral is the subject?
22. K2 P: S
23. K T S

In this extract we see that the teacher maintains the primary knower
(K1) role in 14 of the 23 moves. Students maintain the secondary knower
(K2) role in 8 of the 23 moves. Whenever the students do ask ‘genuine
questions’ (i.e where their K2 move is not preceded by a dK1 move by the
teacher), the teacher either ignores the question (move 10) or very
quickly ends the exchange and moves on to another (moves 15-17).

The long-term result of the unvaried use of interaction patterns such as
that in Text g is that students are rarely given the opportunity to occupy
the role of the ‘knowers’ or ‘producers’ of mathematical knowledge. They
do not get the chance to construct extended and grammatically complex
text (such as Text 1) in which generalized mathematical ideas are com-
bined with measurable quantities in order to spin a rich web of mathemat-
ical knowledge. Not only does this interaction pattern accentuate the
power difference between teacher and student, it creates serious problems
for many students when they are placed in situations, such as written
exams, where they do have to produce mathematical text independently.
Unfortunately for students, it is precisely in these situations, and not in
spoken classroom interaction, that we tend to assess them.

How have these catechistic kinds of spoken interaction in mathematics
come about? In part they are a result of general traditions of classroom
teaching, a vestige of more overtly authoritarian relationships between teach-
ers and students. In part they arise from the heavy reliance on the spoken
mode for construing knowledge. Careful control must be maintained over
the spoken interaction in order for the desired kinds of meanings to be con-
strued, for there can be no recourse to canonical written texts. In part they
are due to the ‘strongly classified’ nature of mathematical knowledge itself
(see below), where facts and ideas are seen as discrete units of knowledge.

The technical fields of knowledge construed through spoken and written language

As in many areas of technical knowledge, language is used in mathematics
to construe systematically organized, technical bodies of knowledge. Many
people will readily recognize a distinctive technical lexis in mathematics,
but there are also a number of other, mainly grammatical, devices through
which knowledge is construed. These include grammatical metaphor, rela-
tional clauses and a very particular use of the resources of the nominal
group. We will examine each of these briefly.

TECHNICAL LEXIS

As Halliday (1977: 195-6) notes, technical lexis in mathematics consists
both of items that have uniquely technical meaning and the re-use of non-
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technical items as technical lexis. Items with a uniquely technical meaning
are usually latinate (parallel, denominator, bisect, quadrilateral). Because of
their unique technical meaning these items cause little confusion for
students (although they may still be difficult to learn). The re-use of non-
technical items as technical lexis occurs particularly in items which
describe mathematical processes (find, simplify, integrate, get, reduce, power,
average) and require students to distinguish between the meaning of these
items in mathematical fields of activity and their meaning in non-
mathematical fields.> Most mathematics teachers are aware of the poten-
tial difficulties presented by technical lexis and both introduce and rein-
force this lexis with great care.

GRAMMATICAL METAPHOR

Grammatical metaphor refers to the re-configuration of meanings in text,
where more ‘congruent’ linguistic representations of the world (events
represented through verbs/verb groups; sequences and logical relation-
ships represented through conjunctions; qualities through adjectives) are
recast for the purposes of creating new knowledge, placing objects and
events in relationships to one another that are not necessarily congruent
with our everyday experience of the world (events and qualities repre-
sented as nouns; logical relationships as verbs). The use of grammatical
metaphor in science to create chains of causality and technical categories
has been explored in considerable detail by Halliday (Halliday 19g3b,
1998) and the reader is referred to Halliday’s work for further discussion
of the formal properties and functions of grammatical metaphor.

Grammatical metaphor is certainly a prominent linguistic feature of
mathematical text, as it is for scientific discourse. The following example
illustrates grammatical metaphor in mathematics:

Which of the following is the best estimate for the weight of a hen’s egg?
(New South Wales Board of Studies, 19go: 3)

In this example two ‘virtual entities’ are created through grammatical
metaphor: estimate (the result of the process of estimating) and weight (a
measure of how much something weighs). Both terms are grammatically
metaphorical because they have more congruent forms in the verbs ‘to
estimate’ and ‘to weigh’. The usefulness of grammatical metaphor for
mathematical discourse comes not simply from the creation of two previ-
ously non-existent entities, but because, once created, words such as
‘estimate’ and ‘weight’ can then be put into new relationships with one
another, and with other elements, through the grammar of the clause.
Hence we are able to construe a nominal group (see below) ‘the best
estimate for the weight of a hen’s egg’ which is itself part of a larger struc-
ture, the clause ‘Which of the following is the best estimate for the weight of a
hen’s egg?’
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Although grammatical metaphor is a feature of many formally
organized bodies of knowledge, there are some particular functions of
grammatical metaphor which are emphasized in mathematics.4 One of
these is the creation of quantifiable entities for the purposes of calcula-
tion. Once an event or a quality has been turned into a ‘thing’, a noun, it
can generally be counted. Consider, for example, the idea of ‘change’ in
mathematics. Represented congruently, as a verb (to change), there are
limited resources for describing change in a mathematically salient fashion:

it changes a lot
it changes often
it changes every two hours

Once we have re-construed the event as a thing (the change), it becomes
possible to quantify the amount of change:

25% change
50% change
70% change

Moreover, the newly created entity can be combined with other entities
(actual or virtual) to realize new meanings:

rate of change

increasing rate of change

different rate of change between men and women
the change differential according to gender

Some areas of mathematics, such as calculus, would be literally unthink-
able without grammatical metaphor.

Another characteristic use of grammatical metaphor in mathematics is
the reification of mathematical activities as topic areas, or concepts. Thus
the activity of ‘multiplying’ becomes the concept of ‘multiplication’;
‘adding up’ becomes ‘addition’. There is a substantial difference in mean-
ing between the congruent representation of an activity and the reified
naming of the concept or topic. It is generally thought, for example, that
a student is able to multiply numbers without necessarily understanding
the generalized concept of multiplication, and that when a student under-
stands the concept of multiplication as well as the operation there is a
qualitative change in the student’s learning. Not surprisingly, this use of
grammatical metaphor is particularly prevalent in mathematics education,
where there is a need to distinguish between ‘operational facility’ and
‘conceptual understanding’.
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RELATIONAL CLAUSES

There is a tendency in mathematical language to exploit the meaning
potential of relational clause types in English (see Halliday 1994; Chapter
5 for a discussion of clause types). Relational clauses are also a feature of
scientific language, as described by Martin (1993), Wignell (1998) and
Halliday (19g9ga). Here are some analysed examples of relational clauses
from mathematics:

Relational: Attributive (non-reversible: x is a type of y; x belongs to group )

A square is a quadrilateral.

Carrier Process: Relational: Attribute
Attributive

Three and four are factors of twelve.

Carrier Process: Relational: Attribute
Attributive

Relational: Identifying (reversible: x is equal to y; x stands for y)

A prime number is a number which can only be
divided by one and itself.
Token/Identifier Process: Value/Identified
Relational:
Identifying
The mean, or is the sum of the scores divided
average, score by the number of scores.
Token/Identifier Process: Relational: ~ Value/Identified
Identifying

In mathematics the function of attributive clauses appears to be very
similar to that in science: to classify objects and events according to the
technical taxonomies of the field. In doing so these clauses render explicit
to students the organization of uncommonsense knowledge in mathe-
matics and play an important role in apprenticing students into mathe-
matical knowledge. In school textbooks, clauses such as those above are
frequently placed in a box, or shown in large or coloured fonts. This visual
prominence further underlines their significance.

Identifying clauses appear to function in a number of ways. Most
obviously, they are used to introduce a technical term and to negotiate
between technical and less-technical construals of knowledge, providing a
bridge between ‘what students (are assumed to) know’ and ‘what is to be
learned’. In a clause such as ‘The mean, or average, score is the sum of
the scores divided by the number of scores’, the Token, the mean, or
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average, score, is the more technical term being introduced. In order to
function in the learning context it must be assumed that the less technical
Value, the sum of the scores divided by the number of scores, can be readily
understood by students.

A second and vital function of identifying clauses is that they provide a
nexus between linguistic and symbolic representation in mathematics. In
an identifying clause the Process (often the verb to be) is the linguistic
equivalent of the equals sign in algebraic representation. The identifying
clause ‘The mean, or average, score is the sum of the scores divided by the
number of scores’, for example, parallels the algebraic formula: % = X 7’—5
In discussing and preparing students for algebraic representation teachers
will often systematically manipulate spoken language until an identifying
clause is reached. This provides the stepping-off point for continued work
in the symbolic mode. Text 1, discussed earlier, contains just such a build-
up to a relational identifying clause (shown in bold):

Alright, so instead of talking about degrees and how much of a rotation we
make, we're talking about this angle in terms of, if this is the angle how big will
the arc length be, and for the unit circle we want it to be to correspond one to
one, we want to say if this is one radian then arc that arc length is three. On any
other circle, you take the arc length divided by what the radius is, if we’re taking
the radius to be one we don’t have to worry about that, so it’s a ratio between
the arc length and the radius.

A third, and less laudable, role for identifying processes in mathematics
is that they allow for the construction of multiplechoice questions. In
order to construct a multiple-choice question it is necessary to construe
mathematical knowledge as a relationship of equivalence. The following
multiple~choice questions, which come from the 1990 New South Wales
Year 10 General Mathematics Reference Test, all construe knowledge as equiva-
lence relationships. Identifying processes were used for at least 7o per cent
of the multiple-choice questions in this test. The question ‘stems’ only are
shown, and the Relational Identifying Processes are shown in italics.

On this scale, what is the length of the pencil?

Written as a fraction, 0.03 is equivalent to:

Which of the following is the best estimate for the weight of a hen’s egg?

The shape of this nesting box could be described as:

The greatest increase in population was:

When cut out and folded along the dotted lines, which shape will not form a cube?

The predominance of multiple-choice questions in public examinations
has rightly been criticized by educators because they present mathe-
matical understanding as atomistic fragments of knowledge, emphasizing
the correctness of the response rather than the process used to achieve
the response. From a linguistic viewpoint we can also see how multiple
choice questions put pressure on language to represent knowledge as
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equivalence relationships (xis equal to y). As well as using Relational Iden-
tifying Processes the formation of multiple-choice questions also requires
the frequent use of grammatical metaphor and complex nominal groups
(see below) in order to construe knowledge as ‘correspondences between
things’. The following example, examined earlier, shows this:

Whichof the is  thebest estimate forthe weight  ofahen’s egg?

following metaphor- metaphor-
ical entity ical entity
Nominal Group
Token Value

A question such as this is a long way removed from testing the practical skill
of estimation, as examiners might claim it does. Rather, it is asking stu-
dents to identify a linguistically construed relationship of equivalence.
The question necessarily tests students’ language skills as much as it does
their mathematical understanding.

NoMINAL GROUP

In any uncommonsense discourse the resources of the Nominal Group
are used to elaborate the meaning of a single entity by describing qualities
of the entity, showing how it relates to other entities or by qualifying or
restricting the range of meaning of the entity. A range of grammatical
resources function to realize these meanings in the nominal group (Halli-
day 1994: 180-96). Although mathematical language exploits the full
potential of the nominal group, three resources, Pre-numerative, Classi-
fiers and Qualifiers play a particularly prominent role. The following
example shows these three resources at work:

the volume of a rectangular  prism with sides 8, 10 and 12cm

In mathematics Pre-numerative, phrases which precede the Deictic
element of the Nominal group, function to select an abstract, but quantifi-
able, mathematical attribute with which to describe the main entity, the
‘Thing’ (The Deictic functions to indicate if the Thing is specific — the, this,
that etc — or non-specific — any, some, g, etc.). Very often the Pre-numerative
has the effect of endowing an everyday entity with a mathematical attribute
(e.g The length of a pencil). This attribute is often a kind of measurement
(length, area, volume, temperature etc.) or a technical term for a numeri-
cal relationship (e.g. the first derivative of the expression). There is often a
close link between a Pre-numerative and a previously-introduced mathe-
matical formula. Thus when a student reads the instruction ‘Find the area
of a circle of diameter 12cm’, the Pre-numerative area of needs to be linked
to the formula a = w72 in order for the student to proceed.



198 ROBERT VEEL

Classifiers are used in mathematics (as they are in other disciplines) to
realize taxonomic relations of type/sub-type between entities (i.e. the rela-
tionship between the Classifier and the Thing in the nominal group).
Here are some examples:

Rectangular  prism (general category: Prism, sub-type: rectangular)
Classifier Thing

Prime number (general category: number, sub-type: prime).
Classifier Thing

Classifiers are particularly evident in the areas of number and geometry,
where elaborate multi-layered systems of classification exist.

Qualifiers function to restrict the range of meaning of the nomingl
group. Very frequently in mathematics qualifiers provide numerical speci-
fications. Thus the Qualifier renders the Thing a specifiable entity, a most
important feature in mathematics.

Table 7.1 summarizes the chief functions of the Nominal Group in
mathematics.

Table 7.1 Resources of the Nominal Group in mathematics

Element Example Function

Pre-numerative the volume of Selects a quantifiable
mathematical attribute with

which to describe the Thing

a

Classifier rectangular Sub-classifies Thing into a
taxonomically ordered
grouping

Thing prism Entity which is being
described

Qualifier with sides 8, 10 and 12¢cm Restricts the range of mean-

ing of the Thing; provides
specifiable attributes of the

Thing
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THE HIERARCHICAL ORDERING OF MATHEMATICAL CONCEPTS THROUGH LANGUAGE

A striking feature of mathematical language is the way it builds up
hierarchies of technicality, with the construal of technicality at one level
dependent upon the construal of technicality at a previous level. Each suc-
cessive level of technicality takes the language user one step further away
from any ‘congruent’ or ‘everyday’ construal of meaning. Equally striking
is the rapidity with which this process occurs in mathematics education.
Students are very quickly apprenticed into the technicality of mathemat
ics, and this initial technicality is used as the basis for further levels of
technicality. Any everyday or congruent representations very quickly give
way to interlocking sets of technical knowledge.5 As a new level of techni-
cality is introduced, subordinate and more congruent levels of technicality
are disposed of. The following hierarchy shows this:

First level length = how long something is
width = how far across something is
height = how far off the ground something is

Second level | area = length x breadth

Third level | volume = area x height

At the first level of technicality, the technical term is equated to a relatively
everyday construal through a relational clause (x is equivalent to y). At the
second level, the technical terms generated at the previous level (length,
width) are combined to construe a new technical term, and the everyday
construals (how long something is, how far across something is) are disposed of.
At the third level, technical terms generated at the first and second levels
(height, area) are combined to construe a new technical term, and techni-
cal terms construed at the second level (length, breadth) are disposed of.
The technical term volume is thus at least two steps away from an everyday
construal, and is very difficult to conceive of in everyday terms. This
hierarchy (length-area-volume) is a relatively simple example. At more
advanced levels of mathematics, many more hierarchical layers of techni-
cality are added and any notion of an ‘everyday’ construal is literally
unthinkable. Consider, for example, the many levels of technicality that
have been built up to construe the following statement:

If p is positive at point P on a curve, then the tangent is positive at that point
and its function is said to be an increasing function at P.
(Jones and Couchman 1981: 232)



200 ROBERT VEEL

THE GAP BETWEEN STUDENT AND TEACHER/TEXTBOOK USE OF MATHEMATICAL
LANGUAGE

Given the considerable technicality of mathematical language and the
rapidity with which it is built up, it is not surprising to find that there are
significant differences between teachers/textbooks and students in the way
they employ language in the classroom. Text 4, in which senior secondary
students discuss the solution to a relatively simple perimeter problem with
one another, will be used to contrast student language both with the ‘offi-
cial’ language of teachers, as exemplified by Text 1, and with the written
language of multiple choice questions, such as those discussed above.

Text 4

F = Female M = Male
Segments where students are reading from question are shown in italics.

Mi1: You read the next one. Now.

F: All right. A five-metre length of fencing timber costs $8.00 and fence posts cost
$5.00 each. If 9 metres of timber are needed to fence a triangular paddock and a
[fence post is needed for each metre of fence, explain whether the fence timber or the
fence post will cost more and why?

Mi1:  Yeah. This is a current problem. A five-metre length of fencing timber costs $8.

F: I think we could best read it to ourselves.

Mi: Yeah. Yeah. Go.
(Period of silence)

Mi: Is it worth it trying to link this up? (Mmmm) Three there, three there
and three there.

F: Yeah. Two more.

Me: A five-metre length of fencing timber costs $8.

F: Mmmm. One of these costs $8 and the other one. One post costs $5.
Mi:  No. You've gotta work out the triangle, how many posts you need.

F. Yeah . . . wouldn’t you wanna find . . . g posts.

Mi:  Yeah, you need how many posts.

F: Wouldn’t you want the perimeter, ‘cause you’re putting on a fence and -
Mi:  Yeah.

Me2:  All right. Ugh. First the um the per perimeter of the ah fence is g
lengths. Right.

F: Yeah.*

Mi:  Mmmm.*

Mz2: Isgiven.And...

Mi:  Eachlength’s. ..

Mz2: But they don’t give you (Mmm) the length of the triangle. It says g
lengths. What is lengths?

Mi:  Each length is 5 metres.

Mz2:  Each length is 5 metres. Okay, fair enough.

Mi:  So the perimeter is 45.

Me2:  Uh. Okay, so if there’s g lengths, right . . .

F: Yeah.*

Mi:
Mi:
Mz:
Mi:
Mz:
Mi1:
Mze:
Maz:
Ma:
Mz:
Mai:
Maui:
Mae:
Mai:
Ma:
Mai:
Mae:

Mae:
Mi:

Ma:

Ma:
Mi:
Ma:
Ma:
Mi:
Me:
Mi:
Mae:
Mi:

Mz:
Mi:
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Yeah.*

So the perimeter is 45. Okay.

9 lengths.

Equals 45.

1,2,3,4,5,6,7,8, 9.

So you've got 45, divide that by 3.

So you've got 1,2,3 . ..

Triangle. You've got three on each side.

Okay, so you’ve got g lengths of ummm . . .

5 metres.

9 lengths of 5 metres.

Which is where you get 45.

So g times 5 which is $45. The cost of the . . .

Metres.

No. 45 metres. The cost is $8.

Yeah the cost is $8 . . . You get 45 metres.

Yeah.

And if fencing posts, one post is one metre . . .

So the cost of um of 45 metres would be 5 times 45, right.
Yeah.

So the cost of um of 45 metres would be 5 times 45, right.
Yeah.

Which is $225. That is for the . . . That’s it.

The timber.

Just the timber. Okay.

Yeah.*

Yeah.*

Ah, the post would needed would be g plus 1 because there would be
more posts and it would be . . . no wait, see how many posts around . . .
1,23,4,5,6,7...

No.

See first you would draw a triangle (laughs) to see how many posts, see,
see how many posts . . .

No, no. Because it says that one post is one metre long.

Yeah one post, one post is. . .

Oh now.

Yeah, you see. Read it Noel.

One post right one . . .

...is one metre..

Is that the fence

The thing is that a fence post is needed . . .

For each metre of fence . . . Okay . . . for each metre of fence.
You've got 45 fence?

No.

Or you've got 45 thing, er, 45 post . . .

But if it’s an enclosed area, right, the number of um posts would be the
same . ..

Yeah ‘cause it says post.

as the number of metres, right?

Yep.*
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F: Yeah.*

Mz:  So that should be 45 posts.

Mi: Posts. Yeah

Mz2: Okay, and since each post cost . . .
F: ...cost $5

Mz2: ...costs$5. ..

F: Times by 5.

Me: It would be the same 225 bucks.

F: ...andso...$5...

Mz2:  Oops, sorry.

Mi1: Wrong.

Mz: It's wrong, wrong, wrong, wrong. 5 metres cost $8.
F: Couldn’t trust you.

Mz:  Five-metre lengths fencing costs $8.
Mi:  $8. That’s that'd be 45 times $8 . ..
F: Yeah . .. Yeah

Mz2:  So the cost of the fencing . . .

Mi: ...fencing

F: Timber.

M2: Would be 8 times 45, not 5 times 45.
Mi:  Exactly.

F: Mmm

Mz2:  Sowould be . ..what...300,er360...
Mi1: 360, yeah.

F: 360.

Mz2:  So 45.

M1: Thanks for supporting me on that.

Mz2: That’ all right.

F: What are you trying to say?

M1: 47, 45 posts.

Mz2:  So the posts would cost *$oop

F: *$225. So it’s cheaper *by using the post.

Because it allows for students to take on a range of roles in constructing
and manipulating knowledge, it is easy to see why many teachers are keen
to introduce group discussion into mathematics classrooms. Compzlired to
the catechistic nature of teacher-student interaction, such as that in Text
3, student-student interaction provides the possibility for students to take
on the role of ‘primary knower’ (K1) and ‘primary actor’ more frequently.
Moreover, in student-student interaction these roles can be moved
around more easily and students who are less willing and/or able to take
on these roles can be coaxed into doing so. There is clear evidence in Text
4, for example, that initially hesitant students, such as M1, progre.rss.lvely
contribute more and more to the group discussion as it unfolds. This is far
less likely to occur with teacher-student interaction where there are
twenty or more students in the classroom. ) )

The chief issue which arises from Text 4 comes not from differences in
interaction patterns, however, but from differences in the linguistic quality
of the utterances. Compared to teacher talk and to textbooks, the stu-
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dents’ talk is far more like everyday spoken language. It does not exploit
the meaning potential of grammatical resources such as the Nominal
Group and Relational Process to construe technical knowledge to nearly
as great an extent as the teacher talk or the test questions. Table 7.2 com-
pares the student interaction with the teacher talk of Text 1 and the writ-
ten mathematical language of multiple choice questions.

Table 7.2 Comparison of three grammatical features of student talk,
teacher talk and exam questions

Student group Teacher talk  Multiple-choice test
interaction (Text 4)  (Text 1) questionst
Lexical density
(i.e. average number of 1.66 4.36 4-54
‘content words’ per
clause)

Ratio of relational

processes to non- 1:1.05 1.13:1 2.5:1
relational processes

Ratio of long Nominal

Groups to short 1:2.86 1:1.06 1.22:1

Nominal Groups*

t The first 10 multiple-choice questions from the 1990 Year 1o General
Mathematics Reference Test

* A short Nominal Group is one consisting of Deictic/Numerative + Thing
or less

In terms of lexical density, the average number of content words, or
lexical items, per clause (Halliday and Hasan 1985: 61-72), there is
roughly one-third the number of lexical items per clause in the student
talk as in either the teacher talk or the Reference Test questions. Although
the topic of the students talk is mathematical, the quality of their talk inso-
far as it is measurable by lexical density is about the same as everyday con-
versation (Halliday 1985: 65). The greater lexical density of the other
texts allows for the ‘packing-in’ of meanings into grammatical relation-
ships in a way that is qualitatively different from everyday talk, and thus
assists the construal of technical mathematical meanings. This is further
confirmed by the comparison of Nominal Group structure and Process
type across the text. In terms of the nominal group, we can see that there
is a far greater proportion of short nominal groups in the student text,
meaning that this text does not exploit the potential of the nominal group
to select attributes, sub-classify and qualify nearly so much as the teacher
talk or the test questions (clearly this differing exploitation of the Nomi-
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nal Group is what gives rise to the differing lexical densities of the three
texts). In terms of process type, the test questions appear to concern
themselves far more with construing relationships between entities (equiv-
alence, group membership, attributes etc.) than with describing events. In
the teacher talk and the student talk, on the other hand, there is a fairly
even balance between representing ‘going-on’ (actions, thoughts, speech)
and representing relationships. Figure 7.2 sets out the differences
between the three texts in graph form.

5 -
4.5 ¥+
4T —&— Lexical density
351
34 —— Relational: Non-
25 Relational Processes
’ —&— Long: Short Nominal
2T Groups
1.5 1
1T /’/‘
0.5 + &
0 + t + {
Student Teacher Multiple -
talk talk choice
questions

Figure 7.2 Trends in lexicogrammatical features across texts

In using SFL to analyse the language of mathematics in this chapter I
have tried to provide explicit visible evidence with which to identify and
explore a number of important issues in mathematics education. As the
analysis shows, there are some clear, if not surprising, differences between
expert and learner use of language in mathematics classrooms. It stands to
reason that if students are to become competent at independently
construing mathematical meanings, then increased control over the lan-
guage of mathematics is one of the ways they can achieve this. Moreover,
the linguistic analysis makes clear what could be the areas of focus for any
potential language-based intervention in mathematics classrooms, and
renders visible what might count as criteria of the success (or otherwise)
of these interventions. However, the analysis also leaves open several
important sociological questions. What is the nature of mathematical
knowledge? Are the power relationships between experts and learners, so
obvious in the language, a product of the nature of knowledge itself or of
the way it is transmitted in the classroom, or both? If one is to ‘democra-
tize’ mathematics education what kinds of issues have to be considered?
To seek answers to these questions we need to apply sociological under-
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standings to our linguistic analyses. The second part of this chapter
attempts to do this.

Sociological perspectives on the language of mathematics

For many years now considerable attention has been paid to the way
knowledge is construed in the mathematics classroom, and how that
knowledge is perceived by students (Dossey 1992). In particular educators
are concerned with the isolated, atomistic nature of mathematical know-
ledge as it is recontextualized in classrooms, and the perception by many
students that mathematics comprises nothing more than a ‘necessary set
of rules and procedures to be learned by rote’ (Crawford et al. 1994: 331).
In a direct reaction to these perceptions, many maths educators stress the
interconnectedness of mathematical knowledge:

We believe that the notion of connected representations of knowledge will
continue to provide a useful way to think about understanding mathematics, for
several reasons. Firstly, it provides a level of analysis that makes contact with the
theoretical cognitive issues and practical educational issues . . . Second, it gener-
ates a coherent theoretical framework for connecting a variety of issues in math-
ematics teaching and learning, both past and present. ... Third, it suggests
interpretations of students’ learning that help to explain their successes and
failures, both in and out of school.

(Hiebert and Carpenter 1g92: 67)

It is this interconnectedness, Hiebert and Carpenter go on to say (74-7),
which constitutes ‘mathematical understanding’. In summarizing research
in the area they claim the following benefits from ‘learning and teaching
with understanding’:

Understanding is generative . . . Understanding promotes remembering. ..
Understanding reduces the amount that must be remembered . . . Understand-
ing enhances transfer . . . Understanding influences beliefs.

Although mathematics educators recognize that classroom construals
and student perceptions of mathematics are significant issues, most
research in the area lacks a clearly articulated sociological theory with
which to link the structure of educational institutions, the power relations
within these structures, the discursive ordering of knowledge in classroom
mathematics, and student perceptions. Instead of looking to language and
institutional culture for explanations, mathematics teachers are exhorted
to foster a ‘constructivist’ approach which encourages students to make
psychologically ‘internal’ connections between information (Cobb et al.
1992). In taking such a view, mathematics educators are denying them-
selves the insights offered by a sociological perspective.

Thus far, our linguistic exploration of the language of mathematics has
revealed the way very distinctive kinds of technical meanings are
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construed through mathematical language and has described the kinds of
spoken language interaction which typify many mathematics classrooms.
Of course, these two aspects of mathematics education are not unrelated.
Many researchers have noted that there is a relationship between the
kinds of linguistic interaction in which people engage and the kinds of
meanings which can be realized by speakers. Such a relationship is funda-
mental to a range of socio-semiotic theories of meaning, including those
of text and context in SFL (Halliday and Hasan 1985), semantic variation
(Hasan 1996), speech genre (Bahktin 1986; Martin 1992) and semiotic
mediation in higher mental functions (Vygotsky 1978, Volosinov 1983). A
socio-semiotic approach requires us to examine closely the relationship
between forms of expression and forms of knowledge. What is the rela-
tionship between the kinds of interaction between students and teachers
that go on in the mathematics classroom and the forms of consciousness
about mathematics that students develop as a result of their mathematics
education?

In educational contexts this question begs to be reformulated as a socio-
logical one: that of differentiated access to meaning potential. What role do
language and classroom interaction play in providing some students with
access to the technical meaning potential of mathematics while simultane-
ously denying access to others? Moreover, if we are considering interven-
tion in mathematics education, we need to ask if the use of language
currently found in mathematics classrooms is optimal for all students, and,
if not, what the alternatives might be. It is in answering these questions
that Bernstein’s educational sociology is particularly useful.

Seen in Bernstein’s terms, mathematics is a discipline whose discursive
construction through language seems to be unusually closely aligned to
the regulative discourse of the classroom and the macroregulative
discourse of the ordering of space and time in the school. Although
Bernstein warns that ‘it is very important to see that these discourses do
not always move in a complementary relation to each other’ (19g6: 28), it
appears that in school mathematics they do. There is a kind of synchronic-
ity — a conspiracy if you like — between classification, instructional
discourse, regulative discourse and language that is noticeably stronger
than in other subject areas. This is evident both in what Bernstein calls the
classification of knowledge in mathematics and the framing of pedagogic
transmission of that knowledge.

Classification

Bernstein interprets the connectedness (or conversely, the separation) of
knowledge as in terms of classification. For Bernstein (1996: 20-1, 24)
classification is fundamentally about power:

Dominant power relations establish boundaries, that is relationships between
boundaries, relationships between categories . . . the crucial space that creates
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the specialization of the category is not internal to that discourse but is the
space between that discourse and another. In other words A can only be A if it
can effectively insulate itself from B. .. In the case of strong classification each
category has its unique identity, its unique voice, its own specialised rules of
internal relations . . . .The arbitrary nature of these power relations is disguised,
hidden by the principle of classification, for the principle of classification
comes to have the force of the natural order and the identities that it constructs
are taken as real, as authentic, as integral, as the source of integrity.

If there is a very strong classification between inside and outside then the
knowledge here is given a special quality of otherness. If there is a strong
classification between inside and outside then there is a hierarchy of knowledge
classification between the so-called common sense and the so-called uncom-
monsense.

It is clear from both the differences between teacher and student
language and in the way that mathematical language differs sharply from
‘commonsense’ forms of interaction that mathematics realizes a strongly
classified discipline. Moreover, the calls from mathematics educators for
greater interconnectedness of knowledge can be seen as calls for a weak-
ening of classification. Since mathematics educators often claim that
knowledge in ‘real’ mathematics (i.e university research mathematics) is
much more interconnected than in school mathematics, it would appear
that the institution of schooling plays a major role in reshaping mathe-
matical knowledge as strongly classified. Using Bernstein’s insights we can
posit that it is the need to make mathematical knowledge teachable and
learnable within the power, space and time structures of the school and
the need to make mathematical knowledge assessable through public
examination, much more than individual teaching ‘style’, that makes
school mathematics the way it is. Appeals to teachers to modify their
‘traditional’ teaching styles are, therefore, likely to meet with only modest
success, since the teacher is not the only agent in the recontextualization
process.

The implications of strong classification for mathematics education are
many; however I shall illustrate them here with just one example. A classic
issue of classification and recognition comes in the area of ‘word prob-
lems’ in mathematics. The status of word problems in relation to com-
monsense and uncommonsense knowledge is often somewhat ambiguous
in mathematics syllabuses. In most teaching sequences word problems are
added on to the end of the study of a topic. Teachers are told that word
problems are challenging, help students to relate mathematics to the ‘real
world’ and, above all, will be relevant to the way students will need to use
mathematical knowledge outside of school. Yet word problems are nearly
always contrived by teachers in order to fit within the parameters of the
discipline. It is the uncommonsense, strongly classified discursive order in
school mathematics which guides the selection and expression of word
problems, not everyday, commonsense experience of the world. Knowl-
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edge for outside is only permitted as long as it fits into the ‘specialised
rules of internal relations’ of school mathematics. A highly predictable
‘canon’ of word problems thus emerges. The study of Pythagoras’ theo-
rem, for example, will always be accompanied by word problems about
ladders being placed against walls or the use of compass bearings to work
out how far someone has travelled; the study of perimeter will be accom-
panied by problems about fencing and marking the limits of a sports field;
the study of area will be accompanied by problems about laying carpet or
grass in a back garden, etc.

While most word problems can be effectively negotiated by most
students while they remain within the strongly classified ordering of
knowledge in the classroom, difficulties arise when word problems appear
in random order, detached from an explicitly enunciated topic area in
examinations. Many teachers with whom I have worked in Australia report
that particular groups of students (generally people who are marginalized
from the mainstream Anglo social milieu) have difficulty in recognizing
the mathematical content of word problems which have been separated in
space and time from their uncommonsense context — i.e. from the teaching
of a particular topic in the classroom. These students are at particular risk
in examinations and other assessment tasks, where space, time and lan-
guage have removed the knowledge from the strongly classified context in
which it was first introduced. This occurs for at least two reasons. First,
many of these students simply do not recognize the so-called commonsense
context construed by the problem — because mowing the lawn, travelling
around the country, calculating income tax, etc. are not part of their
everyday experience and secondly because sitting in an exam room read-
ing word problems is 7ot a commonsense context.

The misrecognition of the status of word problems is exacerbated by
two official educational discourses, the first revolving around Piagetian
notions of the concrete and abstract and the second around notions of
the perceived advantages for less able students in doing ‘real world’ math-
ematics. It is frequently claimed that word problems will be easier because
they represent concrete experience and that ‘formal’ mathematical knowl-
edge is, by biological imperative, more difficult for students. By presenting
situations which are assumed to be within students’ everyday experience,
the argument goes, students will be able to ‘construct’ ‘internal’ mathe-
matical representations, rather than relying on ‘external’ ‘imposed’ forms
of knowledge. Problems arise not from the viability or otherwise of this
view, but from the mistaken assumption that the word problems that are
produced in classroom mathematics actually constitute everyday forms of
knowledge, and the denial of the role of language and symbols in semioti-
cally mediating experience. It is assumed that the move from reading an
‘everyday’ problem to expressing an ‘everyday’ solution is one that does
not require engagement with formal mathematical knowledge and will
thus be easier for ‘weaker’ students.

The impact of economic rationalism on curriculum planners has also
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resulted in a privileging of word problems in mathematics. The assump-
tion here is that being able to do things with mathematics: calculate
wages, overtime, taxes, interest rates, hire-purchase payments and
exchange rates, and read graphs and tables, etc. is an economically more
‘useful’ kind of knowledge than ‘pure mathematics’ (the understanding
of principles, axioms, formulae, etc).

The tendency of mathematics to be strongly classified has implications
for the kinds of language-based intervention which one might attempt. As
Martin (this volume Chapter 5) argues, reform is not simply a matter of
weakening classification: this may simply act to render the discipline
unteachable or to further disempower students by denying them access to
highly valued forms of knowledge which are still being taught elsewhere.
A more effective response would be to design teaching programmes which
attempt to move backwards and forwards between strong and weak classi-
fication. Martin explains how some intervention programmes in Australia
have attempted to do just this. Certainly, one very clear implication is to
recognize that word problems, or any other kind of ‘real world’ maths that
is introduced to the classroom is, by virtue of the fact that it is recontex-
tualized as school learning, just as uncommonsense and esoteric as other
more theoretical kinds of knowledge, and needs to be dealt with with the
same explicitness as other kinds of knowledge. Simply leaving it to stu-
dents to ‘construct’ ‘internal’ representations would seem an inadequate
response, especially for marginalized students.

Framing

The patterns of spoken interaction described in the first part of this chap-
ter make it clear that, as well as being strongly classified, the transmission,
or framing, of mathematical knowledge is also tightly controlled in many
classrooms. Framing, as Bernstein (19g6: 2/7-8) sees it is all about control:

the form of control which regulates and legitimizes communication in peda-
gogic relations, the control of communication in local, interactional pedagogic
relations [here teacher/pupil and pupil/pupil]. Framing refers to the nature of
the control over:

the selection of the communication;

its sequencing (what comes first, what comes second)

its pacing (the rate of expected acquisition)

the criteria, and

the control over the social base which makes this transmission possible

... We can distinguish analytically two systems of rules regulating the framing.

And these rules can vary independently of each other... These are rules of
social order and rules of discursive order. We shall call the rules of the social
order regulative discourse and the rules of discursive order instructional
discourse. And we shall then write this as follows:
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framing = instructional discourse

regulative discourse

In other words, the instructional discourse is always embedded in the regulative
discourse, and the regulative discourse is the dominant discourse.

SELECTION AND SEQUENCING

In examining mathematics syllabuses it becomes clear that the strongly
classified nature of the knowledge necessitates a high degree of control
over the selection and sequencing of content. Only with careful control of
selection and sequencing can the knowledge be rendered teachable. Of
course, this degree of control serves only to further strengthen the classi-
fication of mathematical knowledge — strong classification and strong
framing thus feed off one another. Examples of carefully controlled selec-
tion and sequencing can be found in just about all areas of mathematics
syllabuses. In all junior secondary school syllabuses in Australia, for
instance, basic co-ordinate geometry is taught. Students are taught about
ordered pairs {x, y} and how to plot these pairs on the number plane. At
this point the uncommonsense content is often cloaked in the guise of rel-
evance and fun, with activities such as map reading, locating places with
latitude and longitude, finding grid references on a street directory and
looking for hidden treasure on an island. A bit later on, map reading and
treasure hunts give way to plotting basic functions on the number plane
(straight lines, circles and possibly even parabolas). What is the purpose of
this selection and this sequence? Not to make students better map-readers
or treasure hunters, but to provide students with the requisite skills for the
study of polynomials and calculus in the senior years. The rules of the
discursive order within a strongly classified discipline thus shape selection
and sequencing of learning experiences offered up to students, no matter
how everyday or relevant they are dressed up to be.

PACING AND CONTROL OVER THE SOCIAL BASE

In the area of pacing and control over the social base it is clear that there
is a close relationship in mathematics between the social order of the
school, the regulative discourse, and forms of the mathematical know-
ledge itself. This is shown most clearly in catechistic teacher-student inter-
actions. Consider the following transcription from a Year 7 classroom:

Text 5

T:  Okay, class. Books out. There’s five questions going on the board. You
have one minute.

P: Okay, Sir.
(Sounds of chalk on board)

P:  How come vou’ve gota. ..
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Would you like it?

Yeah.

We might do a little bit more of that later on.

Oh, great.

When? Today?

No, not today.

Sir, what about our test results?

Test results. There’s a couple of people still to do them in other classes so
I can’t give them back just yet.

(Class noise)

Come on, mate.

Sir, when are we going to get our test results back?
(Class noise)

No I want these answers in the books.

About the sheets, Sir?

No, I'll tell you all about the sheets later.

g

el R e sl
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Troy. Are you finished?

Yeah.

Okay, Troy, the first one.

(undecipherable) 0.8.

0.8. Correct. Second one, Craig.

I haven’t even started.

Quick, do it in your head. 6.6 divided by 3.

2.2.

Why is it 2.2?

(undecipherable)

Don’t look at other people’s answers. Helen?
2.2

2.2. Yes. Craig. 6 divided by 3 is 2. 6 divided by 3 is 2. 2.2. Third answer . . .
Girl. Kelly?

I don’t have that one yet, but I done the last one.
Do it in your head then, number 3.

AryHAvAr3vaAay3va 39

e

Like the interaction examined earlier in Text g, the teacher in this
transcript consistently occupies the role of primary knower, posing and
then evaluating questions. The difference here is that much of the IRE
interaction is not about knowledge, but about the control of the physical
activity of students in the classroom:

T:  Troy. Are you finished?
P:  Yeah.
T:  Okay.

This control of physical activity is seamlessly integrated with control over
the knowledge:

T: Second one, Craig.
P:  Ihaven’t even started.
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T:  Quick do it in your head. 6.6 divided by 3.
P: 2.2
T:  Whyisit2.2?
P: (undecipherable)
T:  Don’tlook at other people’s answers. Helen?
P: 2.2
T: 2.2.Yes.

Thus the regulation of physical behaviour and the construal of mathe-
matical knowledge are virtually indistinguishable from one another in the
pedagogic discourse. In such a context, it is not really surprising that
many students may see mathematics as ‘a necessary set of rules and proce-
dures to be learned by rote’. In the light of Text 4 it can be seen that the
IRE exchanges in the Year 11 class, illustrated in Text 2, while being
overtly about the exchange of information, are also, by virtue of their
highly ritualized form, about the control of physical behaviour. The basis
for the forms of knowledge that are construed in mathematics would
appear to lie just as much in the social order of classroom life as they do
in the discursive order of the discipline.

When it comes to the question of appropriate intervention, there are
once again no clear cut, simplistic solutions. An obvious response to the
strong framing evidenced by Texts 2 and 4 would be to seek communi-
cative alternatives to the IRE style of teacher-student exchange. This seems
to be what is motivating the strong push towards group-based work in
mathematics education. Cobb et al. (1991: 7) advocate the following role
for the teacher:

The teacher’s role in initiating and guiding mathematical negotiations is a
highly complex activity that includes highlighting conflicts between alternative
interpretations or solutions, helping students develop productive small-group
collaborative relationships, facilitating mathematical dialogue between stu-
dents, implicitly legitimizing selected aspects of contributions to discussion in
light of their potential fruitfulness for further mathematical constructions,
redescribing students’ explanations in more sophisticated terms that are
nonetheless comprehensible to students, and guiding the development of
taken-to-be-shared interpretations when particular representational systems are
established.

While Cobb et al. offer a well-meaning alternative to the oppressive
regime of the strongly classified, strongly framed pedagogy of many math-
ematics classrooms, their vision of the mathematics classroom is largely
asociological and predicated on a number of assumptions about students’
linguistic and social habits. Where for example do ‘alternative interpreta-
tions or solutions’ come from if students do not have the linguistic skills to
generate them? An analysis of student—student interaction, such as Text 4,
suggests that even talented senior students in socio-economically disadvan-
taged schools cannot readily use language to present clearly articulated
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alternative interpretations or solutions, even though they are prepared to
debate isolated answers among one another. What counts as ‘productive
small-group collaborative relationships’ and which social groups are more
likely to fall easily into this kind of compliant behaviour? Will all students
be equally able to read the hidden message in the ‘implicitly legitimizing
[of] selected aspects of contributions to discussion in light of their poten-
tial fruitfulness for further mathematical constructions’> Which students
will pick up on the teacher’s ‘more sophisticated terms’ when she
‘redescribes students’ explanations’? The continued poor performance of
socio-economically disadvantaged students in classrooms where the
response has been simply to weaken framing suggests that not all students
stand to gain equally from a simplistic interpretation of the constructivist
vision.

Perhaps a more responsible approach (and probably one which would
be approved of by constructivists) would be the careful scaffolding of
knowledge through a process of guided interaction. The implications of
this in terms of framing are discussed by Martin (this volume Chapter ).
Christie (1998) has put forward a clear case for different kinds of inter-
action, including IRE exchanges, at different points in the teaching/learn-
ing process.

Conclusion: the role of a sociologically informed educational linguistics in
mathematics education

My purpose in writing this chapter has not been to offer easy solutions to
issues in mathematics education, nor has it been to offer details of language-
based intervention in mathematics classrooms.® Rather I have sought to make
clear what it is that a socio-semiotic model of language, such as SFL, and an
elaborate theory of the sociology of education, such as Bernstein’s, can offer
mathematics educators. Neither socio-linguistics nor sociology appear to have
made a particularly strong impact on mathematics education in the past, both
because of the strongly classified nature of mathematics education (like the
discipline itself) and the privileging of psychological models of learning in
mathematics, such as that of constructivism. It is important to note that socio-
linguistic and sociological contributions do not necessarily entail a rejection
of psychological models, although they may challenge some of the assump-
tions of psychological models, or at least bring to the foreground issues which
do not receive great emphasis in psychological models.

As I see it, socio-linguistic and sociological models can make the follow-
ing contributions:

1. Make explicit the kinds of language which are employed to construe
the technical meanings of mathematics. This description goes well
beyond the identification of technical lexis and phrases and includes
grammatical structures, discourse analysis and the identification of
spoken and written genres.



214 ROBERT VEEL

2. Allow us to understand clearly differences in linguistic behaviour
among different language users and in different social contexts within
the mathematics classroom.

3. Provide clear direction for language-based intervention in mathe-
matics; a clear but not atomistic focus for language-based activities; and
clear criteria for effective language use which can be shared by teach-
ers and students.

4. Allow for a detailed analysis and critique of current linguistic practices
in mathematics education, especially in teacher language, interaction
patterns, written resources and public examinations.

5. Provide a way of linking broader sociological factors, such as power,
space and time relationships in the school, to the way in which mathe-
matical knowledge is construed in the classroom and perceived by
students.

6. Expand the critical tools available to mathematics educators to analyse
the kinds of intervention they seek to encourage in the classroom. In
particular those that can effectively complement psychological models.

In helping us to understand these areas of concern, socio-linguistic and
sociological models constitute a worthwhile tool for investigation and
intervention in mathematics education.

Notes

1 ‘Uncommonsense’, following Bernstein (1977, 1990), is being used here to
distinguish educational knowledge from ‘commonsense’, or ‘everyday’
knowledge. The latter is accumulated through our experience of the physical
world on a day-to-day basis, whereas the former is usually acquired through
formal education, which reformulates knowledge from its ‘primary context’
(mainly through language) according to the principles and relations of the
pedagogic context.

2 Although some researchers have decided that IRE exchanges are undesirable
because they are not ‘genuine’ and have exhorted teachers to avoid them, others,
notably Christie (1998), have argued for their functional status in certain stages
of classroom discourse.

3 One mathematics teacher told me the story of a student who, having being

presented with an equation and told to ‘find x’, drew an arrow pointing to the

symbol x and wrote ‘here it is’!

Christie, Martin and Rose all discuss grammatical metaphor in this volume.

Halliday identifies ‘interlocking definitions’ as an aspect of scientific language,

but curiously he uses mathematical terms (radius, centre, circle, circumference,

diameter) as an example (Halliday 1993b).

6 Though this has certainly been done using SFL (Veel 1994).
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