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Abstract 

Achieving and understanding effective transfer of learning 
requires a careful analysis of the hidden knowledge and skills 
to be transferred. We present an experiment that tests a subtle 
prediction of such an analysis.  It concluded that a critical 
difficulty in students’ learning to translate algebra story 
problems into symbolic expressions is in learning the 
grammar of such expressions. We hypothesized that exercises 
requiring students to substitute one algebraic expression into 
another would enhance students’ algebraic grammar 
knowledge. This hypothesis led to a counter-intuitive 
prediction that learning to symbolize story problems could be 
better enhanced through practice on dissimilar looking 
substitution exercises than through practice on more similar 
looking story problems. We report on an experimental 
comparison involving 303 middle school students that 
supports this prediction. We discuss how having learners 
externalize a uniform abstract form and get interactive 
feedback on it may be important factors in enhancing transfer. 
 

Keywords: cognitive task analysis; transfer; grammar 
learning; mathematics education. 

Introduction 
Humans learn language before they have a language to use 
to learn.  Might the learning processes that make this 
amazing feat possible, like the capability to learn 
grammatical structures through experience without explicit 
instruction, be useful for other kinds of learning tasks?  
Once children have acquired language, are the cognitive 
functions employed in language learning no longer useful?   
For instance, as students take courses in complex academic 
topics, like algebra, does all that brain matter for language 
learning have nothing to do?  Or is it possible that some of 
the same implicit learning mechanisms employed in 
language learning are useful for learning math and science? 

This paper does not aim to provide conclusive answers to 
these questions, however, it does provide a compelling 
demonstration that grammar learning processes may be 
important in learning mathematics.   Students may engage in 
such learning without explicit awareness and such implicit 
learning may be more prevalent in academic learning than is 
generally recognized (e.g., Alibali & Goldin-Meadow, 
1993; Landay & Goldstone, 2007).  In earlier work, we 
performed a cognitive task analysis of the important task 
domain of “symbolization”, that is, the ability to model 
problem situations or “story problems” in algebraic symbols 

(Heffernan & Koedinger, 1997; 1998). Table 1 shows 
examples of symbolization problems, which ask students to 
translate a story problem into an algebraic expression.   The 
obvious potential connection between language learning 
processes and this task is in learning to read and 
comprehend story problems.  While such learning is indeed 
a significant challenge for elementary students (Cummins, 
Kintsch, Reusser, & Weimer, 1988), our past data provided 
evidence that comprehending story problems is no longer a 
major sticking point for most beginning algebra students.  

This claim can be illustrated by an analogy to foreign 
language translation: Translating a story problem to algebra 
is like translating English to Greek. For an English speaker, 
the difficulty in translating to Greek is not comprehending 
the English, but generating the Greek.  Similarly, the 
challenge for older students in a beginning algebra course is 
much less in understanding the English in which the story 
problems are written and more in being able to express that 
understanding algebraically, that is, in the language of 
algebra. 
    One indication that comprehension of algebra story 
problems is not a major sticking point for beginning algebra 
students comes from Heffernan and Koedinger’s (1998) data 
showing that students can solve story problems (produce a 
value for the dependent or “y” variable when a value for the 
independent or “x” variable is given) much more accurately 
(63% correct) than they can symbolize (write an equation 
relating x and y) a story problem (18% correct). Since 
solving requires comprehension of the story, the 
performance difference is suggestive that symbolizing is 
problematic for students in ways beyond the demands of 
sentence comprehension.  A second indication presents a 
contrast with a difficulty experienced by Artificial 
Intelligence systems programmed to solve story problems, 
namely that of understanding the arithmetic relationships 
between quantities described in the story (Bobrow, 1968).  
We created problems where natural implicit descriptions of 
such relationships (e.g., “Ms. Lindquist teaches 62 girls.  
Ms. Lindquist teaches b boys.”) are supplemented 
(Heffernan & Koedinger, 1997) or replaced (Koedinger, 
Alibali, & Nathan, 2008) with explicit descriptions (e.g., 
“The number of students Ms. Lindquist teaches is equal to 
the number of boys plus the number of girls.”), which are 
much easier for a program to process.  We found, however, 
that providing such explicit descriptions does not



 
Table 1.  Eight two-step symbolization items in order from easiest to hardest. 

    
name Item Answer 

 
cds 

Mary opened a new music store.  She got CDs delivered on her first day. She got 5 truck loads of CDs 
delivered.  Each truck that arrived dropped off 12 boxes.  Each box she received had c CDs. Write an 
expression for how many CDs were delivered that first day. 

 
5*12*c 

 
mcdona 

Mike starts a job at McDonald's that will pay him 5 dollars an hour.  Mike gets dropped off by his parents at the 
start of his shift but he takes a taxi home that costs him 7 dollars.  Mike works an h hour shift.  After taking 
into account his taxi ride, write an expression for how much he makes in one night. 

 
5*h-7 

 
children 

John and his wife Beth have been saving to give their 5 children presents for the holidays.  John has saved 972 
dollars for presents and Beth has saved  b dollars. They give each child the same amount. Write an expression 
for how much each child gets. 

 
(972+b)/5 

 
sisters 

Sue made 72 dollars by washing cars to buy holiday presents.  She decided to spend m dollars on a present for 
her mom and then use the remainder to buy presents for each of her 4 sisters.  She will spend the same amount 
on each sister.  Write an expression for how much she can spend on each sister. 

 
(72-m)/4 

 
students 

Ms. Lindquist is a math teacher.  Ms. Lindquist teaches 62 girls.  Ms. Lindquist teaches f fewer boys than girls.  
Write an expression for how many students Ms. Lindquist teaches. 

 
62+62-f 

 
rowboat 

Ann is in a rowboat on a lake.  She is 800 yards from the dock.  She then rows for m minutes back towards the 
dock.  Ann rows at a speed of 40 yards per minute.  Write an expression for Ann's distance from the dock. 

 
800-40m 

 
trip 

Bob drove 550 miles from Boston to Pittsburgh to visit his grandmother. Normally this trip takes him h hours, 
but on Tuesday there was little traffic and he saved 2 hours. Write an expression for what was his average 
driving speed. 

 
550/(h-2) 

 
jacket 

Mark went to the store to buy jackets that cost d dollars.  When he got there the store was having a sale of 1/3 
off the usual prices.  Write an expression for how much the jacket cost him. 

 
d-1/3*d 

 
significantly improve the performance of beginning algebra 
students (77% on explicit vs. 79% on implicit in Koedinger, 
Alibali, & Nathan, 2008 and 53.% vs. 50%, respectively, in 
Heffernan & Koedinger, 1997).   

A third indication that problem comprehension is not a 
major sticking point identifies difficulties on the production 
side of the translation process (i.e., going from 
understanding to the target language, Algebra  in this case) 
rather than the comprehension side (i.e., going from the 
source language, English story problems, to understanding). 
Heffernan and Koedinger (1997) contrasted the two-step 
problems shown in Table 1 (e.g., see the students problem 
in the fifth row) with matched one-step counter parts (e.g., 
see the first two rows in Table 2 for the one-step 
counterparts of the two-step students problem).  In each 
matched set, the two one-step problems are designed to have 
essentially the same content as the two-step problem. Using 
the students problem as an example, the two-step problem 
requires the solver to understand that 1) the total number of 
Ms. Lindquist's students is the sum of the number of girls 
and number of boys and 2) that the number of boys is 
difference between the number of girls and the variable f.  
The one-step problem "a" in Table 2 requires understanding 
of first of these relationships and the other one-step problem 
"b" requires understanding the second of these.  Heffernan 
and Koedinger (1997) found that student performance on 
symbolizing two-operator problems was significantly worse 
(40% correct) than combined performance on two matched 
one-operator problems (62% correct).  (Note that average 
performance on a single one-operator problem is even better 
at 79% correct.) 

 
 

The comprehension demands of the two one-operator 
problems are quite similar to that of the two-operator 
problem as the words and sentences used in each are 
substantially overlapping if not quite identical.  The 
production demands, however, have an important 
difference.  To correctly produce the algebraic expression 
for the one-step problems, 62+s and 62-f, learners need only 
acquire the mental equivalent of the grammar rule 
“expression => quantity operator quantity”.  However, this 
syntactic knowledge is not sufficient to produce two-
operator symbolic expressions, like 62+62-f.  To do so, 
requires the acquisition of knowledge equivalent to 
additional grammar rules that allow for an expression to be 
embedded inside another expression.  More formally, 
producing two-operator symbolic expressions requires the 
equivalent of grammar rules like “expression => quantity 
operator expression” and “expression => expression 
operator quantity”.  Figure 1 illustrates how the first two of 
the three grammar rules above can combine to produce two-
operator expressions like 62+62-f. 

 

  
 
Figure 1: Grammar tree for a two-operator expression. 



To be sure, we are not saying that students need to learn 
such grammar rules explicitly, but simply that they need to 
implicitly acquire the skills that are consistent with the 
patterns these rules describe.  But the difference between 
two-step and one-step performance implicates such 
syntactic skill. In other words, that students are significantly 
worse at solving a single two-step problem than they are at 
solving both of the matched one-step problems is evidence 
that they lack implicit knowledge of grammar for combining 
expressions. There are alternative hypotheses to be sure 
(some of which were explored in Heffernan & Koedinger, 
1997, 1998), but a strong test is to use this hypothesis to 
design purportedly better instruction and test whether it is 
indeed better.  

So, for instruction, the ideal would be to find a task that 
isolates learning of these implicit “hidden” grammar rules.     
A task that does so is a substitution exercise, as illustrated in 
the last row of Table 2.  This task requires students to 
produce of two operator expressions (and thus should 
exercise the hidden grammar rules) but without any of the 
requirements of comprehending a two-step story problem. 

This leads us to a counter-intuitive hypothesis that 
instruction (substitution) that looks unlike the target 
objective (two-operator story problem symbolization) is 
going to lead to learning and transfer and, further, may do so 
better than instruction (one-operator story symbolization) 
that looks much more like the target objective. In particular, 
we hypothesize that practice on substitution exercises will 
transfer to better performance on translating algebra story 
problems into symbolic expressions.  We will measure 
improvement by examining the differences on posttest two-
step symbolization items between students who do 
substitution problems embedded within a problem set and 
students who only practice one-step symbolization problems 
within the problem set.  As a pretest, both the treatment and 
control conditions begin with a measure of their ability to 
write one-step expressions before being presented with a 
two-step problem.   

Method 
The experiment was implemented inside the ASSISTment 
system and run in middle school classrooms in an urban 
school district outside of Boston, MA. The ASSISTment 
system is a web-based computer tutor authoring and 
delivery system designed to be used for both formative 
assessment and instruction (Razzaq et al., 2007). Instruction 
is provided by feedback on errors, on-demand hints, and 
scaffolding questions that reduce a problem into its 
components much like a simplified version of a Socratic 
dialogue. 

Materials and Design 
The materials for this study were the eight two-step story 
problems shown in Table 1 along with matched one-step 
and substitution items for each as illustrated in Table 2.  
This produces a pool of 32 items of which students saw 16 
in one of two versions.  Items were placed into the versions 

so that students never saw an item that has the same answer 
(or answer part) as another. The items were organized in 
three phases: 1) five pre-test items, 2) seven integrated 
instructed and post-test items, and 3) four filler items.  The 
first two phases are relevant to the study design and are 
illustrated in Table 3.  (The filler items are the one-step or 
substitution items the other condition received as instruction 
and were included to collect data on item difficulty.) 

 
Table 2. The matched one-step problems (a & b) and 
substitution problem (c) for the two-step student item.  

 
 Item Answer 

 
a 

Ms. Lindquist is a math teacher.  Ms Lindquist 
teaches 62 girls.  Ms Lindquist teaches b boys. 
Write an expression for how many students Ms. 
Lindquist teaches. 

 
62+b 

 
b 

Ms. Lindquist is a math teacher.  Ms Lindquist 
teaches 62 girls.  Ms Lindquist teaches f fewer 
boys than girls.  Write an expression for how 
many boys Ms. Lindquist teaches. 

 
62-f 

c Substitute 62-f  for b in 62+b                                          
Write the resulting expression. 

62+62-f 

 
In the pre-test phase, both groups did the same four one-step 
problems (labeled a or b in Table 3) depending on which 
version of the problem set received, followed by one two-
step problem (labeled 0 in Table 3) depending on which 
version and order received.  We created two “versions” to 
be evenly matched in difficulty by selecting two-step 
problems going down this list, cds, sisters, students, and 
jackets for version A and mcdonalds, children, rowboat, and 
trip for version B.  Version A, then, had one-step and 
substitution items corresponding with cover stories 
mcdonalds, children, rowboat, and trip and vice versa for 
version B.  We also created two orders of each version by 
reversing the sequence of the two-step problems, easy to 
hard (0, 1,2,3) vs. hard to easy (3,2,1,0). Thus, we expected 
order to have a significant effect on a pre-post comparison 
and controlled for it in the analyses below. 

In the integrated instruction and post-test phase, students 
started with two instructional problems (either ab or cc in 
Table 3) and then alternated between two-step problems (1-
3 in Table 3) and further instructional problems. As noted 
above, the four instructional problems come from the four 
base cover stories not used for the two-step problems, 
whether version A or B. The instructional problems 
corresponded with condition, one-step problems for the one-
step condition and substitution problems for the substitution 
condition. For the one-steps, which come in a-b pairs (as 
illustrated in Table 2), two of type a and two of type b were 
selected from the four available cover story sets. 

The two-step problems were ordered by difficulty based 
on a pilot study with students from the same grade and     
district and this order, from easiest to hardest, is shown in 
Table 1. 



Table 3. Sequence of items for both conditions. 
 

Condition Pre-test Instruct & test 
One-step  Abab0 Ab1a2b3 
Substitution Abab0 cc1c2c3 

a & b = one-step, c = substitution, 1-4 = two-step 
 

 Given the nature of the ASSISTment system, all items 
are both assessment items (based on students’ first response) 
and instructional items (based on feedback, hints, and 
scaffolding questions that may follow an incorrect 
response). The only difference between the two conditions 
is the placement of the substitution versus one-step items 
during the instruction. 

Participants 
The original data included 318 middle school students 
(N=158 one-step practice, N=160 substitution practice) 
using an on-line system during the 08-09 school year.  The 
final data set included only those subjects who completed 
all 16 of the items in the problem set (four two-step, eight 
one-step, and four substitution) for a total of 303 
participants (N=154 one-step, N=149 substitution).   

Measures 
The pre-test was designed to assess students’ prior 
knowledge of translating story problem to algebraic 
expressions.  It was the first five items in the item sequence 
and consisted of four one-step items and the first one two-
step item. A pre-test measure was computed as the average 
of the two-step score and the average of the four one-step 
scores, thus appropriately giving more weight to the two-
step item that is the goal of instruction. The posttest score 
was computed as the average of the scores on the last three 
two-step items. All pre and post-test scores were based on 
students’ first attempt at an item such that either an incorrect 
entry or a hint request counted as an error. 

Results 
To test the main hypothesis that instruction on substitution 
tasks leads to better transfer of learning to two-step 
symbolization problems than does instruction on one-step 
symbolization problems, we performed an ANCOVA with 
pre-test as a covariate, condition and item order (easy-to-
hard vs. hard-to-easy) as factors, and post-test as the 
dependent variable.  As noted above, we included the order 
factor because of its obvious likely influence. We found 
significant effects of both factors, condition (F(1,299) = 
4.45, p < .05) and order (F(1,299) = 39.57, p < .001), and of 
the pre-test covariate (F(1,299) = 78.62, p < .001). We 
found no other significant effects when we explored more 
complex models involving problem set version and the 
possible two- and three-way interactions with condition, 
version, and order.  

Not surprisingly, high pre-tests are associated with higher 
post-tests and the easy-to-hard order yields lower post-test 

scores. With regards to condition, students in the 
substitution condition had similar pretest scores (M=.56) as 
students in the one-step condition (M=.57); however, the 
substitution group posttest scores (M=.39, SD=.35) were 
higher than the one-step group scores (M=.33, SD=.33).  
We used the ANCOVA results to compute adjusted posttest 
scores (M=.39 for substitution, M=.32 for one-step) and an 
effect size (Cohen’s d = .29).  

How Does Substitution Practice Help 
To better understand how substitution practice may enhance 
learning of algebra symbolization skills, we investigated the 
errors students made on the posttest items. A common error 
category on two-step symbolization problems is to provide a 
1-operator answer, for instance, “62-f” rather than “62+62-
f”. This error is consistent with a student whose only 
algebra grammar knowledge is “expression => quantity 
operator quantity”. We hypothesized that substitution 
practice should aid the acquisition of grammar rules that 
allow for embedded expressions, like “expression => 
quantity operator expression”. The addition of such 
knowledge should reduce the 1-operator responses to two-
step problems. 

We coded incorrect solutions in four error categories: 1-
operator, 2-operator, missing parentheses, or hint/other. The 
most common error for both conditions is a 1-operator error. 
We found that the one-step group produces the 1-operator 
error (34%) somewhat more often than the substitution 
group (30%). This difference is larger for some problems 
and, in particular, appears to account for improved 
performance on four of the problems (cds, students, rowboat 
and trip) on which the one-step group is 9% worse than the 
substitution group (23% vs. 32%) and makes 12% (47% vs. 
35%) more 1-operator errors. We found no consistent 
differences between conditions for 2-operator or hint/other 
errors. Three post-test problems require parentheses (sisters, 
children and trip) and on these, missing parentheses errors 
account for condition differences.  The one-step group is 8% 
(34% vs. 42%) worse on these problems than the 
substitution group and makes 12% (25% vs. 13%) more 
missing parentheses errors.  

We did not discuss parentheses in our brief 
characterization of the algebra grammar above, but the 
correct use of parentheses is clearly an important part of 
algebra expression structure. Consistent with the hypothesis 
that substitution practice should enhance algebra grammar 
learning, we indeed found a reduction in missing parenthesis 
errors in the substitution group relative to the one-step 
group.   

One way grammar learning can be achieved is through the 
kind of implicit or non-verbal statistical learning 
mechanisms that are presumably used in first language 
acquisition.  If these mechanisms are in part responsible for 
algebra grammar learning (see Li, Koedinger & Cohen, 
2010 for a demonstration of the feasibility of such), then we 
might expect to see more frequent use of grammatical forms 
seen by those students who have seen such forms more 



frequently.  Indeed, the one-step group sees 1-operator 
expressions more frequently and generates such expressions 
more frequently on post-test problems than the substitution 
group.  In contrast, the substitution group sees more 
expressions with parentheses and generates such 
expressions more frequently on post-test problems than the 
one-step group. 

In fact, these patterns appear not only in student errors, as 
discussed above, but also in their correct responses.  On 
some two-step posttest problems (cds, students, and jackets) 
it is possible to produce a correct 1-operator solution (e.g., 
“60c” for 5*12c”,“124-f” for “62+62-f”, 2/3 *d for d-
1/3*d).  The one-step group, despite doing generally worse 
on these problems (23% vs. 31%), actually produces twice 
as many correct 1-operator solutions as the substitution 
group (7.2% vs. 3.5%).  It is also possible for students to 
produce correct answers that include parentheses on 
problems that do not require them (e.g., “62+(62-f)”).  
Again, consistent with the hypothesis that statistical 
properties of learning, like frequency, are operative even in 
formal domains like algebra, we find that the substitution 
group has more correct solutions that involve unnecessary 
parentheses than the one-step group (15% vs. 9.3%). 

An astute reader may wonder about the following 
alternative interpretation of the observed overall differences 
in learning. Might the one-step group’s experience 
generating 1-operator solutions simply be interfering with 
production of 2-operator solutions needed for correct 
performance on the two-step post-test problems?  Or, to put 
it in more stark terms, might students in the substitution 
group simply be learning a shallow bias to generate 2-
operator solutions and the one-step group students simply 
learning a shallow bias to generate 1-operator solutions?  It 
is first worth emphasizing that, because of the instructional 
scaffolding for all on the two-step problems, neither group 
was exclusively seeing one response type or the other. 

Certainly though, part of our hypothesis is that a shift in 
bias is causing improvement, but that that shift is in 
probabilities on implicit grammatical structure knowledge 
not in shallow or surface features.  To be better, the 
substitution group students must not only avoid generating 
1-operator solutions (note that they are not so easily biased 
that they stop making 1-operator errors), but also learn how 
to generate correct 2-operator solutions, including 
appropriate use of parentheses. If substitution group 
students were simply shallowly biased toward 2-operator 
solutions, we would expect them to perform worse on the 
four one-step problems they were given in the filler phase 
than the one-step group did on the same problems during 
instruction.  In fact, both groups were 72% correct on one-
step problems.  Thus, the substitution group was not blindly 
over-generating 2-operator solutions. 

Discussion and Conclusion 
When we think about learning and transfer, it is tempting to 
think just in terms of the observable tasks between which 
transfer may occur.  However, the vehicle of transfer is the 

knowledge the learner acquires from a source task and 
transfer occurs to the extent that that knowledge is relevant 
and employed in the target task (cf. Singley & Anderson, 
1989). Careful cognitive task analysis regarding the 
underlying nature of the knowledge demands of tasks can 
thus provide insight into how best to achieve transfer.  We 
presented an experiment that tested a subtle prediction of a 
prior data-driven cognitive task analysis.  That analysis 
suggested that comprehending story problems tends not to 
be a major source of difficulty for students learning to 
translate story problems to algebra.  Instead, learning to 
produce longer symbolic expressions is a more significant 
challenge and that students must acquire more sophisticated 
algebra grammar knowledge to meet this challenge. We 
hypothesized that practice on substitution tasks would assist 
students in extending their algebra grammar and, counter-
intuitively, that such practice would yield better transfer to 
story problem symbolization than practice on simple story 
symbolization would.  A classroom-based study with some 
300 middle school students provided support for this 
hypothesis.   

It may seem surprising that we found transfer from 
instruction on symbolization tasks, which have little natural 
language content, to story problem tasks and, even more, 
that such transfer is greater than from instruction on story 
problem tasks themselves (albeit simpler ones). After all, 
the literature and theory on analogical transfer (e.g., 
Gentner, 1983; Gick & Holyoak, 1983) suggests that people 
are particularly sensitive to surface features and have great 
trouble transferring experience from one situation (e.g., 
converging radiation treatment) to another with dissimilar 
surface features (e.g., converging military forces).  How, 
then, does the instruction used in this study apparently help 
students acquire a relevant deep structure and transfer it 
from substitution tasks to surface-dissimilar story problem 
symbolization tasks? 

An important observation here is that while these task 
categories (substitution and two-step story) do not have 
common surface features in their stimulus structure, they are 
similar in their response structure. The answer in both cases 
is a two-operator algebraic expression.  To be sure, the 
correct responses to the instructional problems (analogical 
sources) and post-test problems (analogical targets) are not 
identical, nor even similar in surface characteristics -- for 
instance, “800-40x” has little or no surface similarity with 
“62+62-f”.  However, the structure of these responses, 
whether generated from a story problem or a substitution 
problem, is similar in underlying grammatical form 
(“expression => quantity operator expression”). 

Similarity in response structure is not enough to produce 
transfer.  The well-known convergence tasks of Gick and 
Holyoak (1983) have an arguably similar response structure, 
yet learners show little transfer between such tasks under 
most instructional variations.  What may be critical is that 
the learner externalizes the response, gets feedback and 
support to get the response right, and the external form is 
abstract and uniform (e.g., if a common converging arrow 



diagram was used in response to convergence tasks). In this 
study, the demands of both substitution and symbolization 
problems put the solution response into the world where it 
can be "re-perceived" (c.f., Goldstone, Landy, & Son, in 
press).  Further, the kind of interactive instruction we 
employed (use of the ASSISTment tutor) guarantees that 
students get the response right before moving on.  By 
generating, or at least perceiving a correct response, 
students may (implicitly) engage the same perceptually-
grounded, similarity-based generalization processes on the 
response that they use on the task stimulus. Thus, they may 
develop better mental representations, whether grammar 
rules or "perceptual chunks" (Chase & Simon, 1973), of 
those response representations.  Further, it may be important 
to the transfer result that the response representation is a 
uniform abstraction (i.e., algebraic expressions). This 
concise, unadorned representation may make it easier for 
pattern recognition mechanisms to learn the deep patterns 
(i.e., the algebraic grammar rules) needed for transfer (c.f., 
Kaminski, Sloutsky, & Heckler, 2008). 

More practically, this research illustrates how a general 
instructional principle like starting simple (or mastery-based 
learning, Bloom, 1984) may not be effective if it is not 
accompanied with a careful cognitive task analysis of the 
target subject matter domain. Instruction that helps students 
master parts before helping them master the whole may 
seem obvious, however, what seem like "parts" on the 
surface may not be the right "cognitive parts" a learner 
needs to acquire. It is not particularly hard to identify the 
part-whole relationship between one-step and two-step story 
problems. Thus, the control condition in this study is not a 
straw man, but a reasonable application of part-task training 
principles and is representative of sequencing in math 
textbooks. 

It is not a priori obvious, however, that substitution tasks 
are a "part" of two-step story problem symbolization.  We 
came to that conclusion after a data-driven cognitive task 
analysis (cf., Clark, Feldon, van Merriënboer, Yates, & 
Early, 2007) that involved the analytic use of computational 
modeling (e.g., the grammar rule analysis). We believe that 
there is great promise for greatly improving the efficiency 
and effectiveness of instruction, even in well-investigated 
domains like algebra, through a combination of domain-
general instructional principles and such detailed cognitive 
task analysis. 
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