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1 Introduction 
 

Over the past 30 years there has been an evolution in research on how students learn by 
collaborating, depicted in Figure 1 (Dillenbourg, Baker, Blaye, & O’Malley, 1995). Early work 
compared the effects of collaborative and individual learning, or looked at how the conditions of 
collaboration related to learning and attitudinal outcomes (see Slavin, 1996, for a review). 
However, to better understand the effects of collaboration, it is important to model collaborative 
interactions, which might include both collaborative task actions and verbal exchanges. 
Dillenbourg and colleagues (1995) termed this line of research the “interactions paradigm”, 
where in addition to conditions of collaboration, interactions are characterized and related to 
outcomes. As it grew apparent that students often do not exhibit beneficial collaborative 
behaviors spontaneously, it further became relevant to determine how to support collaboration in 
order to produce the desired interactions, which would then hopefully lead to the desired learning 
outcomes (Strijbos, Martens, & Jochems, 2004). Much current collaborative learning research 
focuses on the effects of giving students fixed assistance, including declarative instruction on 
how to collaborate (e.g., Saab, van Joolingen, & van Hout-Wolters, 2007), examples of good 
collaboration (e.g., Rummel & Spada, 2005), and collaboration scripts that provide students with 
designated roles and activities as they work together (e.g., Fischer, Kollar, Mandl, & Haake, 
2007). In evaluating these interventions, analyzing the collaborative interactions is critical both 
in determining if the interventions are having the desired effect on student behavior and in 
understanding how learning outcomes may result from the interactions. More recently, there has 
been a movement toward developing adaptive assistance for collaboration, where collaborative 
interactions are modeled as they occur, and the results of the analysis determines the content of 
the assistance given. Fixed scripts may provide students with too much structure and extraneous 
collaborative load, particularly for students who are capable of regulating their own learning 
(Dillenbourg, 2002). However, pre-collaboration training or teacher instruction may provide too 
little support for students during the actual collaboration, where students may not manage to 

Figure 1. Four stages of research on collaborative learning. 



follow the collaborative activity as designed (e.g., Ritter, Blessing, & Hadley, 2002). Therefore, 
adaptive support might be a better way of targeting the individual needs of students (Soller, 
Martinez, Jermann, & Muhlenbröck, 2005; Kumar, Rosé, Wang, Joshi, & Robinson, 2007; 
Rummel & Weinberger, 2008). 

Although there are many potential learning sciences research questions surrounding the 
adaptive support of collaboration, this support has proven to be challenging to implement, and 
evaluations of adaptive support compared to fixed support have been promising but rare. The 
problem of delivering adaptive assistance to collaboration can be considered an instantiation of a 
more general assistance dilemma (Koedinger & Aleven, 2007), where in order to discover how 
to best deliver assistance to optimize student learning, one must manipulate the amount, type, 
and timing of help provided to students. In the case of collaborative learning, there are several 
levels on which assistance can be delivered, ranging from assistance on domain skills to 
assistance on elaborated verbal interactions. In cases where assistance on multiple levels might 
be appropriate at a single time, how best to integrate the different levels is an open question. It is 
resource-intensive to develop an adaptive intervention that implements feedback on a single 
level, never mind one that integrates feedback on multiple levels. Non-technological 
implementations of adaptive support for collaboration require an experimenter or a teacher to 
interact with each collaborating group (e.g., Braun, 2008; Hmelo-Silver, 2004; Gweon, Rosé, 
Carey, & Zaiss, 2006; Tsovaltzi, et al., 2008). This wizard of oz methodology is impractical for 
large scale research, let alone classroom deployment, and creates uncertainty as to whether 
different facilitators have different effects.  

Instead, it may be advantageous to use computer-supported collaborative learning 
settings to examine the effects of adaptive support at different and possibly interacting levels. In 
these settings, task and language interactions can be automatically collected, guided, and used as 
input to a system that delivers adaptive feedback. Unfortunately, such systems take a long time 
to develop because of the difficulty of constructing accurate collaborative models and the 
challenges of having the system provide non-disruptive feedback to collaborating students. 
Although systems have been developed that provide adaptive support to collaboration, they 
rarely integrate assistance models and feedback on different levels (see Background section for a 
more detailed discussion). Further, the effects of adaptive feedback provided by these systems on 
collaborative interactions and learning outcomes has rarely been evaluated in large-scale 
controlled studies, despite the fact that the evaluations that have occurred have had promising 
results. For example, Kumar et al. (2007) found that adaptive support to collaborating pairs was 
better than no support to collaborating pairs and adaptive support to individual learning. It may 
be that removing some of the technical obstacles to implementing adaptive assistance conditions 
and relevant comparison conditions would encourage the further use of such systems to address 
learning sciences research questions. 

In this paper, we introduce the Collaborative Tutoring Research Lab (CTRL), a research-
oriented architecture for adaptive collaborative learning support that facilitates the collection of 
multiple streams of process data, the development and integration of assistance based on the 
data, and the implementation of relevant comparison conditions for experimental control. In the 
construction of the research architecture, we have adopted ideas from an individual learning 
perspective on delivering adaptive instruction: cognitive tutors, a type of intelligent tutoring 
system. Cognitive tutors are computer-based instructional systems that compare student actions 
to a model of correct and incorrect problem-solving and provide targeted feedback to students 
when needed. They have been successful at increasing learning in individual settings (Koedinger, 



Anderson, Hadley, & Mark, 1997) and have evolved from acting as isolated interventions to 
serving as research platforms. For example, Project LISTEN’s Reading Tutor supports the 
incremental addition and evaluation of features, and the collection of rich log data that can later 
be mined to provide insight into student learning processes (Beck, Mostow, & Bey, 2004). 
Cognitive tutors are often implemented using a component-based approach that facilitates the 
rapid development of research interventions (e.g., Koedinger, Suthers, & Forbus, 1999). Our 
CTRL architecture extends the individual tutoring scenario (one tutor, one student) to a 
collaborative multi-tutor setting (multiple students and multiple tutors, with different roles or for 
different purposes). Moreover, one of the strengths of our architecture is that it focuses on 
reusability: it facilitates the addition, removal, and integration of components. Adaptive 
collaborative conditions can be developed more rapidly by using existing computational models, 
and that comparison conditions can be created more rapidly by removing particular components 
of the adaptive system. We have used the CTRL architecture to create an adaptive support 
condition for a peer tutoring activity that integrates domain and collaboration assistance, and 
evaluated the adaptive support condition in a controlled classroom study by comparing it to a 
fixed support condition and an individual learning condition. Both control conditions were also 
implemented using the architecture. The results of the study increase understanding of the effects 
of adaptive support on peer tutoring, in part due to the rich process data collected, the nature of 
the adaptivity implemented, and the controlled comparison between conditions. 
 

2 Background 

In this section, we survey related work on adaptive collaborative learning support 
(ACLS). The types of systems of primary interest to us are coaching systems, as defined by 
Soller, Martinez, Jermann, and Mühlenbrook (2005) in their review of collaboration support 
systems. Coaching systems help students engaged in computer-mediated collaboration by 
assessing the current state of student interaction, comparing the current state to a desired state, 
and then offering assistance to the students. Coaching systems have a lot in common with 
intelligent tutoring systems, which also support students using the three phases of assessment, 
comparison, and assistance, but focus on individual learning. Moreover, intelligent tutoring 
systems, and cognitive tutors in particular, have moved away from merely being interventions 
and toward serving as research platforms to answer learning sciences questions about the effects 
of adaptive assistance. Our goal is to develop a similar research platform for ACLS. To this end, 
we focus our review in this section on ACLS systems that have been implemented and evaluated. 
The relevant systems are summarized in Table 1 and Table 2. In particular, the section looks at 
the kinds of interactions ACLS systems encourage, how adaptive feedback is delivered in these 
systems, how these systems are generally designed for reuse, and how the learning effects of 
these systems are evaluated. Further, we examine how cognitive tutor principles and 
architectures for individual learning might be able to contribute to our goal. 

 
  

2.1 Interactions in Adaptive Collaborative Learning Support Systems 

 ACLS systems may support both collaborative task actions and computer-mediated 
conversation (see Table 1 for a summary of interactions enabled by ACLS systems). Often, 



student interactions are structured either using micro-scripts, which operate on an action-by-
action basis, or macro-scripts, which operate on the level of phases of activity (Dillenbourg & 
Hong, 2008). In our work, we are most interested in micro-scripts, or structuring interactions 
within a phase of collaborative activity. ACLS systems tend to include a shared workspace 
where students can work together toward a domain goal. Micro-scripts are often applied to these 
shared workspaces by giving students different roles in the workspace or by allowing them only 
to act at particular times.  For example, as summarized in Table 1, COLER contains a shared 
workspace where students can collaboratively construct entity-relationship diagrams by 
interacting with coupled nodes and edges (Constantino-Gonzales, Suthers, Santos, 2003). 
Students have to indicate their intention to draw in the workspace, and when one student is 
drawing the other students cannot. Often learning systems that have a shared workspace also 
include a private workspace that contains no coupled objects, so that students can do individual 
work. The other primary component of many implemented ACLS systems is a text-based tool 
that allows students to communicate with each other in natural language. Within these tools, 
micro-scripts are often applied through the use of sentence-starters that students select to begin 
their utterance (e.g., “I would like to explain that…”) or classifiers that student select after typing 
their utterance (e.g., “Give an Explanation”). As described in Table 1, Group Leader currently 
has 46 sentence classifiers that represent 10 subskills students should be exhibiting while 
collaborating, such as “Task Leadership” (Israel and Aiken, 2007). Finally, interfaces may 
contain widgets such as buttons through which the students can get information from the 
intelligent system. For instance, students can request four different types of help from HabiPro: 
clues to the solution, a worked example of the current problem, a worked example to a different 
problem, and the solution to the problem (Vizcaino, Contreras, Favela, & Prieto, 2000). 
Assuming that most current ACLS systems are logging all the actions that they enable, the 
systems capture collaborative task actions, verbal interactions, and meta-interactions that arise as 
a result of following micro- and macro- interaction scripts. 

The interactions in an ACLS system can be viewed through the lens of “making thinking 
visible”, which is a principle employed in cognitive tutor development (Koedinger & Corbett, 
2006). In cognitive tutors, students are asked to perform several steps to complete each problem-
solving task. These steps can be considered as subgoals in the problem-solving process. When 
the steps are explicitly represented in the interface, the subgoals become more salient to students, 
increasing their learning. In turn, when students take action in order to meet the subgoals, an 
adaptive system gains more insight into student cognitive processes than it would if students 
were simply providing the answer to the problem. For example, in the PACT geometry tutor 
students are asked to solve geometry problems and explain their steps using a menu-based 
interface (Aleven & Koedinger, 2002). The act of self-explanation is both beneficial for students 
and helpful for the cognitive tutor in identifying the source of student error. Scripts imposed on 
collaborative learning activities can have a similar function. Adding sentence starters to an 
interface can make a student’s communication intention visible in addition to informing students 
about the communication acts expected (e.g., Israel & Aiken, 2007). Having private and shared 
workspaces in a system can make the discrepancy between an individual’s private reasoning and 
their contributions to the group visible (e.g., Constantino-Gonzales, Suthers, & Santos, 2003) and 
thus provide input to an adaptive system. 



Table 1. Task and assistance elements of ACLS 
 

System Task Elements Assessment Method Tutoring 
Goals 

CARDDALIS    

COLER Modeling, shared & private workspace, 
chat (classifiers)  

Solution structure, individual 
contributions  

IP, RI  

COLLECT-
UML 

Modeling, shared & private workspace 
(phases), chat (classifiers)  

Solution structure, individual 
contributions, solution quality 

IP, RI, DM, 
DC 

COMET Medical problem-based learning in 
shared workspace, chat (unstructured) 

Action counts, action sequences, 
student expertise, solution quality 

IP, RI 

CycleTalk Shared workspace (different phases), 
unstructured chat 

Chat counts, keywords in chat, parsing 
of chat 

RI, TO, DC 

Group Leader Programming with chat (sentence 
openers) 

Count dialogue acts, keywords, 
sequences of disagreement 

RI, DM, 
RC 

HabiPro Editing computer programs using chat, 
shared workspace 

Solution quality, individual expertise, 
help type requested, chat counts, 
keywords 

IP, TO, RI, 
DC 

LeCS Case study (phases) in chat (sentence 
openers), shared text editor, solution 
representation 

Length of time to complete a step, chat 
counts, solution 

RI, DC 

MArCo  Graphical planning in shared workspace, 
chat (dialogue games)  

Logical conflict between student 
utterances 

RC 

OXEnTCHÊ chat (sentence starters) Chat counts, keywords TO, RI 

 

2.2 Modeling and Feedback in Adaptive Collaborative Learning Support Systems 

Current ACLS systems assess collaboration based on targeted aspects of student 
interactions, compare the assessment to ideal collaborative qualities, and then provide feedback 
based on the comparison (see last three rows in Table 1 for an overview). In many ways, these 
ACLS systems are very different. Feedback policies with respect to both collaboration and 
domain feedback varies; some feedback is triggered by user actions (Tedesco, 2003), some is 
triggered by user inaction (Constantino-Gonzales et al., 2003), some is provided on demand 
(Vizcaino et al., 2000), and some is only provided when a user submits a solution (Baghaei et al., 
2007). The representation of ideal student performance also varies between systems, ranging 
from finite state machines (Israel & Aiken, 2007) to decision trees (Constantino-Gonzales et al., 
2003) to constraints (Baghaei, Mitrovic, & Irwin, 2007). Despite these differences, ACLS 
systems have broad commonalities with respect to collaborative skills targeted and how the skills 
are assessed in the context of the system. In fact, the types of support provided by ACLS can be 
interpreted using a collaboration analysis scheme developed by Meier and colleagues (Meier, 
Spada, & Rummel, 2007), where student interaction is rated on 9 dimensions. Some systems 
attempt to improve student interaction on Meier et al.’s dimension of information pooling (IP), 
i.e. how much students share their knowledge with their groupmates (Constantino-Gonzales et 
al., 2003; Baghaei et al., 2007). As represented in Table 1, assessment on this dimension is 
drawn from workspace actions: Student actions in a public workspace are compared to their 
actions in a private workspace in order to evaluate how much of their individual actions they are 
sharing with the group. Some systems instead focus on Meier et al.’s dimension of dialogue 



management (DM), or how students execute conversational acts. Assessment in this area 
obviously focuses on chat actions, where sentence classifiers can be used to count utterances of 
particular types or even create a model of the student dialogue acts and compare it to a sequence 
of ideal dialogue acts. Then, drawing from earlier analysis systems such as EPSILON (Soller, 
2004), the ACLS system can give feedback to students based on their contributions (e.g., Israel 
& Aiken, 2007). Some of the systems described in Table 1 help students in reaching consensus 
(RC; encouraging students to engage in productive conflict) by detecting and responding to loops 
of disagreement. There is also a growing trend toward using machine learning to classify student 
utterances instead of (or in addition to) sentence starters, with some success (e.g., Kumar et al., 
2007). These efforts have mostly focuses on task orientation (TO), making sure students stay on 
topic. Up until now, we have discussed supporting either workspace actions or chat actions. Even 
systems that use metrics of assessment that might apply to both types of interactions often focus 
their analysis on either one. For example, a common dimension targeted for assistance is 
reciprocal interaction (RI), or whether everyone in a collaborative group is participating. 
Systems track actions in the shared workspace (e.g., Constantino-Gonzales et al., 2003), chat 
contributions (e.g., Viera et al., 2004), or the length of time since students have contributed last 
(Rosatelli & Self, 2004) in order to assess this dimension. However, systems do not generally use 
all three metrics. 

The current functionality of ACLS systems, as described in the above paragraph, points 
toward potential future opportunities for advancement. Task-related feedback is not often 
integrated with collaboration feedback, even when it would make sense to do so. COLLECT-
UML (Baghaei et al., 2007) provides students with both task-related feedback on the quality of 
their group solution and prompts to contribute elements from their individual solutions to their 
group solution. However, the system does not show sensitivity to whether the elements students 
have not shared with the group are correct or incorrect. This knowledge would augment the 
system’s capabilities to provide relevant feedback: the system could suggest that students only 
share the correct elements with their group, or even suggest that students ask their group why an 
element in their individual solution is incorrect. Even assuming that the focus of some ACLS 
systems is on providing collaborative feedback only, these systems could be improved by 
integrating different streams of data and the types of modeling they provide. COLER 
(Constantino-Gonzales et al., 2007), for example, counts workspace actions to assess individual 
contributions but ignores chat actions. This separation might make it difficult to get the full 
picture of when feedback should be provided. Finally, the different types of feedback 
(collaborative and/or task-related) provided by ACLS systems are often kept separate by design, 
with prompts for each type of feedback appearing at different times during the student 
collaboration. For instance, GroupLeader (Israel & Aiken, 2007) has three types of feedback: get 
back on topic, incorporate a single idea per post, or re-evaluate a conflict. There is never a case 
where two types of feedback are given at the same time. Although this configuration is a good 
initial policy, as models become more complicated and better integrated, keeping the feedback 
separate in this way will not scale. One next step in ACLS design is to provide more complex 
assistance by integrating different types of models of interaction (both collaborative and 
domain), and different types of feedback. 
 Research on cognitive tutors (and intelligent tutoring systems more generally) has 
recently begun to explore the integration of different forms of assistance, in particular 
augmenting task-related feedback with metacognitive feedback. There has been growing 
recognition that the limitations of intelligent tutoring systems might be addressed by providing 



students with metacognitive instruction, with the goal to enable them to regulate their own 
learning (Azevedo, 2005). One example of an existing metacognitive tutor is iSTART, a tutor for 
helping students to acquire reading comprehension strategies (McNamera et al., in press). 
iSTART asks students to explain a text to themselves as they read it, and then provides them 
with feedback on the type and quality of their explanations. In some tutoring systems, not only is 
metacognitive support provided, but cognitive and metacognitive tutoring are integrated. Output 
from a domain-specific cognitive model serves as input to a domain-general metacognitive 
model, resulting in more effective metacognitive model and better integrated feedback. One 
example of a tutor which uses this technique is the Help Tutor, which is a meta-cognitive tutor 
for help-seeking that is designed as a domain-independent addition to any cognitive tutor 
(Aleven, Roll, McLaren, Ryu, & Koedinger, 2005). The Help Tutor uses both student actions and 
information from the cognitive tutor to evaluate student help-seeking while problem-solving. For 
example, a student that attempts a problem-solving step (student action) with too low of a skill 
assessment for that step (cognitive tutor assessment) has committed a help-seeking error. Only 
one type of feedback is given at a time; if both the Help Tutor and the regular cognitive tutor 
have feedback to give to the student, the feedback source is chosen based on the type of student 
action and correctness of student action. Other researchers have explored similar methods of 
augmenting an intelligent tutoring system with agents that improve student motivation (Del 
Soldato & du Boulay, 1995), discourage students from gaming the system (Baker et al., 2006), or 
facilitate learning by teaching (Biswas et al., 2005).  As collaboration can be thought of as a 
collection of metacognitive skills, the techniques for integrating metacognitive and cognitive 
tutoring could potentially be leveraged to combine collaborative with cognitive tutoring.  
 

2.3 Implementation of Adaptive Collaborative Learning Systems 

Many coaching systems (Soller et al., 2005) use a component-based architecture, which 
can enable the easy modification of an existing system and the reuse of system modules in novel 
configurations. In component-based architectures, software is divided into abstract components 
that can be specified to suit the developer’s needs and flexibly integrated with other components 
using a standard framework (Krueger, 1992). At a minimum, the way a system is divided into 
components has a positive impact on reuse, because a single component can be enhanced or 
replaced without having to modify the other components. As ACLS systems are distributed 
applications with multiple users, one common implementation of these systems follows a client-
server architecture, with an interface client provided for each student and a central server 
containing multiple components responsible for managing the collaborative sessions (e.g., 
Baghaei et al., 2007; Tedesco, 2003; Vizcaino et al., 2000). Collaboration between interface 
clients is often facilitated using a “what you see is what I see” policy, where objects are coupled 
in shared workspaces so that an action taken on a coupled object in one user’s client is 
broadcasted to the parallel objects in collaborators’ interfaces (Suthers, 2001). Similarly, text-
based interaction tends to follow a traditional instant messaging format, where everything a user 
submits as an utterance is seen by their partners (e.g., Viera et al., 2004). The tutoring 
functionality of these systems is then generally located on the server. Many systems subdivide 
the tutoring module into different components, and although the components are named 
differently across systems, the underlying purpose is parallel across systems. ACLS systems 
generally include an expert model, which compares student actions to an ideal model of 



collaboration, and a feedback model, which contains the logic for how feedback should be 
delivered to students (e.g., Kumar et al., 2007; Israel & Aiken, 2007; Tedesco, 2003). The two 
components handle all types of support the system offers. For instance, in the case of COMET, 
they would support both information pooling and reciprocal interaction (Suebnukarn & 
Haddaway, 2004). One or more translator components are also sometimes included to convert 
the low-level user actions into high-level representations of their collaboration that can be input 
to the expert model (e.g., Kumar et al., 2007, Israel & Aiken, 2007, Viera et al., 2004). A 
variation of this approach to developing a tutoring module is to include both individual expert 
models and a group expert model on the server, with the group model being either a 
parameterization of the individual models (Hoppe, 1995) or containing its own specifications for 
good collaboration (Baghaei et al., 2007).  

Based on this description of components, the reuse facilitated primarily involves the 
ability to modify one aspect of tutor functionality without altering other aspects of tutoring 
functionality. For example, Kumar and colleagues (2007) how their expert model, translator, and 
feedback model are separate from each other, such that each component then can be iteratively 
improved without altering any others. Another way to facilitate reuse is by adding new 
components  directly to existing configurations: In COLLECT-UML (Baghaei et al., 2007), 
group modeling components are added to augment the individual modeling components already 
present. Once an integration framework has been developed for the components, they can be 
more easily substituted for one another or combined in novel ways. For instance, Mühlenbrock 
and colleagues have created an integration framework where individual user interfaces register 
with the DALIS server, which then invokes a pre-specified set of support agents (Mühlenbrock, 
Tewissen, & Hoppe, 1998). Essentially, the DALIS server acts as the facilitator in a federated 
system (Genesereth, 1997). Similarly, LeCS treats tutors as clients, with a central facilitator 
managing the interaction between tutor clients and interface clients, although with no explicit 
integration framework (Rosatelli & Self, 1994). Although the described designs for reuse can 
make it easier to increase the complexity and sophistication of a single type of adaptive support, 
they do not necessarily facilitate the integration of multiple types of adaptive support and the 
efficient implementation of comparison conditions. Few ACLS systems specifically include 
multiple tutor components which each provide a different level of tutoring. One exception is 
COLER, which includes three expert model tutoring components: a “Participation Monitor”, a 
“Difference Recognizer”, and a “Diagram Analyzer” (Constantino-Gonzales et al., 2004). This 
division of tutoring components by functionality can make it easier to incrementally add tutoring 
complexity, particularly if there is a framework in place so that new tutoring models can be 
integrated with existing tutoring modelsh. If different tutoring subcomponents are supported, as 
in the architectures described above, the complexity of a single tutoring level can be increased. 
However, if multiple types of tutors are supported, then different models and feedback can be 
more easily integrated. 

Cognitive tutor architectures are structured so that custom-built interface and tutor 
components can be integrated with existing components. This type of reusability can be found in 
Ritter & Koedinger’s (1996) component-based framework for facilitating the development of 
intelligent tutoring systems. Framework components are divided into tools and tutors, and a 
standard protocol for interchanging messages is defined to make it easier to swap different 
components in and out. So that off-the-shelf components can be used, the framework also 
includes a translator component to convert messages sent from the off-the-shelf components into 
the standard format, and convert messages sent to the component into a format that it 



understands. Although Ritter & Koedinger demonstrated how the framework could be used with 
two separate tutoring applications, their emphasis was on the use of off-the-shelf applications for 
individual tutoring, rather than on the addition of metacognitive or collaborative components. 
However, further iterations of the cognitive tutor (e.g., the Help Tutor) have experimented with 
using a similar framework to add metacognitive tutoring; the Help Tutor module was added to 
the traditional cognitive tutor, and feedback from the two tutor modules were integrated as 
necessary (Aleven, McLaren, Roll, & Koedinger, 2006 ). Allowing multiple tutors, and 
providing an integration framework for the tutors, would allow us to provide more complex 
tutoring to students. 

 
 

2.4 Evaluation of Adaptive Collaborative Learning Systems 

 Much of the evaluation of ACLS systems has been conducted on the technological 
aspects rather than on the effects of the assistance on student interactions and learning outcomes. 
See Table 2 for a summary of the evaluations that have been conducted on ACLS systems. In 
some cases, a technological evaluation meant evaluating the effectiveness of the collaborative 
assessment. For example, Mühlenbrock et al. (2004) in evaluating CARDDALIS described how 
well the model represented the student interactions. In other cases, it meant evaluating the 
predictive power of the models used. COMET used kappa to demonstrate the relationship 
between expert-constructed group solutions and system-predicted group solutions, with positive 
results (Suebnukarn & Haddaway, 2006). Finally, sometimes feedback itself was evaluated. For 
an evaluation of COLER, 73% of the advice the system provided to collaborative students was 
rated as “worth saying” by an expert. Research that has not focused directly on validating the 
system technology has tended to fall under the category of design experiments rather than 
controlled studies. To inform the development of the adaptive component of LeCS, data from 
dyads interacting using the LeCS interface were collected and analyzed (Rosatelli & Self, 2004), 
and after OXenTCHÊ had been implemented, the usability and the benefits of the assistance 
from a student perspective were rated (Viera et al., 2004). The few full studies that have been 
conducted using adaptive systems have been promising. As described in Table 2, to evaluate 
COLLECT-UML, Baghaei and colleagues (2007) compared an adaptive collaboration support 
condition to a no collaboration support condition and found that while there were no differences 
in domain learning gains, the experimental condition gained more collaborative knowledge. 
Even more encouraging was the study conducted by Kumar and colleagues (2007), which 
manipulated two variables: adaptive versus fixed support, and collaborative versus individual 
learning. They found that the adaptivity and collaboration interacted to produce a significant 
learning result compared to the other conditions. As the technical merits of the reviewed systems 
have been established, a logical next step will be to investigate the potential learning benefits of 
these systems, and there is reason to believe that these benefits exist. 
 In addition to taking principles from intelligent tutor design, building components on top 
of an existing tutoring system might accelerate the evaluation process. There are several 
obstacles to conducting controlled experiments with adaptive collaborative learning systems. 
Data is often required to fine-tune the system parameters, but it can be difficult to collect. After 
expending all the effort it takes to build an adaptive collaborative system, it can be too time-
consuming to build appropriate control conditions for evaluation. Finally, once appropriately 
calibrated conditions exist, it can be difficult to find enough participants for the study, and even 



more difficult to conduct the study in an ecologically valid setting. As intelligent tutoring 
systems are older than ACLS, there exists more infrastructure surrounding these systems that can 
facilitate evaluation studies. The Cognitive Tutor Algebra, for example, can be found in 
thousands of schools across the US, and therefore vast amounts of data are logged every day 
(www.carnegielearning.com). Tutor data is often mined in service of investigating learning 
science hypotheses and ultimately informing the improvement of intelligent tutoring systems 
(Beck, Mostow, & Bey, 2004). Similarly, it has become common practice to perform embedded 
experiments, making small modifications to already deployed tutoring systems (Mostow & Aist, 
2001). Finally, because the tutors are so widespread, there are well-established relationships with 
schools that can be leveraged to gain access to classrooms and ecologically valid participants. 
For example, one of the goals of the Pittsburgh Science of Learning Center (PSLC) is to connect 
researchers and classrooms, and then instrument those classrooms so that it is easier to collect 
data and evaluate learning interventions. Developing ACLS systems on top of existing intelligent 
tutoring systems holds great promise both in making such systems more available and in using 
them as a platform for research on users’ interactions, collaborative learning, and methods for 
adaptive support of collaboration and collaborative learning. 
 

Table 2. Evaluation of ACLS support 
System Evaluation 

Purpose 
Evaluation Specifics 

CARDDALIS?   
COLER Technological Expert ratings of system support, comparison of expert & system support  
COLLECT-
UML 

Controlled 
Experiment 

2 conditions (adaptive collaboration support vs no collaboration support), 
classroom study, effects on learning and interactions 

COMET Technological Predict individual & group solution paths 
CycleTalk Controlled 

Experiment 
2 (collaborative vs individual) x3(adaptive vs static vs no support) 
design, classroom study, effects on learning & interactions 

GroupLeader Technological Assess student dialogue acts 
HabiPro Technological Assess student need for assistance, off-topic behaviors, & passivity 
LeCS Design Experiment Students use a non-adaptive system to inform design 
MArCO Quasi-Experiment Compare adaptive and non-adaptive pairs in lab 
OXEnTCHÊ Design Experiment Usability, student ratings of system assistance 



 
2.5 Summary 
 
 There is an opportunity in ACLS systems design to incorporate ideas from cognitive 
tutoring in order to shift the implementation focus from development platforms to research 
platforms. Our goal is to build a research platform for ACLS that facilitates the representation of 
rich interactions, the integration of different tutoring types, and the efficient creation of valid 
comparison conditions for controlled studies. Up to this point, ACLS systems have done a very 
good job at focusing their support at separate types of interaction, but have not generally 
integrated support based on different streams of input. The architectures that have been 
developed to make ACLS systems easier to implement have not emphasized the use of pre-
existing tutoring modules as input to custom-built models, which would increase the potential 
ability of the tutoring system to provide assistance. These architectures have also not explicitly 
facilitated the creation of comparison conditions, which would increase the effectiveness of the 
empirical evaluation of the system in order to investigate learning sciences research questions. 
We see an opportunity here to develop an architecture for ACLS with the goal of facilitating 
controlled research into different types of adaptive support, and for this purpose we introduce the 
Collaborative Tutoring Research Lab (CTRL). This architecture focuses directly on the 
interaction between collaborating students and intelligent support, and would therefore ideally be 
used in combination with other approaches. For example, the tool-level integration provided by 
Freestyler (Hoppe & Gallner, 2002) or CoolModes (Pinkwart, 2003) would be a good 
complement for the tutor-level integration we facilitate. Additionally, CTRL would be a good fit 
as part of a higher-level integration platform such as SAIL (), which facilitates the authoring, 
deployment, and assessment of learning activities. The distinct contribution of CTRL is the 
establishment of an integration framework for pre-existing and custom-built components to 
provide adaptive tutoring to collaborating students. 
 
 
3 Architecture 

The Collaborative Tutoring Research Lab (CTRL) provides a flexible integration mechanism for 
independent components to form an adaptive collaborative learning support (ACLS) 
environment. Using the architecture, the feedback from different tutors can be combined, 
meaning that students can receive complex tutoring based on multiple streams of process data. 
New tutor components can capitalize on existing tutor models, increasing the meta-cognitive 
tutoring possible. For example, a meta-tutor for sharing information with your teammate would 
be able to use results provided by a domain tutor about whether the facts shared were correct. 
The architecture facilitates the addition and removal of components in order to create appropriate 
comparison conditions for adaptive support. In this section, we outline the basic components 
involved in the architecture, the way they interact with each other, and the way they can be 
integrated. To ground our description, we use as a hypothetical example an adaptive support 
condition that might be implemented in CTRL, using a collaboration script developed by 
Rummel, Diziol, Spada, & McLaren (2007). The actual design, implementation, and evaluation 
of a peer tutoring scenario using CTRL is described in Section 4. In the Rummel et al. script, 
students first use a spreadsheet and graphing interface to individually solve a problem that 
contains a single equation, and then join together to collaboratively solve a more complex 



problem incorporating both equations. While collaborating, students receive two types of 
feedback: cognitive feedback on their problem-solving, and collaborative feedback encouraging 
them to elaborate on the help received from the intelligent system. After finishing a problem, 
students enter a reflective phase, where they evaluate their collaboration and set goals for 
improvement. This script was shown to improve deep conceptual learning, but was implemented 
face-to-face rather than using computer-mediated collaboration, limiting the breadth of the 
adaptive support that could be provided to the students. We illustrate our architecture using 
examples from a hypothetical computer-mediated implementation of the script. While we use 
this scenario as an example, it is important to emphasize that the architecture might apply to 
many different types of ACLS. 

 
 

A high-level overview of our architecture is depicted in Figure 2. CTRL consists of six 
different types of components, based in part on Ritter and Koedinger’s (1996) description of 
plug-in tool and tutor components:  

1. Tools: Components used by the student to take problem-solving actions 
2. Tutors: Intelligent components that provide students with problem-solving assistance 
3. Translators: Facilitate inter-component communication and the implementation of 

collaboration scripts 
4. Learner Management: stores curriculum information and student model data 
5. Research Management: stores protocol logs and information about how the components 

involved can be integrated with each other 
6. Control Module: constructs and manages collaborative sessions, both on a problem-to-

problem level (session manager) and on a action-to-action level (mediator) 
The focus of our architecture is on facilitating interactions between tool, tutor, and translator 
components, and we define and discuss each of those components in more detail in Section 3.1. 

Figure 2. High level overview of CTRL. CTRL consists of tool, tutor, and translator agents, 
learner and research management data stores, and a central control module.



In Section 3.2, we describe how the various components communicate with each other. Section 
3.3 outlines how the control module and research management store interact to allow the flexible 
integration of components and construction of multiple collaborative conditions. Learner 
management is not further described because it is outside the current scope of our architecture. 

 
 

3.1 Component Functionality 

A tool is a piece of software that a student interacts with in order to solve problems in a 
particular domain. A tool could be as simple as a text-editor that allows students to write essays 
or as complex as a simulation environment for chemical lab experiments. The CTRL framework 
allows for any number of tools to be involved in the learning scenario. Multiple users can 
collaborate remotely while each one uses different tool components of the architecture. There is 
not necessarily a one-to-one mapping between students and tools; a single student could have 
access to multiple tools (e.g., an instant messaging tool in addition to the text-editor), and two 
students could conceivably be using the same tool at the same computer. However, we assume 
for the purposes of this discussion that in a condition with multiple users, a tool represents a 
single user’s interaction with the system as a whole. In the scenario used by Rummel and 
colleagues, there are two tool components, one for each collaborating student. Each tool 
component consists of a graphing widget, a spreadsheet widget, and an instant messaging client.  

Tool components contain the interface to the user, a domain model, and meta-knowledge 
of tutoring. The interface is the point of interaction between the user and the tool (and by 
extension, the system as a whole). The domain model is present so that the tool can update its 
state without input from an additional component. For example, if the student types a formula 
into the spreadsheet, the domain model would compute the result of the formula and display it to 
the student. A user can then interact with a tool without input from any tutoring component, and 
therefore a tool is not bound to a given tutor. Although tools should be able to share domain 
models, this behavior is currently not explicitly supported by our architecture, in part because of 
our focus on using pre-existing components that probably already contain their own domain 
model (in line with the Koedinger, Suthers, & Forbus approach, 1999). Tools also contain meta-
knowledge so that they can convert semantic feedback from a tutor agent into a format 
appropriate for display. For example, upon receiving the semantic message “cell A2 is wrong,” 
the meta-knowledge model would convert it into “turn cell A2 red.” Locating this knowledge in 
the tool means that tutors can send general messages rather than tool-specific messages, and can 
therefore be used with any tool. The functionality that we have described is ideal for integration 
into our architecture, but it is likely that many pre-developed tools we may want to use will not 
incorporate all functionality, and may be closed systems or difficult to modify. In these cases, we 
use translator components to compensate for the missing functionality. 

Translator components are all-purpose facilitators that bridge communication between 
other components. They have two general functions. First, they make it possible to integrate 
components that do not conform exactly to the framework specification by providing missing 
functionality (e.g., an implementation of tutoring meta-knowledge) or by converting individual 
component messages into the standard message format. This aspect of translator functionality is 
very much in line with the translators discussed in Ritter and Koedinger (2006) and Kumar et al. 
(2007). Second, translators can impose a structure on the collaborative interaction, by 
communicating certain actions across tool components (such that a user action on one 



component is displayed on all other relevant components) and by triggering changes related to 
collaboration scripts to the tool components. Like tools and tutors, there can be any number of 
translator components incorporated in a learning scenario. The specific implementation of a 
given translator would depend on its function. In the script by Rummel and colleagues, a 
translator could be used to allow graphing and worksheet actions made by one student to appear 
on the other student’s screen. This approach, where translators facilitate collaboration, is 
different from the more traditional object coupling approach in CSCL systems (Suthers, 2001), 
where students can automatically see all actions made in a shared workspace. There may be 
cases during a student interaction where actions that would generally be collaborative should not 
be shared (e.g., when one collaborating student makes an error, it may not always be desirable to 
broadcast the error to group members). We chose this implementation so that a designer of a 
learning environment has more control over structuring the interaction between students.  

Tutor components are any components that provide adaptive support to students, 
generally by comparing their actions to a model, providing assistance based on the model, and 
assessing their skills based on the model. For example, tutors might range from a domain tutor 
for writing grammatical sentences based on a constraint-based model to a metacognitive tutor for 
proofreading a paper based on a cognitive model. Any number of tutors can be involved in a 
learning scenario, and any type of tutor can be used in our framework. In the scenario used by 
Rummel and colleagues, there are two tutor components involved: a cognitive tutor that provides 
algebraic support, and a collaborative tutor that provides support for the student interaction. 
Tutor components should contain an expert model, a feedback model, and a student model. Like 
in regular intelligent tutoring system functionality (as described in Van Lehn, 2006), the expert 
model evaluates the student action, the feedback model determines the sort of feedback that is 
given, and the student model assesses the student performance (or in some cases, the group 
performance). As with tools, any pre-existing tutor components used that do not have the desired 
functionality can be augmented with a translator component. 

 
 

3.2 Message Protocol 
 
All components communicate with each other using a standardized set of messages, 

providing guidelines for the development of new components that can be incorporated into the 
framework (see Table 3). As components may be running on different machines, messages are 
sent remotely. In these messages, details specific to the implementation of individual 
components are hidden as much as possible and only abstract semantic content is communicated. 
In this paragraph, we will enumerate the high-level representations that form the parameters and 
return values of the messages sent, and in the following paragraph we will discuss the types of 
messages themselves. First, a Student Interaction, or a step that can be taken by a user in the 
interface, is represented using four parameters:  

1. Student – the student taking the action. 
2. Selection – the widget being acted upon. 
3. Action – the action performed upon the widget. 
4. Input – any additional information necessary for the action. 

For example, in the graphing interface of Rummel and colleagues an action might be to change 
the location of a point on the graph by dragging and dropping it. Here, the selection would be the 
point being dragged, the action would be “changing location”, and the input would be the new  

 



Table 3. Message passing between components. 
Message Name Input Output Sending 

Components 
Receiving Components 

launchComponent Component 
properties 

Success or 
failure 

Session Manager Tool, Tutor, Translator 

quitComponent None Success or 
failure 

Session Manager Tool, Tutor, Translator 

getNextProblem Problem-selection 
properties 

Problem 
properties 

Session Manager Tool, Tutor, Translator 

changeProblem Problem properties Success or 
failure 

Session Manager Tool, Tutor, Translator 

processInteraction Interaction None Tool, Translator Tutor 
scriptInteraction Interaction None Translator, Tutor Tool 
processFeedback Interaction, 

Response 
None Tutor, Translator Tool 

setProperty Component property None Translator, Tutor Tool, Translator, Tutor 
getValue Attribute Value Translator, Tutor Tool, Translator, Tutor 
putData Data properties None Mediator Learner Management, Research 

Management 
getData None Data 

properties 
Session Manager Learner Management, Research 

Management 
 
 
coordinates of the point. The concept of a selection-action-input triple can be traced back to 
Anderson and Pelletier (1991). A Tutor Response to a student interaction is represented by four 
parameters: 

1. Tutor – the tutor sending the message 
2. Action Evaluation – the type of message (e.g., correct, incorrect, highlight) 
3. Feedback Message – any message the tutor wants to send 
4. Skill Assessment – the change in student skill values 

For example, a domain tutor might approve a student action (indicating it was correct), send a 
feedback message for encouragement, and increase the value of the relevant skill. For passing 
other data between components, we use a Properties parameter, which is a more conventional 
data structure containing any number of attribute-value pairs. As described in Table 3, 
information that is not a Student Interaction or Tutor Response (such as current problem details) 
is communicated as a set of Properties. 

 These data structures are then used as parameters and return values for the message types 
exchanged between components (see Table 3). For example, when a session is started a getData 
message would be used to retrieve relevant curriculum and student information, and 
launchComponent messages would be used to start and configure all the relevant components. 
While elements of this message protocol are taken from Ritter and Koedinger (1996), the 
protocol is more abstract than the protocol that they defined, in order to facilitate a variety of 
potential learning environment interactions.  Because the problem-solving interactions are the 
core messages of our architecture, here we present a more in-depth example of how those 
messages might be used by the different components (see Figure 2). The example includes two 
tools (representing two collaborating students, Bo and Jan), two tutors (representing a domain 
tutor and a collaborative tutor), one translator to implement the shared collaborative workspace, 
one research management component, and the mediator subsection of the control model. In the 
example, the tool receives input from the user and sends information about the user action to the 



control model, using a processInteraction message. Once the control module receives the 
message, it logs it, and then redirects it to all components that should receive it (in this case, the 
translator and the two tutors). The translator takes the message and transforms it into a 
scriptInteraction message in order to reproduce a student action on another interface, which is 
sent back to the mediator. Meanwhile, the domain (math) tutor evaluates the user action, and 
sends its feedback to the mediator, which passes it along to the collaboration (chat) tutor using a 
processFeedback message. The collaboration tutor, using the user action and the feedback as 
input, evaluates the action and sends its feedback back to the mediator using a processFeedback 
message. The mediator has now received messages from the translator, the collaboration tutor 
and domain tutor. The mediator integrates the messages, passes the scripting message along to 
both tools, and then sends the feedback message to Jan’s tool. Although not all collaborative 
scenarios will operate in exactly this way, these messages form the building blocks for handling 
interactions between tool, tutor, and translator components. 

Figure 3. Message-passing between components.



 
We have explicitly chosen to leave some elements necessary for implementing a 

computer-supported collaborative learning system unspecified by the architecture, because they 
are outside of our main focus. The system may be used by students at different computer 
terminals, and as such, some components of the system (e.g. the control module) will be running 
on a central server, and some components (e.g. the tool components) will be running on various 
clients. However, the way components are distributed may depend on the deployment 
environment, so we leave it purposefully ambiguous. Also, because components are distributed, 
all messages need to be sent remotely, and we leave the implementation of the specific protocols 
up to the developer. Finally, to be deployed in a classroom, multiple sessions handling multiple 
student pairs need to be run at once, meaning that a server needs to handle client logins and 
launching the collaborative sessions. Although we do not outline general guidelines for 
accomplishing these goals, we do discuss our implementation of these features in Section 4. 

 
3.3 Component Integration 
 

In addition to illustrating how messages are passed between components, there are 
several notable elements of the above example which highlight the centrality of the control 
module during a session. All messages sent go through the mediator, which logs the messages 
prior to sending them to the relevant components. In this manner, the logging of different 
streams of interaction is combined within a single framework. Further, the mediator is in control 
of which components are involved, where messages get sent, and how messages are integrated. It 
is the central component that facilitates the flexibility of the architecture. Although the way we 
support collaboration is different from other systems, both collaboration and the integration of 
different tutors are facilitated by the control module. A translator component can be built to echo 
messages from one tool to another, facilitating collaboration. Additionally, the output of one 
tutor module can be used as input to a second tutor module and tutor messages can be combined 
in the mediator, facilitating the integration of different tutor components. While our architecture 
is not the only architecture to use a federated system (see Rosateli & Self, 2004; Muhlenbrock, 
Tewissen, & Hoppe, 1998), its unique contribution is that it focuses specifically on integrating 
different tutor components and on the efficient implementation of comparison conditions. 

The central control module facilitates the integration of different components, helping to 
meet our goals of providing complex adaptive functionality and making it easier to create control 
conditions. In standard use of the intelligent tutoring system, each individual component has 
knowledge of where it is sending and receiving messages, and this configuration works because 
the system is so simple (the tutor sends messages to the tool, the tool sends messages to the 
tutor). With multiple components, a central body is needed to manage all the communication. 
The control module uses a representation of the session characteristics in order to determine how 
to route the messages. Each condition facilitated by the architecture is represented as a session 
type stored in research management. Each session type contains three arrays corresponding to 
three different types of components (tool, translator, tutor). Session types also contain a set of 
logical rules for how messages are passed between components. These rules can be as simple as:  

IF a message m was sent by any tool 
THEN send m to every tutor 



However, some rules will need to be more complex, as they should also represent how to 
integrate feedback messages from different tutors. For example, if there is a participation tutor 
and a domain tutor involved in a session, a rule represented in the session type might be: 

IF step s is incorrect 
AND m is a domain feedback message  
AND student a has not participated sufficiently 
AND n is a participation feedback message 
THEN aggregate m and n and send m + n to a. 

Rules can involve any information available to the mediator, including the components involved 
in the message, the parameters of a particular message, curriculum or student parameters, and a 
pre-set priority of the message. 

Once a session type has been created, the session manager and mediator can use it as a 
guideline for how different components should be interacting. When a collaborative session is 
started, the session is associated with a given session type. How this association is made is left 
open: it can be based on user login, or a particular curriculum, or even be selected by the user. 
The details of the particular session type discussed in the above paragraph are then retrieved 
from research management and stored locally in the control module. The session manager 
iterates through the components involved to send a high-level message (e.g., launching each 
component). The mediator’s function is to control the low-level message passing between 
components by intercepting all messages sent by a component and directing them to the 
appropriate targets, following the rules outlined in the session type. Therefore, based on the 
session type activated, the same components can be used in different ways. Adding or removing 
a component can be as simple as creating a new session type, without the need to modify the 
other components involved in the interaction. Of course, depending on the complexity of the 
rules, authoring session types might be a challenge (particularly for non-programmers). In the 
discussion of an instantiation of our architecture in Section 4, we discuss the potential utility of 
rule templates for accelerating the authoring of session types. 

The central control module also facilitates the creation of an integrated log of 
collaborative interactions. In the architecture, each semantically meaningful action occurring 
within a component is sent to the control module, which transforms the action into an xml string, 
and sends it to a data store in the learner-management component. In this manner, logs from each 
component are automatically integrated and can be reviewed together after a study without any 
further processing. The logging protocol of the architecture is based on the Pittsburgh Science of 
Learning Center Datashop logging protocol (learnlab.web.cmu.edu/dtd/), which records 
semantic-level messages sent from tool and tutor components. These tool and tutor logs follow 
the concept of a transaction described by Van Lehn et al. (2007), where a user action and the 
tutor response to the action are linked. In our framework, a processUserAction message is logged 
as “tool message” to the learner management module, with the Student Interaction parameters, a 
unique id, and a timestamp being represented in the log (see Figure 3 for a pictoral 
representation). A responding processFeedback message is logged as a “tutor message” to the 
learner management module, with the Student Interaction parameters, Tutor Response 
parameters, and a timestamp being captured. The relationship between the tool and tutor 
messages is also captured, as the tutor message contains the ID of the tool message that triggered 
it. Logs also include context messages, which are initiated by the control module, and record 
information about the problem being solved, the settings of the learning environment, or the 



experimental design. Once a relevant context message has been logged, both tool and tutor 
messages will be linked to it, containing the context message id. 

Because our architecture is designed for adaptive collaborative learning systems rather 
than individual intelligent tutoring systems, the logging supported needs to be broader than the 
protocol discussed by VanLehn et al. There needs to be an additional type of message supported: 
a scripting message, logged whenever a translator or tutor changes the problem state of a tool. In 
this case, the Student Interaction parameters, the timestamp, the id of the relevant context 
message, and the id of the relevant tool message is logged. Second, because the architecture 
supports multiple users on multiple tools, it is important not only to record the user of the 
message (part of the Student Interaction parameter), but the collaborative session that the user is 
involved in, and the role of the user within that session. In CTRL, we incorporate this 
information into the context message, which logs the learning environment settings. Third, 
because the architecture supports multiple tool responses, the relevant metaphor for analyzing 
the data is not a single tool-tutor transaction but a more complicated chorus of responses to a tool 
action. Not only does each tutor response need to be logged, but so does the final message 
constructed by the mediator to be sent to each tool. 

Figure 4. Logging format for student-tutor interactions. 

 

3.5 Summary 

Ideally, the CTRL architecture accomplishes the three goals of capturing rich process data, 
integrating feedback from multiple tutor components, and making it easier to implement 
comparison conditions. All semantic messages from components are sent to the control module, 
which creates a log of all student interactions including verbal interaction, collaborative 
problem-solving actions, and the intelligent tutor responses. Multiple intelligent tutors can be 
incorporated into the system (both pre-existing and custom-built) by changing the definition of a 
session type in the mediator. Domain-general intelligent tutors can use the output of domain-



specific tutors as input into their models. Integration of tutor-based feedback is facilitated using a 
series of rules specified on the session type. Finally, because it is relatively easy to modify 
session types and components are designed to be independent, it becomes possible to remove 
components from collaborative sessions in order to create multiple comparison conditions. In the 
following section, we discuss an instantiation of the architecture which demonstrates these 
positive features. 

 

4 Evaluation 

We evaluated the suitability of our CTRL architecture as a research platform by using it 
as the foundation for conducting an experiment on the effects of adaptive support in the context 
of a collaborative learning activity. In this section, we first describe how we designed an ACLS 
intervention in which we augmented a successful intelligent tutoring system, the Cognitive Tutor 
Algebra (CTA), with a peer tutoring activity. Our design drew on previous successful peer 
tutoring interventions and included both fixed and adaptive assistance. Second, we describe how 
we implemented the adaptive support condition, and two comparison conditions, using the CTRL 
architecture described in Section 3. We discuss places where the architecture was successful and 
places where lessons from our implementation informed the current architecture. Finally, we 
describe a controlled classroom study in which we compared the adaptive peer tutoring condition 
against the two comparison conditions. Our results benefitted from having access to process data, 
having an adaptive intervention that relies on both domain and collaboration models, and having 
strong comparison conditions. 

Figure 5. Individual version of the CTA 



 
 

4.1 Intervention Design: Peer Tutoring in the Context of the Cognitive Tutor Algebra 

Our intervention is designed as an addition to the Cognitive Tutor Algebra (CTA), which is 
an ideal candidate for being augmented by collaborative activities in many ways. Figure 4 shows 
the literal equation solving unit of the CTA. Students use the menus to manipulate the equation, 
selecting operations like “add x” or “combine like terms”. As they do so, the semantic label for 
the operation appears on the right hand side of the screen. For certain problems, students have to 
type in the result of the operation in addition to simply selecting the operation. As the students 
solve the problem, the CTA compares their actions to a model of correct and incorrect problem-
solving behavior. If they make a mistake, they receive feedback in the interface; often they 
additionally receive a bug message describing their misconception. At any point, students can 
request a hint on the next step of the problem. The CTA monitors student skills and reflects them 
to the students in a skill display (Skillometer), in addition to selecting problems based on student 
skill mastery. As students may acquire shallow conceptual knowledge while using tutoring 
systems, recent research has augmented cognitive tutors with activities that encourage 
elaboration such as self-explanation or scripted collaboration. There are promising early results 
on the benefits of adding supported collaborative activities to the CTA compared to unsupported 
collaborative activities and individual learning (Rummel et al., 2007). 

We augmented the CTA with a reciprocal tutoring script. When students act as peer tutors 
they benefit because they are engaging in knowledge-building, as they reflect on the current state 
of their knowledge and use it to construct new knowledge (Roscoe & Chi, 2007b). Because these 
positive effects are present even if peer tutors have low domain knowledge, researchers often 
implement reciprocal peer tutoring programs, where students of similar abilities take turns 
tutoring each other. This type of peer tutoring has been shown to increase academic achievement 
and positive attitudes in long-term interventions integrated into classroom practice (Fantuzzo, 
Riggio, Connely, & Dimeff, 1989). Biswas et al. (2004) concluded that three general properties 
are related to tutor learning: increased accountability for the domain material, reflection on the 
actions of the tutee, and elaborated interaction through asking questions and giving explanations. 
Tutee learning, on the other hand, appears to be maximized at times when the tutee reaches an 
impasse, is prompted by the tutor to find and explain the correct step, and is given an explanation 
if they fail to do so (Van Lehn, Siler, Murray, Yamauchi, & Baggett, 2003). Unfortunately, 
students do not often exhibit these beneficial knowledge-building behaviors spontaneously when 
tutoring (Roscoe & Chi, 2007a), and successful interventions have provided peer tutors with 
assistance in order to achieve better learning outcomes for both tutors and tutees. For one, this 
assistance can target tutoring behaviors. For example, having tutors ask tutees a series of 
questions at different levels of depth had a significantly positive effect on tutor learning (King, 
Staffieri, & Adelgais, 1996), as did training students to deliver conceptual mathematical 
explanations and give elaborated help (Fuchs et al., 1997). However, it is just as critical for 
assistance to target the domain expertise of the peer tutors, in order to ensure that students have 
sufficient knowledge about the correct solution to a problem to help their partner solve it. If peer 
tutors do not have this expertise, there may be both cognitive consequences (tutees cannot 
correctly solve problems; Walker, Rummel, McLaren, Koedinger, 2007) and affective 
consequences (when students feel that they are poor tutors they become discouraged; Medway & 
Baron, 1997. Domain assistance can take the form of preparation on the problems (Fantuzzo, 



Riggio, Connely, & Dimeeff, 1989), access to the problem answers, and scaffolding during 
tutoring (Fantuzzo, King, & Heller, 1992).  

In our peer tutoring design, we script the interaction to create conditions conducive to the 
display of positive tutoring behaviors. The script includes two phases: a preparation phase and a 
collaboration phase. In the preparation phase, students solve the problems that they will be 
tutoring, using the individual version of the Cognitive Tutor Algebra. After each problem, they 
answer a reflection question that prepares them to tutor on the problem, such as “What is a good 
explanation to give to your partner about a problem step?” Including a preparation phase helps to 
give students the domain knowledge necessary to later tutor their partner. Also, it may be 
beneficial for learning in itself, because the expectation of tutoring may lead students to feel 
more accountable for their knowledge and therefore attend more to the domain content during 
preparation. Partners are given different sets of problems to solve in the preparation phase. In the 
collaboration phase, students then take turns tutoring each other on the problems that they 
solved in the preparation phase. For example, if Bob and Sara are partners, and Sara was the 
tutor on the first problem, Bob would be the tutor on the second problem. Then Sara would solve 
the second problem just as though she was using the individual cognitive tutor, by manipulating 
the menus in the Equation Solver tool and typing in the results of a step when necessary. Bob in 
the role of the tutor cannot take actions in the problem himself, but he can see every step Sara 
takes on the problem and the results of every type-in entry. He can mark her answers right or 
wrong by clicking on them with a particular tool. He can also monitor her knowledge by raising 
or lowering the values of her Skillometer bars. These monitoring demands might lead Bob to 
reflect more on the knowledge required to solve the problem, and on his knowledge, by 
extension. Sara sees every action Bob takes to correct her or give her feedback on her 
knowledge. Bob and Sara can interact with each other in natural language using an IM tool. It 
was our hope that the chat would facilitate elaborated interaction between the students. Bob also 
has access to the problem solution in a tab in the interface, in order to provide him with 
assistance for the domain demands during tutoring (see Figure 5). 

Figure 6. Peer tutor interface. 



 
For our evaluation of the CTRL architecture, we used the CTA models to provide adaptive 
assistance to the peer tutor concerning domain expertise, using an intelligent system called a 
meta-tutor. In a pilot study with unsupported students using the peer tutoring script, we found 
that peer tutors had a lot of trouble giving correct domain help to their tutees, and tutees solved 
few problems correctly (Walker, Rummel, McLaren, Kodiner, 2007). Therefore, we focused our 
first attempt at adaptive assistance for peer tutor feedback to peer tutee problem-solving actions. 
There are three main ways a peer tutor can provide this type of feedback to the peer tutee: 

Path 1. Responding “agree” or “disagree” whenever the tutee clicks the done button 
Path 2. Marking a problem step “right” or “wrong” after the tutee has taken that step 
Path 3. Providing a hint in the chat window 

For Path 1, the ideal model of performance is that whenever the tutee indicates he is done with 
the problem, the peer tutor clicks “agree”, and whenever the tutee is not actually done with the 
problem, the peer tutor clicks “disagree”. Similarly for Path 2, the ideal model of performance is 
the that peer tutor marks a step right when it is in fact correct, and marks a step wrong when it is 
incorrect. Path 3 is a little more complicated, but for the purposes of this discussion the ideal 
model would simply be that the tutor provides a correct hint in the chat window. In the context of 
Path 1 and Path 2, the meta-tutor provides feedback whenever the peer tutor deviates from the 
model (e.g., whenever a step that is actually correct is marked wrong). All feedback is given to 
the peer tutor, with the hope that peer tutors will deeply process the feedback as they attempt to 
communicate it to the tutee. The goal of providing the feedback is not simply to force the peer 
tutor to reproduce every action the CTA would have provided. The meta-tutor provides feedback 
to peer tutors based on their actions, not their inaction; so if the peer tutee does something wrong 
and the peer tutor does not respond, no action on the part of the meta-tutor will be taken. In order 
to support Path 3, we make help-on-demand available to the peer tutor. The peer tutor can ask for 
a hint at any time, and use it as a basis for assisting the peer tutee. Both hints and feedback 
always include a prompt for students to collaborate, and the domain help peer tutees would have 
received had they been solving the problem individually (see Figure 6). 

Figure 6. Peer tutor interface. 



 
Our learning sciences research goal was to evaluate the effects of the adaptive assistance 

by comparing it to two comparison conditions (see Figure 7). We introduced a close comparison 
condition where students received fixed assistance, and therefore only whether students received 
adaptive support from an intelligent tutor compared to simply the problem answers was 
manipulated.  We also used a far comparison condition representing current classroom practice, 
where students used the cognitive tutor individually and as they would during their regular 
curriculum. We hypothesized that the adaptive support condition would be more effective at 
increasing learning than the fixed support condition because the support is provided to peer 
tutors only when needed. Further, collaborative learning should be better than individual learning 
because students have the opportunity to interact about the domain material in depth. In the 
following section we describe how we implemented our three study conditions using the 
architecture described in Section 3. Then we present the empirical study and its results. 

Figure 7. Three tutoring conditions 

 

4.2 Implementation of study conditions with the CTRL architecture 

In this subsection, we first discuss the high-level structure of our implementation of the three 
conditions, and then describe in detail how each component was implemented. All conditions 
were implemented as instantiations of our CTRL architecture, with a mixture of custom-
implemented components and some components that were originally part of the CTA.  

The adaptive peer tutoring condition called for two tool components: one which displays the 
peer tutor’s interface and one which displays the peer tutee’s interface. A translator component 
was included to echo actions from one tool to the other tool. Two tutor components were 



necessary: a cognitive/domain tutor component to evaluate the peer tutee’s problem-solving 
actions, and a meta-tutor component to evaluate the peer tutor’s collaborative actions. There is a 
learner management component, a research management component, and a control module. 
Components communicate using the message protocol described in the architecture. All peer 
tutee solver actions, peer tutor correction actions, peer tutor skill ranking actions, and student 
chat actions are logged as tool messages. All cognitive and meta tutor feedback and hints are 
logged as tutor messages. See the left hand side of Figure 8 for a diagrammatic representation of 
the message-passing logic in the adaptive support condition (all interactions occur via the 
mediator). In this configuration, when the peer tutee takes an action, the echoing translator sends 
the action to the peer tutor’s screen. In addition, the cognitive tutor evaluates the action, and 
sends the evaluation to the meta-tutor. All these interactions occur via the mediator. When the 
peer tutor takes an action, it is sent to the echo translator, which echoes the action onto the peer 
tutee’s screen, and to the meta-tutor, which compares the peer tutor evaluation to the cognitive 
tutor evaluation. If responses do not match up, the meta-tutor sends feedback to the peer tutor. 
The peer tutor can also request a hint from the meta-tutor, which has stored the cognitive tutor 
hint for that step, and delivers it to the peer tutor. As the logic of which components are involved 
in the session and how components communicate exists in the control component, it is simple to 
use the control component to implement the relevant comparison conditions. The fixed peer 
tutoring condition includes the two tools displaying the peer tutor’s interface and the peer tutee’s 
interface, and the translator component. The individual use condition includes the original CTA 
tool and tutor components: a tool similar to the peer tutee’s tool and the cognitive tutor. The right 
hand side of Figure 8 shows the message passing logic for these two comparison conditions. 
Three session types were created that corresponded to the three condition, so it was very simple 
to switch from one condition to another. All three conditions were fully implemented in Java. In 
the remainder of this section, we discuss the components involved in our implementation in more 
detail. In some cases, the implementation of the condition components matched the architecture 
exactly. However, in other cases, we will discuss instances where the implementation process 
lead to insights that contributed to the design of the current version of the architecture. 



Figure 8. Session type representation for all three conditions. 
 
The control module, which facilitated the flexible integration of the components necessary to 

form the three conditions, was composed of a mediator and a session manager. The components 
involved were defined in the same manner as in the current architecture, where all the 
components involved in a session and their component type are enumerated. However, instead of 
the message passing logic being defined in a rule-based manner, it was defined in the form of 
several “message groups”, each comprising an originating component, a target component, and a 
priority (represented pictorially in Figure 8).Message groups served as a template for 
automatically authoring simple rules. Upon receiving a message from a component, the mediator 
would match the component to all message groups that have that component as an origin, and 
then send the message to the targets in each relevant message group. In the case of messages sent 
to non-tool components, the control module then waits for a response from all the components 
that have received messages, before sending the messages out in the order of the specified 
priority. We intended to implement more complexity into the “message groups”, but we soon 
realized the limitations of the format for anything more complex than adding action 
specifications to the group statements, and consequently decided to go with a rule-based format 
in the future. Another change that we made for the final version of the architecture was that 
initially translator components were classified as tutor components within the mediator, but 
because translator components served a different purpose than tutor components, we decided to 
create the third component type. We also arrived at the logging format in the architecture after 
several iterations. Initially the messages we were logging followed the tool and tutor message 
format, but were missing context that had to be inserted using post-hoc code (for example, the 
particular student performing an action wasn’t recorded with every message). For the iteration of 
the architecture described in Section 3, we put the context in during the first logging pass. Like 
the mediator, the session manager had access to all the components involved in a session. When 
a session was created, the session manager would retrieve the relevant curriculum and student 
information, and then broadcast a launch message to all involved components, and when a 



session was ended, the session manager would broadcast a quit message to all involved 
components. Finally, the session manager would receive a message whenever a student was done 
with a problem, broadcast a change problem message to all involved components, and update the 
student information. 

The tool components were implemented based on the equation solver tool already found in 
the CTA. Although the CTA was intended to be implemented in line with Ritter & Koedinger’s 
(1996) clean separation between tools and tutors, development constraints lead its current state to 
evolve from this ideal. The tool was dependent on the tutor for launching, and all the equation 
manipulation logic required for updating the equation after a user problem-solving step was 
located within the tutor. Therefore, our first step to being able to use the CTA tool components 
was refactoring them so that the tool functionality was completely separate from the tutor 
functionality. Because this process entailed learning about and working with existing code, it is 
important to note that it was time-consuming, and the refactored product is not as cleanly 
implemented as it may have been had we started from scratch. The tool components were then 
further modified to create the two student interfaces. The peer tutee’s interface was the same as 
the regular tool interface, but with an enlarged Skillometer, an instant messaging window 
incorporated, and the hint button removed. The peer tutor interface was derived from the regular 
tool interface, but we removed the menus that were used to manipulate the equations and the 
done button. Instead, we added widgets so that the peer tutor could evaluate the steps and raise 
and lower the values of the skill bars. All components were implemented in Java swing, just like 
the original CTA interface. Although at the time of the initial implementation chat messages 
were not routed through the mediator, currently chat messages are being routed through the 
mediator, as specified by the architecture. 

The translator component was a custom-made component designed to facilitate collaboration 
between two users. This component functions by receiving all processUserAction messages and 
converting them into corresponding scriptAction messages before sending them back to the tool 
components through the mediator. The translator only deals with semantic events, so the shared 
solver workspace is not a “what you see is what I see” interface. This decision was made to 
allow the peer tutee space to work without interference from the peer tutor. The CTA is set up so 
that the tool needs permission from a tutor to effect certain actions. Because we want the peer 
tutee’s interaction to be less restricted than in typical use of the cognitive tutor, the translator 
automatically grants that permission. The translator is constructed based on the functionality of 
the CTA tools, and is therefore not an all-purpose component for facilitating collaboration 
(which, given the goal of working with existing closed components, would likely not be 
possible).  

As mentioned above, we implemented two tutor components in the adaptive peer tutoring 
condition, one existing CTA component (domain tutor) and one custom-made component (meta-
tutor). The domain tutor component was taken directly from the refactored CTA, without any 
further modifications. The meta-tutor was built fully from scratch. It consisted of an expert 
model based on a simple bug rule:  

IF a student has taken step x  
AND the cognitive tutor response to x is a 
AND the cognitive tutor feedback message is m 
AND the peer tutor response to x is b 
AND a is not equal to b 
THEN send feedback to the peer tutor using x,a,b,m 



When this bug rule fires, the tutoring model considers the type of problem step and peer tutor 
response in choosing from a fixed set of collaboration-oriented meta-feedback, and then, if the 
domain tutor has responded with textual feedback, appends the cognitive tutor message to the 
feedback message. The tutoring model then sends a processTutorResponse message to highlight 
the problem step on the peer tutor’s screen and to present the feedback to the peer tutor. Both the 
domain tutor and peer tutor have to have responded to the step before the rule can fire, and thus 
the model is not forcing the peer tutor to respond to every single tutee step. Hint requests from 
the peer tutor were in a similar manner: 

IF a student has requested a hint 
AND the next correct step is x 
AND the cognitive tutor hint for step x is y 
THEN send feedback to the peer tutor using x and y 

The meta-tutor is domain-independent, and thus could be effective in combination with any 
intelligent tutor, as long as a translator existed to translate the intelligent tutor messages into an 
appropriate message format. 

In the architecture, we purposefully did not specify how to pass messages remotely or how to 
implement a client-server framework so that multiple people could collaborate at once. 
Specifying such a framework is outside the scope of the architecture and might depend in part on 
the conditions of the classrooms in which the collaboration is being implemented (some 
classrooms do not allow web-based delivery, for example). Within a single collaborative session, 
the session manager handles launching, quitting, and navigating between problems, while the 
mediator handles the within-problem component exchanges. In the CTA, components had 
already been designed to send networked messages using TCP/IP sockets, so this is the protocol 
we used within the mediator to send the low-level remote messages. High-level responsibility for 
managing sessions was not fully factored, so we used Java RMI to make the remote message 
calls for accomplishing these functions. We also used RMI to implement a client-server setup for 
running multiple tutoring sessions at once. Once two clients that were part of the same session 
had connected to the server, both the session manager and mediator were started on the server, 
and the session type related to the user login was retrieved. All other components (tools, tutors, 
and translators) were run on client machines. 

 
 

4.3 Experimental Study 

After implementing the adaptive support condition (adaptive peer tutoring), the close 
comparison condition (fixed peer tutoring), and the far comparison condition (individual use), we 
compared the three conditions in a controlled study in a classroom (see Figure 7). We expected 
that both peer tutoring conditions would learn more than the individual use condition, because of 
the additional depth of elaboration and learning afforded through student collaboration. 
Furthermore we expected that the adaptive peer tutoring condition should be better than the fixed 
peer tutoring condition, because the adaptive support provided by the intelligent system would 
meet the peer tutors need for support better. This should in turn enable the peer tutor to provide 
better support to the peer tutee, improving the learning of both students. 

  



Participants 
Participants were 62 high-school students from five second-year algebra classes at a 

vocational high school in the United States, taught by the same teacher. Students spent half the 
day at this high school taking technical subjects (e.g., nursing or electronics) and math. The other 
half of the day was spent at their “home school” learning other conventional subjects. The high-
school used the individual version of the CTA as part of regular classroom practice. The unit 
used in the study was a review unit for the students, but one that they had generally (based on the 
assessment of the classroom teacher) not yet mastered. 

Students from each class were randomly assigned to one of the three conditions. Eleven 
students were excluded from analysis because either they or their partner was absent during a 
collaborative part of the intervention, and they could not be re-paired with another student. 
Another 12 participants did not take the delayed posttest, but were included for all other 
analyses. The total number of participants included in the analysis was thus 51 for the pre- and 
posttest(17 students in the adaptive peer tutoring condition, 14 students in the fixed peer tutoring 
condition, and 20 students in the individual use condition), and 39 students for the delayed 
posttest (11 in the adaptive peer tutoring condition, 10 fixed peer tutoring condition, and 18 in 
the individual use condition).  
 
Experimental Procedure 

The study took place over the course of three weeks. Students were given a 15 minute 
pretest on the Monday or Tuesday of the first week, depending on their class schedules. The 
intervention then took place on two days, over two 70 minute class periods. The first intervention 
day was on the Thursday or Friday of the first week, the second was on Thursday or Friday of 
the following week. On both intervention days, students in the peer tutoring conditions spent half 
the period in the preparation phase, took a brief intermediate test, and spent the remaining 
classroom time taking turns tutoring each other in the collaboration phase. Students in the 
individual use condition used the CTA during the preparation phase, took the intermediate test, 
and then continued to use the CTA alone during the collaboration phase. The week after the 
intervention, students were given a 15 minute posttest. Two weeks later, students were given a 
15 minute delayed posttest to assess their long-term retention.  

 
Measures 

To assess students’ individual learning we used counterbalanced pre-, post-, and delayed 
posttests, each containing 8 questions at 3 levels of difficulty. We expected that most students 
would not be able to solve all questions in the time given, and gave instructions to attempt as 
many as they could. The tests were administered on paper. For process data, we logged all tutor 
actions, tutee actions, and intelligent tutor responses. In other words, the interface actions in both 
tool components were captured (e.g., the tutee subtracts m from both sides) and dialog actions 
(e.g., the tutee asks “what do I do?”). The log data allowed us to extract process variables such as 
the incorrect attempts made by students, the help accessed by the peer tutor, the help 
communicated by the peer tutor, and the total number of problems completed.  
 
Results & Discussion 

Here, we look at how the implementation of the three experimental conditions in line 
with our architectural goals helped us to gain insight into the learning effects of adaptive support 
for peer tutoring. First, we demonstrate that the multiple streams of interaction data collected by 



the system, in connection with outcome measures, provided us with insight into the peer tutoring 
process. Next, we examine how the integration of the domain and collaboration/meta support 
may have affected the peer tutor’s behavior. Finally, we discuss how our comparison conditions 
provide us with more insight than the experimental condition would have alone. 

To demonstrate the effectiveness of collecting rich log data, we focus on one particular 
result in the adaptive peer tutoring condition: relating student impasses (computed using 
incorrect attempts at a problem-solving step and incorrect attempts to move to the next problem) 
to the learning gains between pretest and delayed test (computed using a normalized gain score). 
One might expect that the more mistakes a tutee makes, the less they would gain between the 
pretest and delayed posttest, because if they made many mistakes throughout the intervention 
they probably have not mastered the material. Sure enough, in the adaptive condition, the total 
number of incorrect problem solving attempts on the part of the tutee were negatively correlated 
with tutee learning (r = -.614, p = .044), as were the total number of incorrect attempts to move 
to the next problem (r = -.591, p = .056). One might also expect that the more mistakes a tutee 
makes, the worse their tutor will do on the delayed posttest, as large numbers of tutee mistakes 
may indicate that the tutor lacks the understanding to successfully help their tutee through the 
problem. However, surprisingly, tutor learning was positively correlated with tutee incorrect 
problem solving attempts (r = .428, p = .190) and tutee incorrect done attempts (r = .463, p = 
.151). It appears that much of this learning results from the peer tutor actively processing the 
tutee errors, as was similarly demonstrated by studies on learning from erroneous worked 
examples (Große & Renkl, 2007). This insight would not have appeared had we not collected 
both problem-solving and outcome data.  

The relationship between the chat and problem-solving data also provides us with 
information that would not have been available had we only had one source of interaction data. 
Table 4 displays a student interaction immediately after the peer tutee has taken an incorrect 
done action and the peer tutor has incorrectly agreed and has therefore received a feedback 
message that the problem was not in fact done. At this point, the equation the students are 
working on is “t = f / (1 - .75)”, with the goal being to solve for t. The students must realize here 
that they need to get rid of the decimal in the denominator to achieve the answer “t = 4f”. The 
entire exchange in Table 4 took 10 minutes. If we were to look only at the left hand column of 
Table 4, depicting the student talk, it might appear that productive behaviors are not occurring at 
all: the tutor is simply giving the tutee didactic instructions for how to proceed. Looking at the 
problem-solving actions does appear to confirm a lack of effort on the part of the tutee. We see 
that the tutee is essentially taking a trial and error approach to completing the problem, executing 
both tutor suggestions and other viable options, and then attempting to finish the problem by 
clicking done. However, throughout this interaction the tutor consults the problem actions after 
every tutee action, suggesting that the tutor is engaged in comparing the student answer to the 
ideal worked example. We also notice that this tutor does not make use of the adaptive feedback 
provided, which may have helped him in making the comparison. Further, we can see at a glance 
which actions are correct or incorrect, and when feedback was given. Using these multiple 
streams of data, we can better understand that tutors may be benefiting from student errors by 
being encouraged to compare the errors to a correct problem solution. In fact, this tutor had a 
gain score on the delayed test of .33, suggesting that some of this active processing was 
beneficial, but also that there was more room for improvement. 

 
Table 4. Student interaction immediately following an impasse. 



Chat Actions Problem-Solving Actions Computer Response 
 Tutor: checks answers  

Tutee: yeah i donno what 
to do after that step 

  

Tutor: simplify fractions i 
think 

  

 Tutee: simplify fractions Incorrect (cognitive) 
 Tutee: undoes simplify fractions  
 Tutor: checks answers  

Tutee: I did that   
 Tutee: combine like terms Correct (cognitive) 
 Tutee: clicks done Incorrect (cognitive) 
 Tutor: agrees done Incorrect (meta) 
 Tutor: checks answers  
 Tutee: clicks done Incorrect (cognitive) 
 Tutor: agrees done Incorrect (meta) 
Tutor: multiply by 4   

 Tutor: checks answers  
Tutee: both sides   
Tutor: no   

 Tutee: performs multiplication Incorrect (cognitive) 
 Tutee: undoes perform 

multiplication 
 

 Tutor: checks answers  
Tutor: I mean yes   

 Tutee: multiplies both sides by 4 Incorrect (cognitive) 
 
The addition of adaptive feedback that incorporates both domain support and 

collaborative/meta support might provide insight into how providing adaptive feedback affects 
the peer tutor’s behavior. In our adaptive condition, peer tutors were given domain feedback 
about the peer tutee’s actions and then instructions to communicate the feedback to the tutee. 
They also had access to the problem answers as they were tutoring. To make a fair comparison, 
we look only at the 9 students who chose to use all forms of assistance when in the role of the 
peer tutor. We examine which assistance they used and whether they communicated the 
assistance or not. As evident from Table 5, students accessed far more fixed assistance than 
adaptive assistance. However, they were relatively more likely to communicate the adaptive 
assistance that they received than the fixed assistance: they communicated half the adaptive 
assistance they received, but only 39% of the fixed assistance they received. This may be due to 
the prompt to communicate embedded in the adaptive assistance. This observation is particularly 
interesting given the differences in the effects of the two types of assistance received by the tutor 
on the gains of the student in the peer tutee role. As might be expected, communicating adaptive 
assistance was positively correlated with tutee learning, while failing to communicate adaptive 
assistance was negatively correlated with tutee learning (represented by the third column in 
Table 5). Perhaps surprisingly, communicating domain feedback to the tutee after accessing 
fixed support (i.e. checking the answers to the problem) was negatively correlated with tutee 
learning.  



 
Table 5. Amounts of adaptive and fixed assistance communicated and not communicated. Effects of 
communicating the assistance on tutee learning. R represents the correlation with the tutee learning, and p 
is the significance of r. 

Adaptive Assistance Fixed Assistance  
M SD R p M SD r p 

Assistance communicated 1.44 1.81 .786 .115 3.56 3.84 -.925 .024 
Assistance not 
communicated 

1.44 2.01 -.803 .102 5.67 6.22 -.331 .587 

 
We can retrieve from our log data examples from each of the three different types of 

assistance used that correlates with tutee learning to illustrate what may be occurring. The 
following is an example of the peer tutor receiving feedback on a step, and not communicating it 
to his or her partner: The peer tutor has marked a step right. He receives a feedback message 
telling him that the step was actually wrong and giving him a hint on the step. At this point, the 
peer tutee says: “that doesn’t look right, im sorry I suck at math lol”, and then “k, nevermind.” 
The peer tutor does not respond. Then the peer tutee clicks done, the peer tutor agrees, and the 
peer tutor is given another feedback message saying the problem is not done. This message is not 
communicated to the tutee either. Given such lack of communication, not only are tutees not 
getting the assistance needed, but they are getting misleading feedback. To the tutee, it appears 
as if the steps are correct, even if they are not.  

This example can be compared to an example where the feedback the peer tutor received 
was communicated. When a different tutor received a message saying that their partner had made 
a calculation error (after marking an incorrect step right), an extended dialogue ensued as 
follows: 

Tutor: undo it 
Tutee: why? U marked it right….? 
Tutor: The step is right but it said you made a typing error when you factored 
Tutee: in which step? 
Tutor: the first 
Tutee: so u want me to undo it or is it right? 
Tutee: k 
Tutor: undo it 

Not only did the tutor communicate what was incorrect about the current problem solution, the 
two students also together cleared up a misunderstanding about which aspect of the step was 
incorrect. This type of dialogue may be less common when the fixed assistance is communicated 
to the tutee.  

In the next example, where fixed assistance is provided to the tutee, after the tutee takes 
an incorrect step dividing both sides by q + r, the peer tutor checks the answers and then says, 
“divid both sides by q + r.” The tutee then promptly undoes his last step and performs the correct 
step. Here, it is likely that the tutor instruction was not beneficial, because no explanation was 
provided for why the first step was wrong and the second step was right, and the tutee did not 
have to identify or reflect on his error. The final scenario involved the tutor accessing the fixed 
assistance without communicating it. In this case, the tutee is typically engaged in completing 
problem steps as the tutor is using the answers to check the correctness of the steps. It is 
unsurprising that this case had little effect on partner gains, as the tutor’s intervention was neither 
beneficial nor disruptive behavior. 



As our research platform enabled us to develop two comparison conditions in addition to 
the adaptive support condition, we were able to compare adaptive support for peer tutoring to 
fixed support for peer tutoring and to individual learning. If we had looked at the adaptive peer 
tutoring condition independently of the comparison conditions (as many ACLS evaluations have 
done so far), we would have found that the mean learning gains in the adaptive condition appear 
satisfactorily high, with an improvement of 34% on test scores between the pretest and the 
delayed posttest. However, comparing the learning improvement across all three conditions, we 
see that the adaptive condition is not much different from the fixed support condition (45% 
improvement) or the individual use condition (40% improvement). Then, even though the 
learning gains across the three conditions are equal, we can examine the different paths students 
took to learning across the three conditions. For example, the number of problems completed per 
hour in the individual condition (M=47.0, SD = 30.2) were much higher than the number of 
problems completed per hour in the fixed support condition (M=13.3, SD=7.71) and the adaptive 
support condition (M=17.7, SD=5.69). A logical hypothesis may be that students in the 
individual conditions students learned by solving many problems quickly but shallowly, whereas 
in the collaborative conditions students learned by solving fewer problems slowly but deeply. It 
would not be possible to place the effects of the adaptive support in context without the results of 
the comparison conditions. 

 
 

4.4 Summary 
 
We designed a collaborative peer tutoring script and adaptive domain support for the peer 
tutoring, implemented the adaptive support condition and two comparison conditions using the 
CTRL architecture, and conducted a controlled classroom study comparing the three conditions. 
As a result, we gained valuable insights on the effects of providing adaptive support to peer 
tutoring. We were able to use the combination of process data and outcome data to learn that the 
more impasses faced by tutees, the more their tutors showed delayed posttest gains. We used 
multiple streams of the process data to analyze why that might be the case. We looked at how the 
adaptivity of the support related to whether the assistance was communicated or not, and 
investigated how those two factors related to the tutee’s learning gains. Finally, were able to put 
the results on the adaptive condition in context by comparing it to the other two conditions. We 
realized that even if the learning gains were similar in all conditions the paths to learning might 
be different. In conclusion, implementing the experimental conditions of the learning system 
with the CTRL architecture facilitated the learning sciences research that we conducted. 
 
 
5 Conclusions 

 
We have outlined a framework that allows us to compare the effects of different types of 
adaptive assistance on student collaborative process, which can then be linked to their learning 
outcomes. Our goal was to build an architecture that can help researchers to contribute to the 
learning sciences by capturing student collaborative interactions and using them to evaluate the 
effects of interventions, both after the fact and as real-time input to an adaptive feedback system. 
The architecture enables researchers to integrate different types of adaptive support, particularly 
in terms of leveraging domain-specific models as input to domain-general components in order 



to create more complex tutoring functionality. Additionally, the architecture helps researchers to 
implement comparison conditions by making it easier vary single aspects of the adaptive 
intervention by removing tool or tutor components from a system. We evaluated the architecture 
by first designing adaptive and fixed support for a peer tutoring script, then instantiating the 
architecture using those two scenarios and an individual tutoring scenario. Implementation was 
accomplished by combining pre-existing components from the Cognitive Tutor Algebra (CTA) 
with custom-built components. The three conditions were compared in a large-scale study in the 
classroom that already incorporated the CTA as part of regular classroom practice. The results 
helped us to contribute to learning sciences research in peer tutoring, in particular by 
illuminating the relationship between tutee impasses and tutor learning, giving insights into the 
different effects of communicating adaptive and fixed assistance, and revealing the different 
paths students take to learning in individual and collaborative conditions. 

We see one of the main contributions of our work as the development of an architecture 
that facilitates the integration of pre-existing components and custom-built components, with a 
particular focus on tutoring components. At first glance, it seems like it might not be a good idea 
to rely heavily on existing tutoring systems for components, in that it may be necessary to 
refactor the components to fit into the framework or to deal with legacy code that it may be 
difficult to appropriate for new purposes. However, in our three implemented conditions, we 
managed to leverage CTA logging protocols, interface components, and cognitive models, which 
would have been much more time-consuming to reconstruct from scratch. These components 
made it possible to develop a classroom-functional adaptive collaborative learning system, which 
is currently a rarity. Another concern with relying too much on existing components is that it 
might overly constrain the design of adaptive support interventions. It is true that considering the 
full design space of adaptive collaborative learning support, our system did not depart very much 
from the current functionality of the CTA. It substitutes peer tutoring for cognitive tutoring and 
collaborative domain support for individual domain support, but we did not explore collaborative 
scenarios that do not involve tutoring or forms of collaborative support other than collaborative 
domain support. It seemed like remaining close to the intelligent tutoring system was the first 
natural step, and further extensions belong in future work; particularly since there is much more 
to be done within the confines of existing CTA components (e.g., leveraging the student 
modeling to help the peer tutor figure out what the student knows and doesn’t know). As we 
develop more components, they will form a basis to help construct more general collaborative 
scenarios. 

The other main contribution of our architecture is how it makes it easier to implement 
and compare conditions, by keeping all the integration logic out of the main tutoring components 
and in a central mediator. In our evaluation, we compared three very different scenarios: a 
computer-student intelligent tutoring condition, a student-student peer tutoring condition, and a 
computer-student-student adaptive collaborative learning condition. Traditionally, these 
scenarios would have been implemented in very different manners, rather than all fitting in to the 
same framework. Furthermore, adding a new scenario took no more than X lines of code once the 
components had been implemented. One limitation of the architecture, however, is that currently 
only simple integration scenarios are accommodated; the architecture has not been tested with 
more complex configurations (e.g., the mediator has not yet had to deal with two competing bits 
of feedback). As the conditions we attempt to implement evolve to become more complex, so 
will the framework. 



CTRL is one of the few adaptive collaborative learning support architectures to yield an 
implementation of an adaptive support system and a controlled evaluation of the system in a 
classroom, where an adaptive peer tutoring condition was compared to two comparison 
conditions that were also implemented using CTRL. This evaluation was to accomplish the 
learning sciences goal of better understanding the effects of adaptive support on peer tutoring, 
and the way CTRL was designed helped us to achieve that goal. The integrated log of verbal 
interaction and problem-solving data helped us both to link student impasses to posttest scores 
and better understand what might be occurring as students reach impasses. One downside to 
analyzing rich data is that it is more time-consuming than examining a single stream of data. In 
some ways, CTRL allows us to streamline this process by collecting and integrating all data 
automatically, and by encouraging researchers to store semantic-level representations of what is 
occurring rather than low-level interface actions. Further, even though multiple streams of data is 
collected by CTRL, it is still reasonable to focus only on analyzing a subset of the data; 
essentially, it is better to make more data available than less. Another potential disadvantage of 
CTRL is that our focus has been on text-based communication rather than the video or audio 
conferencing that is a better simulation of face-to-face interaction. Using text-based 
communication allows us to more easily automatically analyze the content of the 
communication, but removes input channels, and may be less natural for students. However, the 
students that we use tend to be very comfortable with instant messaging applications and have 
found ways to compensate for the lack of visual input, so in our experience the tradeoff is 
justified. Another research avenue facilitated by CTRL is the evaluation of complex adaptive 
support based on different types of collaborative models. In our study, we combined a domain 
model of the tutee’s problem-solving performance with a collaborative model of the peer tutor’s 
correction actions, and delivered feedback that included both a prompt to collaborate and a 
domain hint. We were able to closely examine the effects of this feedback, in particular with 
respect to the effects of the peer tutor receiving and communicating the feedback. It is true that 
other ACLS systems have also delivered multiple types of adaptive feedback, and in some cases 
the feedback that they have delivered has been more complex than ours. However, even though 
the current system we have implemented is not very complex, our hope is that our architecture 
will allow us to incrementally increase the complexity of the system and vary the types of 
adaptive support provided in a way that other ACLS architectures have not. One more research 
goal facilitated by CTRL was the more efficient implementation of comparison conditions by 
easily removing components from the definition of a collaborative session. Because of this 
capability, we were able to place our adaptive support results in the context of both fixed support 
and individual work with a tutoring system. Using this type of integration framework to create 
comparison conditions means that the conditions that can be created depend on the way 
components are divided, and some finer-grained comparisons might require more effort to 
implement (e.g., comparing two different feedback policies). Although we cannot cover the full 
spectrum of comparison conditions that might be desired, we believe that the space of conditions 
that can be implemented with our architecture makes conducting research using the architecture 
much more efficient. 

CTRL, the collaborative tutoring research lab, is an initial first step toward supporting 
research into complex forms of adaptive assistance toward collaborative learning. Not many 
ACLS architectures move from the design phase to the implementation phase, and even fewer 
form the basis for an evaluation of the effects of the adaptive support. Even architectures that do 
reach the evaluation stage are not often used in classrooms or in controlled studies. It is our hope 



that the structure of CTRL, and in particular its integration framework, facilitated a more 
efficient implementation by leveraging domain-specific models and a more controlled evaluation 
by allowing the construction of control conditions using the same components and the same 
architecture. Further experimentation under this paradigm will allow us to increase the scope of 
implemented scenarios and the complexity of our support. 
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