COGNITIVE PSYCHOLOGY 28, 362404 (1988)

Cognitive Objectives in a LOGO Debugging Curriculum:
Instruction, Learning, and Transfer

Davib KLasr aND SHARON McCoy CARVER

Carnegie~-Mellon Universiry

In this paper we report two studies in which efementary-school children learned
a complex computer-programming skill—how to debug LOGO graphics and list-
processing programs—and then transferred the high-level goal structure of that
skill to nonprogramming domains. Instruction, its assessment, and the transfer
tasks were all derived from an explicit model of the debugging process, cast as a
computer simalation. Debupging skiils were acguired over a period of several
months as part of a2 LOGO programming course; the teansfer tasks invoived
correcting written instructions in a variety of domains, including arvanging items,
allocating resources, and following map routes. Students showed clear improve-
ment in the transfer tasks following instruction in debugging programs, and in the
second study, amount of transfer was comrelated with the degree of debugging skilt
acquisition. Our results contrast with many earlier studies that found fittie transfer
of problem-solving skifls in general and of high-level programming skills in par-
ticular We suggest that the key to the success of our procedure is the fact that we
used an extremely precise computer simulation model of the skills required to
debug LOGO graphics and list-processing programs as a concrete manifestation of
the notion of *‘cognitive obfectives ' © 1988 Academic Press. ne

The psychology of computer programming has become a sufficiently
active field of research in the past few years to warrant its own specialized
meetings and publications (e.g., Mandinach, Linn, Pea, & Kurland, 1986;
Mayer, 1988, Olson, Sheppard, & Soloway, 1987, Soloway & Iyengar,
1986). Programming’s complexity and practical relevance make it an in-
herently challenging and important domain for investigation by cognitive
psychologists {cf. McKeithen, Reitman, Rueter, & Hirtle, 1981; Pea &

This research was supported by o grant joimly funded by the Program for Research in
Teaching and Leaming and the Program for Applications of Advanced Technology at the
Natioral Science Foundation (MDR-8554464). It is based in part on a doctoral dissertation
completed by the second author while she held a Nationa! Science Foundation Graduate
Fellowship. Preliminary reports were presented at the Biennial Meeting of the Society for
Research in Child Development ard the Aanual Meeting of the American Educational
Research Association, April 1987, and the Second Workshop on Empirical Studies of Pro-
grammers, December 1987 We thank the students, teachers, and administrators of the
Montessori Center Academy in Glenshaw, PA, and the Ellis School in Pittsburgh, PA, for
their cooperation and participation in this project. Address reprint requests to David Klahr,
Bepartment of Psycholopy, Carnegie-Mellon University, Pittsburgh, PA 15213, or Klnhr @
psy. cmu edu

362

0010-0285/88 57.50 .
Copyright © 1988 by Academic Press. Inc
All righls of reproductien in any form reserved



COGNITIVE OBIECTIVES IN LOGO 363

Sheingold, 1987). But a more fundamental, and perhaps more tantalizing,
reason for psychologists’ interest in computer programming derives from
the possibility that it may be the long-sought mental exercise that enables
its practitioners to increase their general thinking abilities. Indeed, a com-
mon justification for teaching children how to program is the claim that
they will acquire generalizable high-level skills, such as planning, problem
decomposition, and debugging from this unigue problem-solving domain
(Linn & Fisher, 1983; Papert, 1980).

Although this is an appealing claim, there are both theoretical and
empirical grounds for doubting its validity. The theoretical problem is that
the mental exercise view of programming’s impact is precariously close to
the thoroughly discredited '‘faculty psychology’ approach to learning,
memory, and problem solving (Angell, 1908). Empirically grounded pes-
simism derives from transfer studies of both problem solving and pro-
gramming, First, there is the notoriously difficult issue of transfer from
one problem-solving domain to another. Problems with superficially dis-
similar cover stories but similar deep structures are not recognized as
such by most subjects (Gick & Holyoak, 1983), and transfer between
problem isomorphs is scant (Simon & Hayes, 1976) and, as Gray and
Orasann {1987} note, “‘surprisingly specific” (e.g., Bassok & Holyoak,
1987; Reed, Ernst, & Banjeri, 1974). Second, investigations of skill trans-
fer from programming to related nonprogramming domains have yielded
mixed results. With respect to low-level tasks closely related to LOGO
spatial skills, such as those involving knowledge about turns and angles or
about novel extensions of figural componenis, demonstration of acquisi-
tion and transfer has been relatively successful (Clements & Gullo, 1984;
Dalbey & I.inn, 1984; Geva & Cohen, 1987; Gorman & Bourne, 1983).
However, the results of most studies of mastery and transfer of high-level
skills do not support assertions about the general cognitive benefits of
learning to program {Dalbey & Linn, 1984; Garlick, 1984; Gorman &
Bourne, 1983; McGilly, Poulin-Dubois, & Shultz, 1984; Pea, 1983).

In this paper, we describe two studies in which students did success-
fully acquire and transfer a high-level skill—debugging—from a program-
ming to a nonprogiamiing context. We focused on debugging because it
plays a central role within the programming domain and because it is one
of the “‘powerful ideas’ (Papert, 1980) that, on the face of it, might be
expecled to generalize beyond programming and become a broadly ap-
plicable cognitive skill. Our goal was to establish a set of sufficient con-
ditions for acquisition and transfer of this class of complex skiils. We
assumed that transfer from programming to nonprogramiming domains, if
it could be achieved at all, would require that both instruction and as-
sessment of transfer be grounded in well-specified cognitive objectives.
More specifically, our thesis is that if the domain is properly analyzed, if



364 KLAHR AND CARVER

instruction is based on the formal analysis, and if assessments of both
what is learned in the base domain and what is transferred to more remote
domains are also grounded in the formal analysis, ther a powerful idea
like debugging can be taught and can have an impact on general problem-
solving capacities.

In proposing cognitive objectives as the fundamental link between cog-
nition and instruction, Greeno (1976) suggested that:

. the explicit statement of instructional ebjectives based on psychologicat theory
should have beneficial effects both in design of instruction and assessment of
student achievement. The reason is simple: we can generally do a better job of
accompiishing something and determining how well we have accomplished it when
we have a better understanding of what it is we are trying to accomplish, (p. 123}

The work described in this paper represents a complete elaboration of this
notion of cognitive objectives in the domain of teaching elementary
school children (8 to 12 years old) how to debug LOGO programs. The
cognitive objectives we developed were extracted from a formal task
analysis of debugging skill that was used to produce a computer simula-
tion that can debug a wide range of buggy LOGO programs. The model's
rules (productions) were used as the basis for explicit instruction in de-
bugging and for the assessment of learning and transfer. The debugging
instruction, learning assessment, and transfer testing were embedded in
conventional LOGO courses that included both graphics and list-
processing components. In this paper, we describe the task analysis, the
curriculum and assessment procedures based on the model, and the de-
sign and results of two extensive experiments based on the curriculum.
Finally, we discuss the points of contact between our work and other
investigations of debugging, analogical problem solving, and transfer of
training.

A COGNITIVE MODEL OF DEBUGGING SKILL

A detailed task analysis of LOGO debugging skills provides the basis
for all of the subsequent debugging instroction, learning assessment, and
transfer assessment. The analysis was intended to capture, in the form of
a concrete model, the decision processes, knowledge, and subskills nec-
essary for efficient debupging of LOGO graphics and list-processing pro-
grams with one or more semantic and/or syntactic bugs. In this section we
describe the model at several levels of detail. In order to provide the
required background, we start with a brief introduction to LOGO. Then,
we provide a general characterization of the major phases of the debug-
ging process, followed by a description of the computer simulation im-
plementation of the model and an account of how the model debugs faulty



COGNITIVE OBIECTIVES IN LOGO 365

LOGO programs. Finally, we comment on the particular levei of debug-
ging skill that our model is intended to represent.

LOGQO in a Nutshell

L.OGO is a sophisticated computer programming language designed to
enable young children to create interesting graphics effects, Although
best known for its praphics, LOGO is also a general-purpose, list-
processing languape with capabilities extending to the domains of music
and basic word processing. In ali of these domains, one can write proce-
dures that utilize powerful programming structures such as subproce-
dures, variables, and recursion.

In LOGO graphics, the user is supposed to imagine that a “turtle’” will
move a “‘pen’’ around the screen to draw pictores. ForwarD, BacK,
LefiTurn, and RightTurn are the commands necessary to move and turn
the turtle. Each of these commands requires a numeric argument to in-
dicate the distance to move {for FD and BK) or the number of degrees to
turn (for LT and RT). In addition, PenUp and PenDown control the
position of a pen: when the pen is down, any turtle movement leaves a
trace of the turtle’s path on the screen. OGO also has commands to
direct the flow of control; these include REPEAT, IF, and STOP.

Many of LOGO's features—procedures, variables, conditionals, recur-
sion, graphics, and iteration—are illusirated in Fig. 1. The listing on the
left shows five procedure definitions (BOX, ROOF, HOUSE, MOVE,

TO BOX :51ZE
REPEAT 4 [FO :SIZE AT 80]
END

TO ROOF [SIZE
REPEAT 3 [¥D :SIZE RT 120]
END

TO HOUSE :5IZE
BOX :SIZE
FD :S{ZE RT 30
ROOF SIZE
LT 30 3K SIZE
END

TG KEIGHBORHOOD SIZE
HOUSE 1SIZE
IF BIZE = 20 THEN 5YCP
MOVE :SI2E NEIGHBOARODD 40
NEIGHBOANODD :5iZE « 18
END

TD MOVE SIZE
RT 90 PU5 FD :SIZE + 10 PO LT 90
END
Fic. k. Anexampie of a L.OGO graphics program. Procedures are delimited by *'TO™ and

“END ™



366 KLAHR AND CARVER

and NEIGHBORHOOD), all of which use various primitive commands
for moving, turning, iteration, and conditionals. The panel on the right
shows the graphic output that would be generated if the procedure
NEIGHBORHOOD were called with an input of 40 and the turtle was
initialized at the position indicated by the arrow.

General Character of Debugging

Our analysis assumes the existence of four sources of information.
Three are well defined: (a) a description of the goal (for graphics pro-
grams, a picture of the desired outcome, and for list-processing programs,
a specification of the desired ouicome), (b) an on-line listing of the buggy
program, and {c) the output produced by the buggy program. The fourth
information source, programming knowledge, is more variable; it depends
on assumptions about the level of debugging skill being simulated. The
model represents a performance theory—stated at the level of goals, pro-
ductions, and operators—of how to debug the faulty program. The goal
structure and production set are invariant. Operators vary with respect to
how much they can extract from the information sources. This variation
corresponds to different assumptions about the ability of the person
whose debugging skills are being modeled. LOGO-specific knowledge is
incorporated in most of the productions and operators, and general
knowledge about debugging is incorporated in the model’s goal structure
and the productions that establish and {raverse the goal structure,

In the following analysis, we distinguish between the discrepancy and
the bug. The former refers to the difference between the program plan and
the program outpui. The latter refers to the erroneous component of the
program that caused the discrepancy. The goal of the debugging process
is to detect and correct the discrepancy-causing bug. For example, if the
goal drawing corresponding to Fig. 1 was a series of abutting houses,
rather than spaced houses, then the discrepancy between the goal draw-
ing and the program output would be described in terms of the “‘spread”
or “‘location.”” The bug that caused the discrepancy would be the + 10 in
the subprocedure MOVE, which repositions the turtle after each house is
drawn.

There are five phases to the debugging process. The first phase estab-
lishes four subgoals that, when compleled, reassert the top goal. The five
phases are:

1. Program evaluation. Run the program. Compare the program plan
and the program output If they do not match perfectly, then identify the
bug, represent the program, locate the bug, and correct the bug,

2. Bug Identification. Generate a description of the discrepancy be-
tween the program plan and the program outputl. Based on the discrep-
ancy description, propose specific types of bugs that might be responsible



COGNITIVE OBIECTIVES IN LOGO 367

for the discrepancy. Where multiple possibilities exist, do further discrep-
ancy description and bug proposal. When only one possibility remains,
move to the next phase.

¢ Inits purest form, the discrepancy description makes no reference to
the fact that the fauity output is program-generated. This is, the discrep-
ancies are characterized entirely in terms of their static features.! Table 1
lists the most common types of discrepancy encountered when LOGO
graphics and list-processing programs are debugged. The quotations pre-
sented in the second column are representative comments from children
in our L.OGO courses about the type of discrepancy shown in the first
column . Noie that one possible outcome of the bug identification step is
knowing that the plan and output are not identical but being unable to
describe the mismatch. However, in the case of syntax errors, the error
message always provides a description of the discrepancy for the user
{though the user may ignore it).

» Given the description of the discrepancy, the model makes infer-
ences about which specific program components are capable of generat-
ing that type of discrepancy. The third column in Table 1 suggests some
of the possible mappings. For example, if the discrepancy is spread, then
it is likely to be caused by turning the wrong angle or moving the wrong
distance. In addition to proposing these general types of programming
errors, the model has a set of rules which propose further discrepancy
description to discriminate between multiple possibilities. When only one
possibility remains, the model continves with the next phase. However,
the model may need to cycle through discrepancy description and bug
proposal several times before a specific program command is identified as
the bug (see¢ the fourth column in Table 1). The result of this complex
processing is a narrower search for the bug {e.g., *'it shouldn't be left
90—it should be right 90 I think’").

3. Program representation. Represent the structure of the program to
investigate the probable location of the buggy command in the program
listing.

» Knowledge of the program’s structure may be the result of having
written the program or of assuming that programs for certain types of
plans will be structured in characteristic ways. For example, the model
may be given knowledge that the program has a repeat structure because
the user wrote the program or because the user observes that a picture is
composed of several identical fipures (typically programmed using a RE-

! 1t is possible that discrepancy descriptions might inciude temporal information, because
in our procedure, the child watches as the program's oulput is dynomically generated On
the computer we used, Fig I would take about 5 s to draw. Alse, for list-processing output,
the temparal order of different portions of the output ts preserved by the output listing on the
screen



368

KLAHR AND CARVER

TABLE 1
Sample Discrepancy——Bug Mappings for LOGO Graphics and List-Processing Programs
Example Buggy
Discrepancy description component Specific bug
Orientation “this is going over here Angle LTnorRTn
instead of down™
Size **that line—il's too long"  Distance FOnorBKn
Spread “*these are too close Angle or ITnorRTnor
topether'* Distance FDnorBK n
Location *this is supposed fo be Distance FDnorBKn
in the middle’
Extent “lots too many squares’ Iteration or REPEAT n
Recursion stop IF :x = n
oF THEN STOP
Recursion interval NAME ix +-n
Extra part “it drew a line there™ Pen position or PU omitied or
Program call Extra call
Wrong part “it drew corn instead of Program call Switched call
a stalk™
Missing part ' wanted a box there™ Pen position or PD omitted or

Print variable
Not matching
Wrong value

How to
What to

No value

Don't know

“it printed ‘score’ instead

of the number™
“{ put the right answer

and it marked it wrong”’

*H printed the number
instend of the place"”

ERROR MESSAGE

ERROR MESSAGE

ERROR MESSAGE

“this mess”’

Program cal
Punctuation

Nesting
Variable name

Punctuation
Command

Initiafization

?

Call omitted
Quoted variable

READLIST or
READWORD
Wrong variable
name
Missing punctuation
Missing command or
Missing parenthesis
MAKE "‘mame value or

No parameter
7

PEAT statement). Knowing that the bug is located within a REPEAT
statement narrows the search in the program listing. In the case of syntax
errors, the error message gives the user information about which proce-
dure contains the bug.

4. Bug location. Using the cues gathered in the last two phases, exam-
ine the program in order to locate the alleged bug.

The efficiency of the bug location process depends on the outcome of
the bug identification and program representation processes. At best, the
model searches for a perfectly specified bug {both the bupggy command
and its arguments are specified) in a highly constrained set of possible bug
Jocations. At worst, the model must perform a step-by-step examination
of the program because it has no knowledge of the bug's identity and no
cues about its location.



COGNITIVE ORIECTIVES IN LOGO 169

5. Bug correction. Examine the program plan to determine the appro-
priate correction. Replace the bug with the correction in the program
listing and then reevaluate the program.

This reevaluation is slightly different from the initial test in that the
model knows that a change has just been made. It first determines
whether the correction fixed the original problem. If the correction
worked, the model will determine whether there are any more bugs to fix;
otherwise, it will debug the correction before proceeding.

A Production-System Specification

In order to specify the model unambiguously and to demonstrate its
sufficiency for debupging LOGO programs, it was implemented in
GRAPES, a goal-restricted production system (Sauers and Farrell, 1982).
The GRAPES model consists of a set of 84 productions that specify the
action to be taken if certain conditions exist. The conditions include the
goal the model is trying to achieve and the information currently available
in working memory {(the set of known facts). A production is selected and
executed only when the appropriate conditions exist; thus the current
state of the environment {current goals and knowledge) determines which
actions will be performed. The actions inciude updating or adding to both
working memory and goal memory.

The goals correspond to the steps in the debugging process listed
above; productions represent general and specific search heuristics used
for efficient debugging; operators represent both information-extraction
skills {described earlier) and some subskills which are essential, but not
central, to the debugging process (e.g., editing skills). The following sec-
tions briefly describe these three components of the model. These de-
scriptions are followed by demonstrations of how the goals, heuristics,
and operators work together to debug faulty LOGO progams. {A more
detailed description, the full production system, and more examples of
the model working in varied situations can be found in Carver, 1986).

Goals Direct the Solution

The model’s goal structure corresponds to the five phases described in
the overview (illustrated in Fig. 2). The system has a set of productions
for each goal to represent the different responses a debugger would have
1o the same goal in different situations. The ''situations’” are represented
by the current contents of the system’s working memory. Productions
with test and evaluate goals start the system and evalvate the success of
each debugging attemnpt (i.e., the match between the program plan and the
program output). The describe and propose poals correspond to the bug
identification phase; they satisfy the productions that describe the dis-
crepancy between the program plan and the program’s buggy output and



370 KLAHR AND CARVER

that propose possible bugs and ways to discriminate among them. Rep-
resent and specify correspond to the program representation phase; pro-
ductions with these goals look for structural cues to the bug's location so
that find, interpret, and check can actually isolate the bug using whatever
cues they have about the bug's identity and location. Finally, the change
and replace goals correspond to the bug correction phase; they fire pro-
ductions that identify the appropriale correction and change the program
listing accordingly.

Heuristics Narrow the Search

The system has two sets of debugging heuristics, one set for identifying
the bug (phase 2) and one set for representing the location of the bug in the
program (phase 3). Appropriate use of both sets of heuristics substantially
narrows the search for the bug. Heuristics for identifying the bug corre-
spond to the mappings between observed discrepancies and potential
bugs (listed in Table 1). These heuristics are most useful in situations
where several different types of bugs might be responsible for a particular
type of discrepancy. In this case, the heuristic includes information for
distinguishing among candidate bugs. For example, if the discrepancy has
been identified initially as spread, then the model will request information
about orientation because it has the knowledge that discrepancies de-
scribed as both spread and crientation must have been caused by an angle
bug, whereas those described only as spread discrepancies must have
been caused by a distance bug.

Heuristics for representing the location of the bug involve knowledge of
program structure types. For example, if the program is identified as
having subprogram structure, the model would ask for information about
which subprogram was likely to contain the error and it would confine its
search to that subprogram unless no bug could be located there. If no

PHASE 1:
EVALUATE
FROGRAM

TEST
EVALUATE|

T N

C PESCRIBE] IREPRESENT Finn CHAKGE
PROPOSE SPECIFY IHTEAPRET | { REPLACE
PHASE 2; PHASE 3
IDENTIFY REFRESENT
BUG PROGRAM CHECK TEST
PHASE 4: PRASE 4
LOCATE CORRECTY
BUG 8UG

Fig 2. Goal structure of the debupging model



COGNITIVE OBJECTIVES IN LOGO 371

subprogram cue is available, the model will seek other structural cues,
such as location with a REPEAT or IF statement or location after a
particular command. For example, if the user can identify a correct com-
mand which was executed before the bug occurred, the model will use
that command as a marker and begin its search after that command.

Operators Process Information and Produce Behavior

The debugging productions use 11 operators, or subskills, to process
information available to the system. These operators are called by pro-
ductions when it is necessary to process information from one or more
sources ot to take specific actions. In addition to the four initial informa-
tion sources described earlier (program goal, program output, program
listing, and knowledge of the programming langnage), an operator may
use dynamic information contained in working memory, and operators
may add information to working memory,

There are two classes of operators: {(a) those that correspond to inspec-
tion of the buggy output and/or the plan and (b) those that correspond to
maneuvering in the LOGO environment. Operators in the latter class
(RUNning the program, ENTERing the editor, SKIPping to a particular
location, READiIng a command, DELETing a command, and INSERTing
a command) are automatically executed by the model, but operators in
the former class are not. Instead, they are simulated by the user of the
system. The user must MATCH the program plan and the output to
determine whether a discrepancy exists, CONTRAST the two outcomes
to describe the discrepancy, EXAMINE the buggy portion of the output,
INTERPRET the effect of particular LOGO commands, and GENER-
ATE the LOGO commands to create a particular effect.?

The user-simulated operators are important for simulating different lev-
els of debugging skill. The model’s solution to a debugging problem de-
pends on the amount and accuracy of the information gathered about the
debugging situation to guide the search for the bug. In the next section,
we contrast debugging episodes simulating users with different amounts
of knowledge  The more knowledge input to the model, the narrower the
search for the bug,

Simulating the Debugging Process with High and Low Infofmation

This section contrasts two simulated attempts to debug the example
program shown in Fig. 3. The simulations differ only in the amount of
information the user gives the model about the bug’s identity and loca-

? The rationate for this treatment of the interface’” operators is presented in the next
section.



372 KLAHR AND CARVER

tion. (As noted earlier, 1.OGO has list-processing and string manipulation
commands as well as graphics commands. They are illustrated in the
following examples.)

First, we simulate a situation in which the debugger is a very knowl-
edpeable user (Table 2). The model is provided with information about
both the discrepancy and the program. The information, provided in re-
sponse to the operators, is marked by —» on the right-hand side of the
trace. Here the user classifies the problem as list processing without an
error message and then identifies the discrepancy type as printvariable
since the variable JOB was printed instead of its value TV REPAIR. The
model responds that the bug causing that discrepancy is likely to be
incorrect punctuation. 1t also asks the user to input the name of the
variable. The user is then asked 2 series of questions about the kkely
location of the bug. This user knows that the program LIVING has sub-
procedures and that the bug is likely to be in the procedure JOB. Since the
model has been given knowledge about both the likely identity and the
likely location of the bug, it locates the bug immediately—i.e., without
having to interpret and check the outcomes of any commands. The model
prompts the user to input the necessary fix, makes the specified change,
and directs the user to retest the subprocedure JOB and then the main

& Buggy Coda

TOLVING
PRINT DO YOU LIKE LIVING IN PENNSYLVANA
MAKE "LIVING READWORD
{F EQUALP LIVING "YEE [WHERE] [WORKING]

END
TOWHERE
PRINT WHERE DO YQU LIVEY)
MAKE “WHERE READUIST
(PRINT WHERE IS A NICE PLACE YO LIVE }}
o

TO WORKING
PRINT [TOD BAD, DO YOU LIKE WORKING HERE?]
MAKE "WORKING READWORD
IF EQUALP WORKING "YES {JOB} [FRINT I DON'T EITHER
END
TS 0B
FRINT [WHAT IS YOUR JOB'
MAKE “J0B AEADLIST
{PRINT JOB [I5 AN INTERESTING JOB)
=5]

B Buggy Quteut

Tliving

DO YOU LEE LIVING IN PENNSYLVANIAT
ng

TOO BAD. DO YOU LUKE WORKING HERE?
you

WHATIS YOUR JOB?

v tepair

JOB IS AN INTERESTING JOB

7

Fi6 3. Anmexample list-processing bug. (A} Buggy program listing. (B) Bugpy output. The
lust output line should be **TV REPAIR IS AN INTERESTING JOB."* The bug is in the
second print statement in the JOB procedure where ' }OB should be the variable ;JOR



COGNITIVE OBIECTIVES IN LOGO

373

TABLE 2
Trace of the Modei Simulating an Efficient Debugger
Run the program LIVING —ok
Did the outcome match the plan [yes or no}? ]
What type of discrepancy is there [graphics or lists]? ~+iists
Did you get an error message {yes or np]? N0

What is the discrepancy between the plan and outcome?
[printvarizble, wrongvalue, notmatching, extent,
extrapart, wroagpari, missingpart, or 7}

The variabie has probably been quoted or put in brackets
Use 2 color when printing variables.

—printvariable

What js the name of the variable? -+JOB
Look for PRINT “JOB or PRINT [. . . :JOB i
Does the LIVING program have subprograms [ves or no]? ~>yes
Is the bug in 2 subprogram [yes or no)? —yes
Which subpast is wrong? —JOB
The bug is “"}0B in JOB
How should the fix be made?

ichange, delete, or insert} —change
What should “JOB have been? —:JOB
Run the program JOB. -0k
Did the correction {ix the problem? —+yes
Run the program LIVING ~+0k
Did the outcome maich the plan [yes or no)? b YES

Note The model’s prompts are listed on the left, and the responses we chose to simulate
an effective debugger are listed on the fight.

procedure LIVING. Since the fix was correct and no other bugs exist, the
debugging episode is complete.

Figure 4A shows the goal tree generated during this high-information
simulation. Each number refers to one subgoal, and the information con-
tent of the trace is included next to the corresponding subgoal number.
Figure 4B shows the poal tree generated during a low-information simu-
lation. In contrast to Fig. 4A, the user responds to the model’s prompts
with question marks, so the model has no clues to either the bug’'s identity
or its location. In this case, the model starts searching for the bug in the
main procedure and continues checking each command, in order of exe-
cution, until the bug is found. Each time a subprocedure call is encoun-
tered, the user is given another chance to provide information about the
likely location of the bug. Once again, none is entered so the model
continues iis serial search until the user identifies " JOB” as the bug.

The contrasts between the model’s behavior in the high- and low-



374

A. High-Information Goal Treg

KLAHR AND CARVER

;

%

:

v

7

£_Low:Information Goal Trae

15 dise.

Frinled tho
witiabty

Loak for

s 3 £VING hap 4 tooking 5 Maken
NG BIror MOS ‘ BUbpBHIIMS ‘L in-JCB ‘ ghangy
B Pugising 10 Bugis £1 0B
‘ subprogram ~308 ‘
9 LookinJOB 12
13
14
18
16
]
H
3 4 Leoking in 5 HMakea
‘ * LIVING & chaago
B ? 1 &3 0B
8 7 12 G4
Mmokm in ‘
Wi
10 No clge 1327 28 ORKING &5

—

297 32
kI 33

InJQB

31 ¥o  34-47 4B

e

49 7 52
56 7 a3

VAN

9% HNg 54-62 Bugls
chio ~JoB

v

66

+

&7

mumklnn #
58



COGNITIVE OBJECTIVES IN LOGO 375

information situations are striking: the former required only 16 subgoals,
while the latter required 68. The high-information simulation represents
the ideal case in which the system's goals and heuristics were used effi-
ciently to narrow the search until the bug was completely specified and its
location was known. In the low-information situation, however, little use
is made of the describe, propose, represent, and specify goals, so none of
the search reduction heuristics are used and debugging proceeds by brute
force, one command at a time. Most of the extra subgoals resuit from this
serial search.

Scope of the Model

The model is bounded along three imporiant dimensions: Its place
within the total set of processes tha! support programming, its interface
with the external environment, and the range of debugging skills that it
can simulate, In the following paragraphs, we elaborate each of these
limitations.

Debugging, Not Programming

This is not a model of the total programming process. Although the
model contains a Jarge amount of L.OGO-specific knowledge in the dis-
crepancy-bug mappings, it has no ability to take a particular programming
goal and generate LOGO code to achieve that goal It is intended to
represent only one class of componenis of the full set of programming
processes that a LOGO programmer might have.

Unmeodeled Interface with the External Environment

As noted in the previous section, several of the operators that control
interaction between the debugger and the external world are not simu-
lated. For example, the model has no perceptual front end that can com-
pare program output with desired output in order fo characterize the
initial discrepancy. Instead, the results of processing by the MATCH and
COMPARE operators are determined by inputs from the “‘user.” Nor
have we simulated INTERPRET, the operator that checks the result of a
single command 1o see if it had the desired effect. This too is determined
by user input. While the productions in our model determine when this
information is required, and what to do with it, once it is available, there
is no model of how that information is extracted from either memory or
the environment. We do not believe that these unmodeled processes are

F16. 4. Simulated poal trees for (A) High-information and (B} Low-information simula-
tions Because no clues to the bug's identity or location are gathered in the low-information
simulation, the search (goal 4 and goals 11-62} is extensive compared to the two-step search
of the efficient debugger



376 KLAHR AND CARVER

simple, unimportant, or ‘*hardware primitives’’ (see Palmer and Kimchi,
1986, for a discussion of the role of primitives in information-processing
models). However, the creation of 2 perceptual front end that could con-
struct encodings of discrepancies between intended and actual outcomes
would be a very complex task that is tangential to our central purpose: the
modeling of the basic poal structure of the debugping process. Our pro-
duction system is limited to modeling the internal logic of the debupging
process, primarily through the goal structure and the discrepancy-bug
mappings described earlier.

A pragmatic advantage of this approach to modeling is that the “‘user
interface' facilitates the simulation of debuggers with a wide variety of
ability to extract relevant information from the programming environ-
ment. As noted earlier, a low-information debugger simply fails to provide
any information relevant to the series of user prompts. The basic logic of
the debugging process does not change in this situation, but there is a
dramatic decrease in overall efficiency. By limiting the amount of infor-
mation available to the model, we effectively disable the productions that
could use that information. Thus the *‘user interface™ provides a conve-
nient mechanism for exploring various levels of debugging skill. (Two
such examples were provided in the previous section, and several others
are described in Carver, 1986).

Skill Level of the Debugging Model

For all its complexity, this model is not intended to characterize expert
debugging skills. Instead, we have attempted to model a range of skill
levels from rank beginner {who would fail to provide useful information to
the operators) to good novice: the kind of debugging we would hope to
achieve after a semester or two of LOGO instruction. This range is ex-
emplified by the two debugging traces shown above.

One reason for focusing on this level, rather than on expert perfor-
mance, is that it is not yet known how to fully describe such a skill.
Stodies of expert programmers {Gugerty & Olson, 1986; Jeffiies, 1982)
suggest that they may have three broad categories of discrepancy-bug
mappings. At the lowest level are the relatively primitive and direct map-
pings of the kind included in our model. At the next level are bugs asso-
ciated with incorrect implementation of standard combinations, conven-
tions, and rituals {for example, standard iteration procedures or interac-
tive prompts). At the third level are sophisticated schemes for dealing
with the likely causes of bugs, such as those discussed by Spohrer and
Soloway (1986). In addition, experts are able to search for multiple bugs
simultaneously and to do multiple-siep backward inferencing from the
bug to its likely cause. Our model only treats one bug at a time and uses
only one-step backward inferences (the discrepancy-bug mappings).

Even if we knew how to construct a model that had all these expert



COGNITIVE OBIECTIVES IN LOGO 377

skills, it would be very difficult to teach # to rank beginners, without first
developing a learning hierarchy of simpler, more instructable skills. That
is, we would have 1o develop an entry-level model comprised of simple,
familiar elements. Such a model would probably look very much like the
one presented here.

APPLYING THE MODEL TO INSTRUCTION AND ASSESSMENT

it is clear that, even at the novice level, debugging is a complex cog-
nitive skill requiring 2 mix of content-specific programming knowledge
and general problem-solving heuristics. Many observers (e.g., Papert,
1980) have noted that when confronted with bugpy programs, most chil-
dren prefer to abandon them and start anew rather than debug them. We
have supgested that they do so simply because they have acquired few, if
any, of the requisite skills (Carver & Klahr, 1986). Indeed, in two pilot
studies, we found that good debugging skills are not Jearned spontane-
ously in the context of either structured or unstructured L.OGO curricula.

in our first pilot study, 9 second and third grade students given 24 h of
structured LOGO graphics experience did not learn the central compo-
nents of the model spontaneously (Carver & Klahr, 1986). In the second
(unpublished) study,” we assessed 15 fifth grade students who had ap-
proximately 200 h of unstructured LOGO experience over an 18-month
period. Subjects in both groups failed to gather effective clues about the
identity and location of the bug; therefore, they relied heavily on serial
search. Even their serial search was ineffective because they made fre-
quent errors determining the effect of particular commands. Similar dif-
ficuities with debugging have also been demonstrated among LOGO
teachers (Jenkins, 1986) and among adults learning other programming
languages (Gould, 1975; Gugerty & Olson, 1986; Jeffries, 1982; Katz &
Anderson, 1986; Kessler & Anderson, 1986). In general, it appears that,
in the absence of explicit instruction in debugging, neither structured
lessons nor open-ended “'discovery” contexis are adequate for teaching
children or adults anything beyond the most meager debugging skills.
Therefore, we decided to use the model as the basis for a debugging
curricuium, its assessment, and a set of transfer tests,

Each of the two studies described in this paper was designed to answer
two questions:

1. Can the debugging skills used by the model be taught directly?

2. Can the debugging skills, once learned, be transferred to nonprogram-
ming tasks reguiring similar skills?

* We thank the staff of MEIT s Media Technology Laboratory for providing access to their
classrooms at the Henaigan School in Boston.



378 KLAHR AND CARVER

These issues were addressed in the context of three LOGO courses: a
50-h LOGO graphics and list-processing course laught to 22 8- to 11-
year-old children in one school over a 6-month period (Study 1) and 25-h
list-processing courses taught in a different school to two groups of 17
11-year-olds over an 8-month period (Study 2). The remainder of this
section discusses the common features of these studies, and further sec-
tions describe the particulars of each study and the learning and transfer
results from each.

Principled instructional Design

The main cognitive objective of the debugging curriculum was for stu-
dents 1o acquire the same goal structure as the model, especially the initial
phases where cues to the bug’s identity and location are gathered to
narrow the search for the bug. With only slight rewording of the goal
structure shown in Fig. 2, particularly the interactive prompts the model
gives the user, we produced a step-by-step debupging procedure to teach
the students. In order to highlight the similarity between the model and
the instruction, we show in Fig. 5 the debugging procedure students were
taught in terms of the model's goal structure. The curriclum also in-
chuded specific heuristics the model uses to map discrepancies onto likely
bugs and to focus search on particular parts of the program. The discrep-
ancy-bup mappings are equivalent to the knowledge in the propose pro-
ductions, and the location clues are equivalent to the knowledge in the
represent and specify productions. After being given several sample map-
pings, students were directed to keep written records of problems and
their likely causes.

The curriculum was designed so that the first explicit instruction in
debugging came after 6-8 b of programming experience. By this time,
students’ experience with the difficulty of debupging by serial search

‘fest a program.
111s not
rght...
Ask yourpell.  Then nsk yoursell,  Then gan the Onco you'vy
“What iz the “Does the progam  information 10 found tha bug
¥ Yl hava i 7" fing tho bug. nsk yoursall,
‘Wit chould
(kn fix bor™
And"Whattype  And “Whems might Othorwize,
of bug could the fug beT* read ovory
cause 1he - i & BUbDIDEHEN catmnnd Than makg
problam? -in & REPEAT or IF tha fix and
- ghor o cortaln
command And dacidn
whelher ity Fa-tast the
corsct program

FiG. 5. Debugging curriculum corresponding to model's goal structure



COGNITIVE OBIECTIVES IN LOGO 379

enabled them to appreciate the usefulness of the focused search skills
being taught. Only one 40-min lesson was devoted exclusively to debug-
ging; throughout the rest of the course, however, students were repeat-
edly encouraged to use the debugging procedures and challenged to find
and record new clues.

Principled Learning Assessment

Before the extent of transfer of a cognitive skill is assessed, it would
seem prudent to establish that the skill was acquired in the first place.
Nevertheless, as noted in Carver and Klahy (1986), this step is commonly
omitted from LOGO transfer studies. In the studies described here, pro-
cedures for assessing the acquisition of debupping skills were derived
directly from the model, and assessments were performed at several
points during the LOGO course.

Students were asked {o debug programs written and bugged by the
experimenter. We provided the buggy programs so that the bugs would be
the same for all students. In order to ensure that students understood
what the buggy program was supposed to do, we gave them an opportu-
nity, during a previous week, 1o write their own version of the program.
During the debugging test, then, students were given the experimenter’s
buggy programs on-line and asked to fix all the bugs. The students were
allowed to work until the program ran correctly or until one class period
had elapsed, whichever came first.

The programs used for the debugging test were well structured; in other
words, they made appropriate use of subprocedures and other LOGO
substructures such as iteration, conditional statements, and recursion. In
order to facilitate scoring, and to minimize the complications caused by
interacting bugs, we planted bugs in such a way that the discrepancies
they caused in the output would be fairly independent either in space
{usnally for graphics) or time (usually for list-processing). Although we
used bugs that commonly oceur in novice LOGO programs, we did not
base our bug selection on an underlying theory of the processes that
generate bugs in the first place (cf. Katz & Anderson, 1986; Spohrer,
Soloway, & Pope, 1985). The only other criterion for bug selection was
that there be a variety of discrepancy types in each program.

The model suggests several distinct measures of debugging skill. It
predicts that increased knowledge of any form (discrepancy-bug map-
pings, discrepancy descriptions, program structure) will produce nar-
rower search (fewer goals); developing debugging skill should therefore
result in decreased debugging time. If all the knowledge provided to the
model is accurate, the bug will be located and correcied in a single com-
plete cycle (from the initial goal to test the program to the final retest
goal). Developing accuracy in debugging should therefore resuit in fewer



380 KLAHR AND CARVER

debugging cycles needed to locate and correct bugs. These measures of
speed and efficiency, along with some qualitative characterizations of
debugging strategies, are the core of our analysis.

Note that the model predicts that, given sufficient time, there should be
no difference in overall success rates of good and poor debuggers: even
the brute-force approach in Fig. 4 eventually found the bug. In actual
practice, we would expect the longer times required by children who
followed the less-focused search strategies to be more prone io eror,
fatigue, and distraction, and therefore they would get lower performance
scores. However, the use of detailed process analysis provides a much
more direct assessment of the extent to which children have acquired the
skill we are attempting to teach.

Principted Transfer Assessment

The poal of the transfer assessments is to discover whether the knowl-
edge elements acquired from the debugging instruction can be applied in
new instances. Our model provides a basis for making specific predictions
about transfer effects and for choosing tasks where debugging skills are
likely to be useful. Three types of noncomputer transfer tests were de-
signed, all of which involved detection and correction of errors in a set of
written instructions about how to achieve a well-specified goal. The three
types were intended to produce a range of difficulty and to vary the class
of basic operations involved in following the instructions. The lests also
varied in the type of discrepancy information presented to the subjects.
The easiest problems invelved directions for arranging something (setting
a table, building with blocks, or arranging furniture). Discrepancy infor-
mation for this class of tasks consisted of two illustrations, similar to, but
usually more complex than, the two representations for LOGO graphics
debugging. The next easiest problems involved directions for distributing
something (paying wages, delivering trees, or ordering food). Discrepan-
cy information for these tasks was presented in tabular form. Finally, the
most difficult problems involved directions for traveling somewhere
(playing golf, visiting airports, or running errands). Discrepancy informa-
tion for the route-following problems was presented in ferms of a lext
description of where the person wanted to be, where the person wound tup
after following the (buggy) directions, and a relatively complex map
showing streets and landmarks. The tasks were always presented in order
of increasing difficulty so that students would not do poorly on an easier
test purely as a result of being frustrated by a harder one. All of the
transfer tasks are similar to program debugging in three ways:

1. Instructions given at the beginning of each transfer session and the
cover story for each ilem were designed to highlight the debugging nature



COGNITIVE OBJECTIVES IN LOGD 381

of the tasks. The instructions for transfer tests mimic the program debug-
ging situation: “Today I would like you to read three stories. In each
story, someone gives someone else directions. The person follows the
directions perfectly, but something goes wrong because one of the direc-
tions is wrong. Your job is to find the problem with the directions and fix
it so that next time it will be done correctly.””

2. Information about the desired and aciual output was provided before
the written directions could be viewed, just as discrepancy information is
available from test runs in debugging situations. As noted above, in two
of the three test types, this information was pictorial; in the third, how-
ever, it was tabular. From the pictures and tables, subjects could gather
clues about the identity of the bug and its probable location just as they
could in the program debugging situation.

3. Lists of instructions were structured like LOGO subprocedures by
adding headings between sections of instructions to label their purpose.
Subjects could use the headings to determine which sections of the in-
structions were likely to contain the bug just as they could use the sub-
procedure names to guide their search for program bugs.

The foliowing example shows how the model's brute-force strategy
(low-information search) and selective-search strategy (high-information
search) would solve one of the transfer items. Figure 6 shows the plan and
outcome for the furniture arranging problem. Table 3 lists the accompa-
nying directions. Before viewing the figure, students read the following
cover story,

Mrs. Fisher was moving into a new house with the help of two movers She
asked them to arrange the furniture in her house and gave them a list of directions
to foltow. The movers followed the instructions perfectly, but there was one prob-
lem with the directions so the furniture was not arranged correctly.

The next page shows the way Mrs Fisher wanted the furniture to look and the
way it jooked after the movers arranged it Use these pictures to help you find the
problem with Mrs. Fisher's directions . Then [ix the directions so the movers could
arrange the furniture correctly.

Comparison of the two floor plans yields a bug identity clue that there
is a table out of place. Closer inspection may reveal that the table is in the
living room. One might also notice that the table has been placed between
two chairs in both drawings and hypothesize that the confusion resulted
from a misunderstanding of which two chairs. The structure of the direc-
tions makes use of location clues possible. In most cases, the directions
are divided into three paris; here, one part describes how to arrange the
dining room, one part the living room, and one part the kitchen.

Someone using a brute-force strategy (as many children did) would
tediously read each line and check the picture to make sure it was correct



382 KLAHR AND CARVER

This 1§ whet Hirs, Ficher wanled,

_ = i e 89 5
E R
| S "’

B =

e CZZJD
& D -+

= ! —

sllver

This is how the movers arvenged §L.

ehiza
&
QE
©
sven|  counter

HOD e

- 1

Fi6. 6 Example transfer test: Furniture arrangement discrepancy

until the incorrect direction was located. A solver who knows to lock for
a misplaced table might scan the directions until reaching one describing
the placement of a table. This would lead to false alarms on the lines
describing the three other tables in the home (especially the two which are
described prior to the misplaced table}. A solver who knows to look in the
directions for the living room will ignore the dining room directions and
focus only on the living room ones. Depending on the other available
information, the solver might check each of the living room commands or
only the ones referring to tables. A solver who noticed that the table was
between two chairs could scan for a phrase about a table between chairs.

Solvers with all of these strategies could locate the bug and add the
information to define which two chairs should surround the coffee table.
Here, as in the base domain of propram debugging, it is the search pro-
cess, no! the success rate, that distinguishes the different strategies. How-
ever, solvers who search more of the directions might be more likely to
false alarm and therefore be less successful.



COGNITIVE OBIECTIVES IN LOGO 383

TABLE 3
Example Transfer Test: Bupgy Directions

Here are the directions Mrs. Fisker gave 10 the movers.

To arrange the dining room,
Center the china cabinet on the west wall,
Place the silver cabinet in the south-east comer.
Put the table in the center of the room.
Arrange the 6 chairs around the table evenly.

To arrange the living room,
Place the cabinels againsi the west wall.
Piace one chair in {front of each end of the cabinets.
Place the square table in the north-east corner
Put the sofa on the north wall, next to the square table,
Piace another chair on the south wall, across from the sofa.
Put the coffee table between the two chairs
Put the rocker on the east wail, next to the square table.

To arrange the kitchen,
Put the refriperator in the north-west commer
Put the dishwasher to the right of the refrigerator
Put the sink to the dght of the dishwasher,
Put the stove o the right of the sink.
Piace the counter next to the stove and along the cast wall
Put the oven along the east wall, next to the counter,
Place the table in the south-west corner of the room
Arrange the 4 chairs around the table evenly.

Change or add one thing to fix Mrs. Fisher's directions

Data Coliection

The primary goal of assessing skill acquisition and transfer is to under-
stand the detailed mechanisms and internal structures of the cognitive
processes involved. Several methods were used to ensure collection of
data that would facilitate this understanding. Students were encouraged
to think aloud so that the goals, strategies, and knowledge influencing
their solutions could also be recorded (Ericsson & Simon, 1984). Stu-
dents’ behavior on all tests was videptaped. For debugging tests, the
videotape contained a visual record of all screen activity, For the transfer
tests, the camera was focused on the subject’s test paper(s). In both
cases, the videotape also contained a record of elapsed time and an au-
ditory record of all verbalizations by the subject and the experimenter. In
order to give students an opportunity to attempt as much of each test as
possible during the allotted time and thereby maximize the amount of data
collected, the experimenter intervened to provide help when impasses
were reached, The amount and type of interventions were also recorded
and included in the analysis.



384 KLAHR AND CARVER

STUDY 1

The primary goal of Study 1 was to assess the extent to which students
could learn debugping skills from explicit instruction in 2 LOGO program-
ming course and transfer them to debugging of noncomputer directions.

Design and Procedures

The LOGO curricutum for Study 1 was implemented at a Montessori
school during the 19851986 school year. The second author, who was an
experienced LOGO teacher, served as the instructor. All of the third
through sixth grade children in the school participated.® Of the original
class of 24 students, 22 {8 females and 14 males) ranging in age from ;2
to 11;8 successfully completed the 50-h course. (Two left the class ) All
instruction took place in a dedicated classroom equipped with two Apple
lic computers running Apple LOGO II. Studeats came to computer
classes in sets of four and worked in pairs. Each pair of students had two
1-h LOGO classes per week for 25 weeks.

All lessons were taught in a guided discovery manner and included time
for self-initiated projects. The intervention of the teacher in the students’
work was kept to a minimum, but new commands and ideas were intro-
duced in a stroctured way and beginning activities for using them were
initiated by the teacher. An entire lesson on the benefits of using subpro-
cedures (decomposition, reusability, and compartmentalization) was in-
cluded. Since the memory load of early programming is high, reminders of
all commands and concepts were posied on a large bulletin board, within
easy view,

Assessing Learning

Study 1 involves a between-subjects comparison. All pairs received the
same LOGO instruction including explicit instraction in debugging. How-
ever, half of the pairs began with graphics and then moved into list-
processing, while the other half took the two mini-courses in the reverse
order (depicted in the upper portion of Fig. 7). There were no significant
differences between the students taking graphics first and those taking list
processing first in terms of age, sex, standardized achievement scores, or
access io computers at home.

Debugging performance was measured at three times during each mini-
course (1, 2, and 3 for graphics and 4, 5, and 6 for list-processing in Fig.
7, so students took a total of 6 debugging tests. The first debugging test
was taken afler special attention to subprocedures but before debugging
instruction (indicated by the vertical bar in Fig. 7). These first tests (num-
ber 1 for Group A and number 4 for Group B) therefore measure the level

4 The Montessori philosophy emphasizes multilevel classrooms; at this particular school,
the third through sizth grades were combined into a class with one teacher.



COGNITIVE OBRJECTIVES IN LOGO 385
of skill prior to explicit debugging instruction. Tests were not counterbal-
anced with test time; they corresponded, instead, to the concepts being
learned at that period in the course. At any point during the second
mini-course, better performance on graphics tests by students taking
graphics second than by students taking graphics first can be attributed to
learning in their list-processing mini-course. Likewise, better peformance
on list-processing tests by students taking it second than by students
taking it first can be attributed to learning in their graphics mini-course.
Each debugging test contained six bugs. For the graphics test, five of
the bugs were semantic bugs while only one was a syntactic bug. Syn-
tactic errors include misspellings, inappropriate punctuation or spacing,
and other errors which interrupt the running of the program. Semantic
errors do not stop the program from running but do cause faulty output.
Since syntax tends to be more of a problem for list-processing, those tests
contained three syntactic and three semantic bugs. We expected that the
children would have difficulty giving think-aloud protocols in the cogni-
tively demanding debugging situation. For this reason, children worked in
pairs and were encouraged to talk to their partners while debugging.

Assessing Transfer

Study | includes a within-subjects pretest/post-test comparison of per-
formance on the transfer tasks decribed earlier (depicted at the bottom of
Fig. 7). A midtest was also included to monitor transfer after the first

Learming Soco
nd Semonter
Assessment Firsl Samesler
Gmphics ilst oroeessing
Group A Debugying Debugging
Progtams Pmgrams
AN AN
[1.050 2 and 3]
Group 8 Debegging Dobugping
Programs Proproms
oy o
& s § and &
Iransler
Dubupping Duobugping Dabugging
Weirtan Wiition Writtan
Instrugtlons, :n..1mcuon' inginxetiony,
V(o b org) 1 (n bhootg) 1i{a.b,orc)
?i{o.b.orc) 2{n boote) 2(e.b,orc)
aht any and
3{n,b, are} 3{o.b.orc) 2{a b,oro)

FiG 7. The design of Study 1. For the learning assessment, the boxes represent LOGO
experience, with debugging tests given a total of six times for each group. The vertical bar
indicales when the explicit debupging lesson was given. For the transfer assessment, the
ovals indicate that transfer tests were given belore the first mini-course, between mini-
courses, and after the second mini-course . At each transfer test time, each studesnt took one
version (&, b, or ¢} of each of three test types (1, 2. and 3)



386 KLAHR AND CARVER

mini-course only. At each of the three test times, each student took three
types of transfer tests (1, 2, and 3 in Fig. 7), ali of which involved debug-
ging a written set of instructions about how to achieve a well-specified
goal. One-third of the students took each version at each test time (a, b,
or ¢ in Fig. 7). We predicted that students’ ability to debug these non-
computer tasks would improve as a result of learning debugging in
LOGO.

l.earning Resulls

Since the two groups of subjects took the two mini-courses in different
order, we could compare the debugging strategics and performance on the
same tests of students who had no prior debugging instruction or experi-
ence with students who had debugging instruction and experience in an-
other LOGO domain. For example, all of the students had the same
amount of LOGO graphics experience when they took test 1 (see Fig. 7),
but Group B had previous debugging instruction and experience in LOGO
list-processing. If the students in Group B learned the general goal struc-
ture of debupging in list-processing, they should be able to apply it in
graphics because our model shows that the goal structure is identical for
debugging LOGO graphics and list-processing programs. Similarly, if the
same students have learned effective bug identity and location heuristics
in list-processing, at least some of them shonld be applicable in graphics
since our model has several discrepancy-bug mappings (primarily those
dealing with syntactic errors) and program structure cues that apply to
both domains. In addition, the subskills required by the debugging pro-
cess, such as editing and running programs, are similar in graphics and
list-processing. There was no comparison group (a group that got no
explicit instruction in debugging); however, our results can be compared
to the resuits from the pilot studies. We present evidence that when given
debugging instruction based on the performance model, students were
able to acquire effective debupging skills. Without such instruction, stu-
dents in the pilot studies debugged poorly.

The goal of the learning assessment was to determine which of the
debugging skills students were able 1o acquire from the direct instruction
provided in both LOGO minicourses. Debugging episodes were tran-
scribed directly in terms of the model’s goal structure, Each statement
and action was categorized by goal type. Transcripts were divided into
episodes based on the test goal. A new cycle began each time the subjects
ran a progiam or ran a series of programs without doing anything else in
between. The time at the start of each cycle was entered on the transcript
and the order of comments and actions was preserved by numbering each
entry. In addition, all experimenter interaction with the pair of students
was recorded and numbered in sequence with the other events.

Figure 8 shows one cycle of a typical transcript. (One such transcript



COGNITIVE OBIECTIVES IN LOGO 387

was generated for each cycle of each debugging episode for each problem
for each student pair.) The example begins with a test of the program
SEASHORE. A nepative evaluation is indicated by the comment **Oh
no!" Fhe discrepancy was described as “‘the boat side is too long,’” and
the bug was proposed as “‘it went FI) too much.”” The students know that
the program representation includes subprocedures, and one student
asks, **Which subprogram should we try?"’ The other specifies the buggy
subprogram as ‘‘boat.” They edit the subprogram BOAT and scan for a
FD command with a large argument. FD 90 is isolated and understood to
be the incorrect move. It should be 40, says one student {probably
since the FD command corresponding to the other side of the boat is FD
40). The students then replace 50 with 40 and exit the editor to retest the
prograim.

Several related aspects of debugging skill were extracted from the
debupging transcripts in order to precisely characterize the students’ ac-
quisition of different parts of the model's skills: speed, efficiency, clue
gathering, and search strategies. For the purpose of these analyses, the
within mini-course test scores have been averaged across students to get
a score for each mini-course as a whole. First, the debugging speed was
measured by dividing each student pair’s total debugging time by the
number of bugs fixed {out of a possible six). In cases when the students
correcied all six bugs, this included all debugging time up fo but not
including the final run (when the program worked correctly). When the
students did not correct all six bugs, the time was measured up to bui not
including the program run that confirmed their last correct fix. This ad-
justment excludes time at the end of the session spent on bugs that were
never correcied, thus the speed measure included only time spent or bugs
that were fixed. The model makes no predictions about absolute debug-
ging time, but the time would be expected to decrease as debupging skill

LVING
ety

Ch, not
. [evalate}

I printasf JOB  Which subpribgram EDIT H should

instoad of ¥V rapair  shoulkd wa 1y oy ko a colon
idescribe} {represent} IT} {oplata)

The vanable doesn’l Job “JoR aquate -

havo o coion. {speciy) {intarpres calgh
{propose} fenange
Thot's
e LVING

wiong!
{ehagh} [

Fic. 8. Sampie program debugging transcriptl.



188 KLAHR AND CARVER

improves since strategies would shift from brute force to more focused
search, which requires fewer subgoals. (More detailed descriptions of the
resuits and statistical analyses for Study I are presented in Carver, {986.)

We expected that students would regnire less time to correct each bug
in the second mini-course than in the first if their strategies shifted from
brute-force to more focused search, which requires fewer subgeals. In
fact, mean time per bug decreased from 9 min 6 s in the first mini-course
to only 5 min 25 s in the second (F(1,76) = 42.69, p < .01). As debugging
skill improves, students should also take fewer cycles (each jsolated test
poal initiates a cycle) to fix each bug. Debugging efficiency improved
significantly by about one cycle per bug from the first 10 the second
mini-course (from a mean of 2.9 to a mean of 2.05 cycles per bug, F(1,76)
= 12.64, p < .01). In the second mini-course, several pairs of students
averaged close to a perfect score of one cycle per bug and 2 few actually
took fewer than one cycle per bug because they fixed several bugs in one
procedure without exiting to retest the program in between.

The goal structure of efficient debugging, as presented to the students
in our curriculum, stresses the value of seeking cues to narrow the search.
As students’ understanding of that goal stnicture and knowledge of dis-
crepancy-bug mappings and of location cues increases, they should begin
1o make more comments about the bug’s likely identity and/or location
before suggesting a command as the bug. Analysis of the students’ com-
ments during program debugging provides some support for this predic-
tion. Accuracy of students’ discrepancy descriptions was nearly 100% in
both mini-courses, whereas the accuracy of the bug proposals and bug
location comments remained constant at about 75%. The important
change was that students were somewhat more likely to make these state-
ments before beginning to search for the bug in the second mini-course.
The proportion of discrepancy comments made prior to search increased
from less than 65% on tests in the first mini-course to over 80% on tests
in the second. Similarly, the proportion of early bug proposals increased
from only 25 to over 50% and the proportion of early bug location com-
menis increased from 75 to 85%. However, these trends fal} just short of
significance, primarily due to the small N students made very few com-
ments overall, describing the discrepancy aloud for about half of the
cycles, but proposing bugs for only between % and % of the cycles,
Location descriptions were more frequent than bug proposals but were
still offered for less than half of the cycles.

Increasingly focused search should also cause a decrease in unneces-
sary search, i.e., the number of correct subprograms the students erro-
neously edit and the number of correct commands they erroneously iden-
tify as the bug. The subprogram structure of the buggy programs was easy
for the students to recognize because a list of subprogram names was



COGNITIVE ORJECTIVES IN LOGO 380

displayed on the computer screen at the beginning of the test. Students
rarely misjudged which subprogram did which part of the program be-
cause the subprogram names were related to their function. The mean
number of times subjects looked into a program that did not contain the
bug ranged from 2 1o 3 per test (i e., per six bugs) in both mini-courses,
Most of these errors resulled from forgetting the names of the programs
or forgetting what subprograms existed. For list-processing, there was a
significant decrease from the first mini-course to the second in both the
amount of brute-force search (reading and checking each command in a
program) and the number of false alarms (correct commands which were
misidentified as the bug). Brute-force search decreased from 4.33 per test
to 0.33, F{1,4) = 8.47, p < .01, and total number of false alarms decreased
from 29 i0 9, F(1,4) = 10.91, p < .01. For graphics, there were corre-
sponding reductions, but they were not significant (from 9.3 1o 4.6 for
brute-force search and from 68 to 50 false alarms).

In summary, following the one lesson that focused on debugging, stu-
dents’ debugping speed and efficiency improved. They began to use the
new sirategies we had taught, especially by asking themselves which
subprocedure was likely to contain a particular bug They could, how-
ever, have made more use of the list of discrepancy-bug mappings. They
memorized some of the more common mappings early, but many stadents
used their problem-~canse mapping chart only as a last resort. Nonethe-
less, they used brute-force strategies less often and made fewer false
alarms. In fact, most of them did better than the LOGO teachers tested by
Jenkins {1986) on the same programs.

Transfer Results

The goal of the transfer analysis was to show that the focused search
strategies learned in the LOGO environment would transfer to similar
debugging situations not involving programming. For each transfer prob-
lem, subjects’ discrepancy-description, bug-proposal, and bug-location
comments were transcribed, as well as the type of scanning strategy they
used to locate the discrepancy initially. Each line the subject read and
each time the subject flipped back io look at the plan and outcome were
recorded so that the search process could be guantified and the search
strategy characterized.

Four qualitatively different search strategies are possible. The worst
strategy is to read or simulate haphazardly (a few lines here, a line or two
there) or to simulate nothing. (Simulation refers 1o actually interpreting
the instruction to determine what effect it would have; usually this pro-
cess involves referring to the diagrams or tables ) This strategy is unlikely
1o find the bug because the subject may or may not even read the bugpy
line let alone bother to check it against the desired outcome. A slightly



350 KLAHR AND CARVER

better sirategy, brute force, is to read every line and simulate every
instruction. This strategy is likely to find the bug but processes many
unnecessary lines. Better yet is using a self-terminating brute-force strat-
egy: lo read and simulate everything until the bug is located and then
disregard the rest. The best strategy is to focus selectively only on the
appropriate subsection of the program, maybe even only on the parl near
the bug.

Subjects’ reading and simulating strategies for the first pass through the
writlen instructions were categorized for each of the three items on the
pre-, mid-, and post-tests. Figure 9 shows percentage distributions across
all transfer tests of the reading/simulating sirategy combinations for each
test time. There were no differences between Groups A and B so the data
have been collapsed across groups. The total number of combinations per
test time should have been 66 (22 subjects times three tests at each time);
the actual totals are slightly lower due to several videotape failures.

There were striking improvements in students’ performance on the
transfer tests. On the pretests stndents’ behavior was very much like the
brute-force strategy of the debugging mode). The top left cell shows that
the predominant strategy (45%) was to read all the commands and simu-
late none, but use of this weakest of all strategies dropped to 20% by the
midtest and 12% by the post-test. For reading, use of brute force dropped
from 58% on the pretest to 25% by the midtest. Analysis of the column
marginals in Fig, 9 reveals that most of the reading strategy shift took
place by the midtest: pre-mid-post x* (4} = 35.55, p < .01; but pre-mid y?
(2) = 29.21, p < .01, while mid-post x* (2) = 2.49, n.s. Two-thirds of the
studenis simulated none of the lines on their first reading of the directions
on the pretest. Some students had shified to a more focused simulation
strategy by the midtest, but nearly half of the students were still not

A PrpTost (Hef1} B M Tosy (NyGE) G Post-Tesl (Ha51)

Renging Stotegy Agading Striteqgy Aeading Strtedy .

B g ¥ B 8 F 8 5 F
Jnobas| 7o fes JHtalin e lag = w2l oo |or
2 g g
g2 B 2
gle s B zZledfob-}-Jo ]8]S §
= @ g
& £ |
B{ s k! 17 =0 ;_*,: 5 F 21 - fea § 3 i% - {2z
o E
E B
IFp2]o]s s mi g 3f 3 e [ F|lo s}z bag

s 34 & 25 42 3 20 49 23

F1G. 9. Chanpe in scarch strategies on transfer task in Study 1 Numbers indicate the
percentage of trials on which each strategy combination was used. N, No search; B, brute-
force search {every instruction); 8, self-terminating search (every instruction up to the bug);
and F, focused search {only instructions near or similar to the bug).



COGNITIVE ORIECTIVES IN LOGO 191

simulating any commands. By the post-test, nearly half of the studenis
were using the most advanced simulation strategy. For simulating, strat-
egy shifis occur at the midtest and continue through the post-test: pre-
mid-post x* (6) = 51.01, p < 01; pre-mid x* (3) 26.62, p < .01; mid-post
x* (3) = 12.89, p < .01.

In addition to improved strategies, the students made more correct
fixes on later tests. The percentage of subjects who made the correct
change increased from an average of 33% on the preiests to 56% on the
midtests to 64% on the post-tests, F{11,16) = 5.53, p < .05. The students’
mean search time decreased significantly from the pretest to the post-test
as a result of the shift to the selective search strategy (from 4 min 50 s on
the pretest to 3 min 41 s on the midtest to 3 min 4 s on the post-test,
F(1,16) = 6.87, p < .025). The improvements on these tasks are primarily
a result of increasing use of location clues.

Also, the number of students who read and simulated lines after the
initial bug was identified increased from the pretest to the post-test from
an average of 2 students {out of 22) on the pretests 10 an average of 8
students on the midtests to an average of 11 students on the post-tests (x*
(4) = 13.77, p < .05). One thing that students have clearly learned from
debugging experience is that a fix may be wrong or may make things
worse. The production system model always instructs the user to recheck
the program onice a fix has been made. Even though retesting is not easy
for debugging noncomputer directions, students demonstrated that they
knew a very important goal: to check the fixes. They were also able to
transfer that part of their strategy despite having to tailor it 1o a new
situation

Discussion

Our thesis is that following explicit debugging instruction, students will
develop effective debugging strategies in the LLOGO context and transfer
them to nonprogramming contexts. Study 1 provided evidence that third
through sixth grade students who were taught debupging skills in the
context of a 25-h LOGO graphics mini-course were better at debugging in
a subsequent list-processing mini-course than classmates who took list-
processing first. Also, those who were taught debugging in the list-
processing mini-course did better on debugging tests in a subsequent
graphics mini-course than those who took the graphics course first. All of
these students demonstrated betier debugging strategies, took less time,
and were more accurate on transfer iests of debugging in nonprogram-
ming contexts after debugging instruction than before.

The improvements students demonstrated between the first mini-
course and second mini-course in both graphics and list-processing is
evidence that learning did take place. However, it is not possible to trace



392 KLAHR AND CARVER

the within-mini-course improvement because the study vsed a between-
subjects design and did not connterbalance tests within each mini-course.
Also, because the students worked on the debugging tests in pairs, it was
not possible to trace an individual student’s acquisition and subsequent
transfer of debugping skills.

There are alternative hypotheses that could account for the improve-
ments on the transfer tests. One is that students would improve on the
post-test as a resuit of their natural development over the time span of the
L.OGO course. The control for the effect of maturation was built into the
treatment group since the age range of the students was 3 years while the
span of the study was only 6 months. A comparison of the older half of the
students with the younger half revealed that the older half of the subjects
were not more accurate and did aot demonstrate better search or check-
ing strategies than the younger subjects. The older subjects were signif-
icantly faster than the younger subjects on the pretest (¢ [64] = 341, p <
.05), but there was no midtest or post-test difference. Another alternative
hypothesis is that improvement on the post-test is due merely to learning
how to do that type of test. Study I had no control group without LOGO
experience between transfer test sets, so the improverment on the transfer
tests could be a practice effect. Study 2 was designed to facilitate better
learning assessment and to test the practice effect hypothesis. In addition,
we had the opportunity to test one group of students 4 months after the
end of their LOGO course to determine the stability of the transfer effect.

STUDY 2
Design

For Study 2, we implemented two list-processing LOGO courses. All
34 of the sixth graders in a private girls' school participated. This study
includes a within-subjects design with individually administered tests. We
also used isomorphic tests that could be counterbalanced with test time so
that individual students’ improvement could be monitored more pre-
cisely. Half of the subjects were randomly assigned to Group I (**LOGO
first'') and half to Group IF (**Study Hall first"). The subjects in Group I
attended a 1.OGO list-processing class for two 40-min periods per week
for the first semester, while the subjects in Group II were in study hall.
During the second semester, the treatments were reversed. (See Fig, 10.)

As with Study 1, all lessons were taught in a guided discovery manner
and included time for self-initiated projects. Reminders of all commands
and concepts were included on handouts instead of being posted on bul-
letin boards.



COGNITIVE OBIECTIVES IN LOGO 393

mml-ﬂi!ﬂiﬂﬂ First Semestor Secand Somester
Compuing
Group 1 DebupgingY Debugging Study, Jat
Programs A Programs
£ o
AorB
Compuler
DebuggingY Debupplng
Geoup It S, Hel subuggle
N AN
Aorg AorH
Transler
5
Dobugping Debugging Dobupging
Wiinan Wiltlen Writton
Instrutlions, {ngtiuetions instructions
1{a b.ore) Tio b} i{a.borey
Z({a.b,orc) 240 b oy} 2 (a, b, orcy
and and and
dia,b,orc) 3 (o, b, oreh 3 (a, b, orcy

Fic. ). The design of Study 2 Each group took a one semester LOGO course. Group |
took the LOGO course during the first semester, white Group 1I served as a control group
and took Study Hali. During the second semester, the treatments were reversed. During
each course, each student took two debupging tests. The transfer tests were given as in
Study 1.

Assessing Learning

During each list-processing course, the subjects took two programming
and two debugging tests (one set shortly afier the debupging instruction
and one near the end of the course) to monitor their developing debugging
skills. Two isomorphic program descriptions were used so that they could
be counterbalanced with test time. In addition, two sets of eight bugs (five
semantic and three syntactic) were created and also counterbalanced with
the two test times and the two isomorphic programs. The sets of bugs
were isomorphic in the sense that they caused similar discrepancies at the
same point in the program output. {Table 4 shows the discrepancies and
bugs for sets A and B )

At each test time, each student was given one class period o write a
program according 1o one of the program descriptions. During a subse-
guent class period, the student was asked to fix a program wriiten (ac-
cording to the same description) and bugged (with one of the sets of bugs)
by the experimenters. At the second test time, cach student used the
other program description and was asked to fix a program with the other
set of bugs.

Assessing Transfer

Debugging skills in a noncomputer context were assessed at the begin-
ning of the year, in the middle of the year (after half of the subjects had



394 KLAHR AND CARVER

TABLE 4
Isomorphic Bug Sets

Set A Set B

Semantic bugs

D: Doesn't wait for input {(uses old value}  D: Doesn’t wait for input (uses READLIST)

B: Forpot MAKE “variable READLIST B: Quoted READLIST

D: Correct response doesn’t match D: Correct response doesn't match

B: Switch READLIST/READWORD B: Switch EQUALP/MEMBERP

D FRIEND gets printed D: FRIEND gets printed

B: Move bracket after variable B: Switch “ to :

D Questions out of order D: Asks wrong question

B: Reverse the calls B: Reverse conditionﬂ{%f][g}: {%[”

D: Wrong name value in salutation D: Correct response doesnE{ matc}ﬁl

B: Vardable name used twice-~change one  B: Used wrong variable name-—change it
Symtactic bugs

D: I don’t know how to WHAT D: PRINT didn't output to IF

B: Need brackets around list B: Need brackets around PRINT in IF

D: . has no value b ... _has no vajue

B: Change : to *" in MAKE B: Misspelled variable name

D: Too much inside {)'s B: 1 doa't know what to do with....___

B: Forgot PRINT B: Forgot { ) around PRINT

Note. Each set contains five semantic and three syntactic bugs For each, we list the
ebserved discrepancy (D) between the actual and the desired output and the bug (B).

been given explicit debugging instruction in the LOGO context), and at
the end of the vear (after the rest of the subjects had taken the LOGO
course). At each test time, students took the transfer test battery used in
Study 1. Once again, we predicted that students’ ability to debug these
noncomputer tasks would improve as a result of—and only to the extent
of—Ilearning debugging in LOGO. In the following sections, we report the
results of the learning assessments for Group ! only and the resuits of the
transfer assessments for both groups.

Learning Results

As in Study 1, students’ performance onr quantitative measures of de-
bugging skill improved during the course. The students’ mean debugging
speed decreased from 9 min 36 s per bug on the first debugging test to 4
min 43 s on the second, F(1,33) = 13.00, p < .001. Students also took
fewer cycles to fix each bug on their second test. The mean number of
cycles students took to fix each bug decreased from 3.02 on the first test
to 1.60 on the second, F{1,33) = B.81, p < .01.

The protoce} data did not reveal any improvement in stadenis’ use of
bug identity clues. On both debugging tests, students averaged slightly
more than one discrepancy description per debugging cycle and were



COGNITIVE OBJIECTIVES IN LOGOD 395

accurate 90% of the time. This high accuracy rate, similar {o that found in
Study 1, is not surprising since describing the discrepancy between the
goal output and the actual output requires no knowledge of programming
or debugging. In contrast, students did not propose a bug on every de-
bugging cycle. There was a slight but nonsignificant decrease in the per-
centage of cycles on which they proposed bugs (from 63% on the first test
to 50% on the second). This suggests that students were still having dif-
ficulty finding clues to the likely bug before looking at the program code.
One reason for this difficulty was that students made ineffective use of
their lists of discrepancy-bug mappings. They memorized some of the
more common mappings early in the course, but rarely recorded new
mappings after the debugging lesson and consulted their listing only after
prompting.

In contrast, students’ use of location clues did improve. The proportion
of cycles on which students commented about the structure of the pro-
gram increased from only 19% on the first test to 34% on the second test,
F(1,32) = 7.79, p < .01. Accuracy of these comments increased slightly
from 74 to 95%. In conjunction with the increase in comments about
program: structure, the frequency with which they specified the bug loca-
tion increased skightly from 67 to 82% and their accuracy rate remained
constant at about 60%. In peneral, students’ commenis reveal a slight
increase in the clues they gathered about the bug’s likely location, but
their actual search behavior demonstrates increasingly narrow search
more dramatically.

The number of times the students looked into a subprocedure that did
not contain the bug {or information relevant to the bug) should decrease
as the students learn to use location clues. The number of subprocedures
students entered {per bug fixed) decreased from 4.42 on the first test to
2.26 on the second test, F(1,32) = 10.68, p < .01 Part of this decrease can
be attributed to a decrease in the number of correct subprocedures stu-
dents erroneously edited (from 1.13 per bug fixed on the first test to 46
per bug fixed on the second, F(1,32) = 5.09, p < .05). Increased attention
to the structure of the program may also contribute to the decrease since
students may less often need to look into correct subprocedures to find
information about flow of control. Students should also make fewer false
alarms as they learn to use clues to the bug’s identity. The mean number
of correct commands which were misidentified as the bug (false alarms)
and subsequently changed from 7.29 on the first test to 2.41 on the sec-
ond, F(1,32) = 16.}4, p < .001.

As in Study 1, after the one lesson focusing on debugging, students in
Group 1 began to develop effective debugging strategies. In particular,
they restricted their search to a smaller portion of the program and to a
more specific type of bug. They were slightly more likely to mention



196 KLAHR AND CARVER

accurate clues about the bug’s likely identity and location on the second
test, and they were less likely to change inappropriate types of bugs and
search inappropriate locations. On the first debugging test, only a few
students fixed all eight bugs within one class period and all students
needed extensive help from the experimenter both to identify and locate
bugs. On the second test, most students successfully corrected all of the
bugs with less help with gathering clues. We conclude that focused search
had become an effective debugging strategy for them in the LOGO con-
text.

Transfer Results

Students in both groups spent about 30 s looking at the discrepancy
information before turning to the directions at all three test times. Their
comments were restricted to orientation to the type of discrepancy infor-
mation (*'This is what they wanted and this is what they got.”) and
descriptions of the discrepancy (‘‘This table should be on the west
side.”"). As with the LOGO debugging, most of the discrepancy descrip-
tions were correct. Students rarely made cornments, however, about the
likely identity of the buggy directions, presumably because they had in-
adequate knowledge about the discrepancy-bug mappings in the transfer
domains. Students did meke comments about the likely location of the
bug on the distribution tests where the discrepancy information was pre-
sented in a table with section headings. Here, the location clue was the
most salient, and the accuracy of students’ comments was high for both
groups. The difference between the computer and control groups emerges
only when the actual search process is considered.

Each subject’s reading and simulating strategies were categorized for
each of the three items taken at each test time by the second author and
a research assistant (inter-rater reliability was 86%). Figures 1la-]1f
show the strategy usage for the two groups at the three test times. For
each test, each subject’s reading and simulating strategies were catego-
rized, so each figure inciudes three sirategy combinations for each sub-
ject. For example, the upper left cell in Fig. 11a shows that the brute-force
reading/no simulating strategy combination accounted for 47% of the ep-
isodes among the 17 Group 1 subjects taking three tests each (N = 51).
This cell represents the worst strategy combination. The bottom right cell
(focused reading/focused simulating), which represents that best strategy
combination, accounted for 8% of the pretest episodes by Group 1. (Re-
call that the corresponding figures for Study | pretests are 45 and 5%.)

Analysis of the column and row marginals in Figs. 11a and 11b reveals
that students in Group ! shifted toward more focused reading and simu-
lating strategies (x* (2) = 21.87, p < .01 for reading and x* (3) = 27.16,
p < .01 for simulating). Comparable analysis for the Group 1I data shown



COGNITIVE OBJIECTIVES IN LOGO 397

Apgp Fist 1Gipup b
A_Pio-Topt {(8=51) Bt {pst_ (Ma81)  ParyTon) (bNeBt)
Heahng Sialoay Raadinyg Sunteny Randing Sirmipay
B S5 F B ] F B 5 F
N Nofar] e} oa s N N jre] 6 | 4 | 5 Nopizp a2 {gy
s g &
E“% B 6] - PP ;,3, p |t - 20 % B | 15 \s
gls o) s Sl sfops]| b F sl e
=) 3 I3
£ E E
Bl rFla]lalfs {4 Blor ] afa |31 sy B F| 53 a4 iss
67 21 12 36 29 35 320 47
I Ej I [
O Prp-Tom (Hebt) E td-Tost (Hefl) £ Post-Tost (Ne51)
Rpatng Strtngy Rending Sintegy, Raading Stmteny
2 5 F 23 5 F B 5 F
. Nla]z2io fa . Npafpa ] s fag = Nfsiofo],
& =) o
Ela Jas] -] Bl g les{- |- Hle ) - |-
& 35 & 25 & 23
El s |ejs w E|Sfefa]-dn Fs|opal-imw
] ] ]
E E 13
Bl F ] 2o |y Bl F e |8 |wfeg B F | 2] s a5
68 1 14 45 37 1 2 24 a5

Fic. 11, Change in search strategies on transfer task in Study 2. Numbers indicate the
percentage of trials on which each strategy combination was used by the experimental and
control groups. N, No search; B, brute-force search {every instruction); §, self-terminating
search {every instruction up to the bug); and F, focused search {only instructions near or
similar to the bug).

in Figs. 11d and ile does not show any significant strategy shift. How-
ever, analysis of the column and row marginals for Figs. 11e and 11f does
show a significant shift for Group II after their LOGO course (x* (2} =
16.92, p < 01 for reading and ¥ {3) = 19.30, p < .01 for simulating).
Similar analysis of Figs. 11b and 11c shows no decrement in performance
for Group I despite a semester away from LOGO (¢ (2) = 3.54 n.s. for
reading, and x% (3} = 3 95, n.s. for simulating).

In addition to strategy choice, the changes subjects made were scored
as either correct or incorrect. In order {o be scored as correct, subjects
had to debug the directions rather than merely add to them. The propor-
tion of Group I students who accurately debugged the directions in-
creased from 33% on the pretest to 55% on the midtest and post-est,
F(1,16) = 4.12, p < .1. In contrast, the accuracy rate of Group II re-
mained constant (4] and 39%) from the pretest to the midtest, but im-
proved to 65% after their LOGO course, F{1,16) = 7.62, p < .025.

Tracing Individual Learning and Transfer Patterns
Although it is well established that amount of positive transfer is cor-



398 KLAHR AND CARVER

related with amount of initial learning (Ellis, 1965), as Gick and Holyoak
(1987} point out, most recent studies of transfer of problem-solving skills
do not analyze this relation. The individval assessments in Study 2 en-
abled us to go beyond the aggregate resulis to test whether the subjects
whose debugging skills improve most in the debugging course are also the
ones whose sirategies improve most on the transfer test. In order to
facilitate such correlational analysis, we converted our strategy classifi-
cations into a numerical score by giving 0 points for No Strategy, 1 point
for Brute Force, 2 points for Self-terminating Search, and 3 points for
Focused Search. Since each subject gets two strategy scores (reading and
simulating) for each of three tests at each test time, possible scores range
from 0 to 18. We are not arguing that these strategies are, in fact, equi-
distant on a strategy continunm but rather that this simple scoring will
reflect the strategy differences. In fact, analyses of variance on these
quantitative strategy data show the same patiern as the x° analyses of the
categorical data showed. The Group I mean score increased from 7.00 on
the pretest to 11.06 on the midtest, F(1,32) = 9.28, p < .01. The means for
Group II did not increase significantly (7.76 on the pretest and 9.35 on the
midtest).

The correlation between changes in sirategy scores from pretest to
midtest and changes in debugging efficiency from test 1 to test 2 for
students in Group I was r = .52 {p < .05). All students either improved
on both measures or failed {0 improve on both; there were no students
who improved in LOGO debugging but got worse on the transfer task and
no students who got worse in debugging but improved on the transfer task.
Similarly, there was a significant correlation of .58 between students’
change in strategy scores relative to their decrease in debugging time per
bug fixed. For Group II, with the exception of two students, the change
in strategy scores from the pretest to the midtest clustered around zero;
in other words, with no LOGO experience there was no change in LOGO
debugging efficiency and no change in transfer test search strategy.

GENERAL DISCUSSION

The aim of these studies was to test the thesis that (a) children can learn
high-level thinking skills from computer programming if the component
skills are precisely specified and taught directly, and (b) once the skills
have been learned, they can be evoked and applied in other domains that
share relevant features. We specified a model of effective debugging skill
that emphasized the importance of gathering clues to a bug's identity and
its location in order 1o focus search for the bug in the program code.
Based on this model, we designed one explicit debugging lesson. This
lesson was inserted in what were otherwise conventional LOGO courses,
followed by numerous opportunities to apply the procedure suggested in



COGNITIVE OBJECTIVES IN LOGO 159

that lesson. We then used the model to assess students’ learning and
transfer of debugging skills. Our resuits indicated that students in the
LOGO courses did acquire focused search strategies that increased their
debugging efficiency and decreased their debugging time. On the {ransfer
tests, they shifted from unfocused {serial) to focused search strategies. In
Study 2, we found a positive correlation between the amount of improve-
ment in LOGO debugging and the amount of strategy shift on the transfer
tests and thal this effect did not decline over a 4-month period containing
no further programming experience.

Basis for Effective Transfer

These findings are in contrast to the largely negative results from pre-
vious studies of the transferability of high-level problem-solving skills
from computer programming experience (e.g , Garlick, 1984; McGilly et
al., 1984; Mohamed, 1985; Pea, 1983). We discuss the basis for the effec-
tiveness of this transfer in terms of three issues: the role of the detailed
task analysis, the importance of multiple instances in the base domain,
and the distinction between near and far transfer.

Detailed Task Analysis

We believe that the key to our students’ acquisition and transfer of
debugging skills was the careful task analysis of debupging skill compo-
nents and the explicit debugging curriculum derived from that analysis.
Preliminary reports from Clements (1987) and Perkins (1987) also empha-
size the importance of precise instruction in metacognitive strategies.
Although we have attributed the effectiveness of this approach primarily
to the task analysis, we do not mean to confuse sufficiency--which is all
our daia can logically support—with necessity. Many other factors in-
volved in the implementation of any instructional experiment, such as the
skill of the teacher {who was the same throughout these studies) or the
repeated guidance in application of the debugging procedure, may also
play an important role in facilitating transfer. Furthermore, it remains to
be seen how effectively this detailed task analysis can be performed in
other instroctional areas, both within and beyond the domain of program-
ming. Several successful examples of fine-grained analysis of learning and
transfer have been reported in such domains as text editing (Singley &
Anderson, 1985) and learning to operate a complex device (Kieras &
Bovair, 1983; Polson & Kieras, 1985), but these studies did not derive a
set of instructional goals from their production-system analyses. The full
set of issues can only be resolved by further exploration of the use of
formal cognitive objectives in instructional design and assessment.



400 KLAHR AND CARVER

Miudtiple Instances for Effective Learning in the Base Domain

Gick and Holyoak (1987) summarize the literature showing that people
need at least two different examples of an underlying strategy or concept
in order to induce a schema sufficiently general {o facilitate transfer to a
new domain. If we adopt a coarse **grain size” in interpreting our studies,
then we can view each of the L.OGO topics (lists or graphics) as an
exemplar of the debugging strategy. This interpretation would lead to the
prediction that exposure to both graphics and lists would vield substan-
tially higher transfer scores than exposure to only one of them. But in
Study 1, much of the transfer from programming to nonprogramming
domains occurred by the midtest, after only one *‘example,’ and Study 2,
which only taught lists, produced an equivalent amount of transfer. How-
ever, this grain size equates three very large aggregates—graphics debug-
ging instruction, list-processing debugging instruction, and the set of
transfer problems—with Gick and Holyoak's two base-domain problems
and the target transfer problems, respectively, The vast difference in tem-
poral and problem grain sizes seriously weakens the comparison.

A more accurate rendering, one that is consistent with the Gick and
Holyoak position, views each curriculum as providing not only explicit
instruction in the basic schema for focused search (i.e., the goal tree), but
also numerous and varied examples of the schema in operation (ie., all
the instances of actual program debugging). Thus, by the time students
encountered our ridtest transfer problems, they had constructed a suf-
ficiently general debugping schema for analogical transfer 1o occur. In
addition to repeated opportunities for developing the schema, our proce-
dure utilized another one of the important factors that, according to Gick
and Holyoak, facilitate transfer: the “similarity of the learner’s mental
representation of the training and transfer tasks.”* That is, the underlying
goal structure of debugging in both the base and the transfer domains was
the same.

Transfer: Near or Far?

In assessing instructional effectiveness, one cannot escape the vexed
issue of the extent to which transfer is to “*far’* vs ‘‘near”” domains. With
respect to the transfer tasks used in these studies, two questions can be
raised: (1) Are they examples of ‘‘near"” or “‘far” transfer from the base
domain of debupging LOGO programs? The answer to this question is
implicit in any evaluation of the extent to which there really are general
cognitive benefits of learning to program. (2) Is there a principled basis for
deciding that, within the different types of transfer tasks, some are
*“*closer”” to the base domain than others? If so, then we would expect
better transfer to the closer tasks, and if we found it, we would have
additional support for the oniginal cognitive analysis.



COGNITIVE OBJECTIVES IN LOGO 401

Answers to both questions hinge on our ability to construct measures of
task similarity among the base domain and the three versions of the trans-
fer tasks. But even within the limited set of transfer tasks used in the
present study, this is very difficult to do. The three general types of
transfer items included arrangement tasks, involving physical layouts of
furniture, block structures, or table settings; distribution tasks, in which
different amounts of money, food, or other items were allocated to dif-
ferent classes of people; and route-following tasks, in which someone
followed a set of map-following directions based on landmarks and rela-
tive turns. With respect to the first guestion, it conld be argued that these
transfer tasks are all rather close to the base domain. The tasks were
constructed so that the original goal structure for debugging programs
would apply to all of the transfer tasks, and the instructions to be followed
for each task were formatted so as to emphasize their decomposability
into subcomponents (see Table 3). However, at the level of task-specific
knowledge, the transfer tasks are much less like the original programming
tasks than are the well-known problem isomorphs in which transfer has
been shown to be so difficult {cf. Gray & Orasanu, 1987). Differences
abound in the nature of the discrepancies, in the discrepancy-bug map-
pings, and in the pragmatic knowledge about the specific transfer domain.
In this regard, all of our transfer tasks are much less similar to LOGO than
those used in many other LOGO transfer studies.

A similar problem arises with respect to the question of relative dis-
tance from L.OGO to the different transfer tasks. One might argue that the
furniture-arrangement and route-following tasks are closer to LOGO
graphics problems than the distribution tasks because they both present
discrepancy information in a two-dimensional spatial array. Indeed, the
route-following task might seem to be closest of all, because it requires
that the subject follow a set of turn and move commands very much like
those given to the Turtle in a LOGO program. However, the roule-
following task could also be considered the most distant from LOGO,
inasmuch as it uses very complex maps (taken from commercially pub-
lished road maps) and requires the ability to read map conventions, route
numbers, and convoluted topologies. Or, one could argue that distribu-
tion tasks, because they usually involve a bug in an instruction about
relative quantities {e.g., ‘‘deliver half as many elm and cherry trees as
tulip trees”), tap underlying skills at translating *‘story problems’” that
are only remotely related to what is taught in a 1.OGO course.

Although some recent information-processing analyses have success-
fuily identified the production {in a production system of the tasks under
analysis) as the countable element in the identical-elements approach
{e.g., Singley & Anderson, 1988), we believe that in tasks like the ones
studied in our work, there is no principled way to allocate relative influ-



402 KLAHR AND CARVER

ence to productions at different levels, or *‘grain sizes,” in counting the
rumber of identical elements. Thus, while we would expect a near perfect
overiap between the production sets for generating goal trees correspond-
ing to the base and transfer tasks (indeed, that was our intent in con-
structing the transfer tasks), it is not clear how to quantify the amount of
domain-specific overlap between our base and transfer tasks.

Before we can decide whether any particular study represents an in-
stance of “‘near” or ‘‘far” transfer, we need two types of additional
analyses. First, we must perform a complete analysis of the elementary
steps in each domain. Second, we must elaborate approaches like Singley
and Anderson’s {1985) procedure for estimating the relative contribution
of general and specific components to the overall transfer scores. In eval-
vating Thorndike's (1906} critique of the **doctrine of formal discipline,”
Nisbett, Fong, Lehman, and Cheng (1987) conclude that:

Thorndike was partially correct, after all, in that transfer applies only insofar as
there are common identical elements But the identity lies at a much higher level of
abstraction than he supgested .. .~

We concur with this general observation and further suggest that the
quantification of this higher level of abstraction remains a crucial problem
in understanding transfer of training.

REFERENCES

Angell, 3. R (1908), The doctrine of formal discipline in the light of principles of peneral
psychology. Educational Review, 36, 1-14

Bassok, M., & Holyoak, K. (I1987). Schema-based inierdomain transfer between isomor-
phic topics in algebra and physics. Working paper, University of Pitisburgh, LRDC

Carver, S. M. {1986) LOGO debugging skills: Analysis, instruction. and assessment. Un-
published doctoral dissertation, Department of Psychology, Carnegie~-Mellon Univer-
sity.

Carver, §. M., & Kiahr, D (1986} Assessing children’s OGO debugging skilis with a
formal model. Journal of Educational Computing Research, 2(4), 487-525.

Clements, D. H. (1987) Componentiai employment and development in LOGO program-
ming environments. In Proceedings of the Bicnnial Meetinpgs of the Sociery for Re-
search in Child Development. Baltimore, MD: SRCD, April 1987.

Clements, D. H. & Gullo, D, F. (}984) Effects of computer programming on young chil
dren's cognition . Journal of Educational Psychelogy, 76(6), 1051-1058.

Baibey, J., & Linn, M. (1984). Spider world: A robot language for [earning to program. In
Proceedings of the American Educational Research Association Conference. New Or-
leans, L.A: AERA, April 1984,

Ellis, H. C. (1965). The transfer of learning. New York: Macmiilan

Ericsson, K. A, & Simon, H. A (1984). Protocol analysis: Verbal reports as data Cam-
bridge, MA: The MIT Press. '

Garlick, 8. (1984). Computer programming and cognitive outcomes: A classroom evalua-
tion of Logo . Unpublished honors dissertation The Flinders University of South Aus-
trahia

Geva, E ., & Cohen, R. (1987). Transfer of spatial concepts from LOGO to map-reading. In



COGNITIVE OBJECTIVES IN LOGO 403

Proceedings of the Biennial Meetings of the Society for Research in Child Develop-
ment. Baltimore, MD: SRCD, April 1987

Gick, M. L., & Holyoak, K. J. (1983) Schema induction and analogical transfer. Cognitive
Psychology, 15, 1-38.

Gick, M. L., & Holyoak, K. J. (1987). The cognitive basis of knowledge transfer. In 8§ M.
Cormier & J D. Hagman (Eds.), Transfer of learning. Contemiporary research and
applications. New York: Academic Press.

Gorman, H., Jr., & Bournie, L. E ., Jr. (1983). Learning to think by learning Lopo: Rule
learning in third grade computer programmers. Bulletin of the Psychonomic Sociery.
21{3), 165-167.

Gould, J. D. (1975}, Some psychological evidence on how people debug computer pro-
grams. International Journal of Man-Maelhine Studies, 7, 151=-182.

Gray, W. D., & Orasanu, I M. (1987). Transfer of cognitive skilis. In S. M. Cormier &
). B Hagmag (Eds ), Transfer of learning: Contemporary research and applications
New York: Academic Press

Greeno, J. G. (1976). Copnitive objectives of instnuction: Fheory of knowledpge for solving
problems and answering questions. In D. Kishr {Ed ). Cegnition and instruction. Hill-
sdale, NJ: Erlbaum.

Gugerty, L, & Olson, G. M. (1986). Comprehension differences in debugging by skilled and
novice programmers. In E. Soloway & § Ivengar (Eds ), Empirical studies of pro-
grammers. Norwood, NFE Ablex.

Jeffries, R (1982). A comparison of the debugging behavior of expert and novice program-
mers. In Proceedings of the American Educational Research Association. New York,
NY: AERA, March 1982,

Jenkins, E. A, Jr. (1986). An analysis of expert debugging of LOGO programs. Working
paper, Department of Psychology, Carnegie~Mellon University

Katz, I R, & Anderson, J. R. (1986). An exploratory study of novice programmers’ bugs
and debugging behavior. Paper presented at First Workshop on Empirical Studies of
Programmers, June 1986. Washington, D.C.

Kessler, C. M., & Anderson, J. R. {(i986). A mode} of novice debugging in LISP. In E.
Soloway & S. Iyengar (Eds.}, Empirical studies of programmers Norwood, N1: Ablex.

Kieras, D. B, & Bovair, S. (1985). The acquisition of procedures from text: A production-
system analysis of transfer of training (Fechnical Report 16 {TR-85/0NR-16) Univer-
sity of Michigan

Linn, M. C., & Fisher, C. W. (1983}, The gap between promise and reality in computer
education: Planning a response. In Making our schools more effective: A conference for
California educators. San Francisco, CA: ACCCEL, December 1983

Mandinach, E B., Linn, M. C | Pea, R. D, & Kurland, B M. {1986). The cognitive effects
of computer learning environments. Journal of Educational Computing Research, 2(4),
409-427.

Mayer, R. E. (I1988). Teaching and learning computer programming: Multiple research
perspectives, Hillsdale, NJ: Eribaum

McGilly, C. A, Poulin-Dubois, D., & Shultz, T. R (1984). The effect of learning LOGO on
children's problem-solving skills. Working paper, Bepartment of Psychology, McGill
Universily.

McKeithen, K. B, Reitman, . §., Ructer, H. B, & Hirtle, S. C (1981). Knowledge or-
ganization and skill differences in computer proprammers. Coghitive Psychology, 13,
307-325.

Mohamed, M. A (1985). The effects of learning LOGO computer langnage nupon the higher
cognitive processes and the analyticiglobal cognitive styles of elementary school stu-
dents. Unpublished doctoral dissertation, School of Education, University of Pitts-
ergh



404 KLAHR AND CARVER

Nisbett, R. E., Fong, G. T, Lehman, D. R, & Cheng, P W (1987). Teaching reasoning
Science, 238, 525-631.

Olson, G. M., Sheppard, 8, & Soloway, E. (Eds.) (§987) Empirical studies of program-
mers; Second workshop. Norwood, NJI: Ablex

Petmer, §. E., & Kimchi, R. {1986) The information processing approach to cognition. In
T J. Knapp & L. C Robertson (Eds ), Approackes to cognition: Contrasts and con-
troversies . Hillsdale, NI: Erlbaum.

Papert, 8. (1980) Mindsiorms: Children. computers, and powerful ideas. New York: Basic
Books.

Pea, R. D. (1983}. Logo programming and problem solving In Proceedings of the American
Educational Research Association Conference, Montreal, Canada: AERA, April 1983,

Pea, R D, & Sheingoid, K. (1987). Mirrors of minds: Patterns of experience in educational
computing Norwood, NJ: Ablex.

Perkins, D (1987) Instructional strategies for problems of novice programmers. In Pro-
ceedings of the American Educational Research Association Conference Washington,
DC: AERA, April 1987,

Polson, P. G., & Kieras, D. E (1985}. A quantitative model of the learning and performunce
of text-editing knowledge In L. Borman & B. Curtis (Eds ), Proceedings of CHI "85
Human Factors in Computing Systems. New York: Association for Computing Ma-
chinery.

Reed, S K., Emnst, G. W, & Banjeri, R. (1974). The role of analogy in transfer between
similar problem states. Cognitive Psychology. 6, 436-450.

Spuers, R, & Farrell, R. (1982). GRAPES User's Manual. Depariment of Psychology,
Camegic~Melloa University

Simon, H A., & Hayes, J R (1976). The uaderstanding process: Problem isomorphs.
Cognitive Psychology. 8, 165-190.

Singley, M. K., & Anderson, J. R. (1985). The transfer of text-editing skill fniernational
Journal of Man-Machine Studies, 22, 403423

Singley, M. K, & Anderson, J. R (1988) A keystroke analysis of learning and transfer in
(ext editing Human-Compuier Interaction. in press

Scloway, E., & Iyengar, S. (Eds.) (1986). Empirical studies af programmers Norwood, NJ:
Ablex

Spohrer, J. G, & Soloway, E. (1988). Analyzing the high frequency bugs in novice pro-
grams In E Soloway & 8. Iyenger (Eds.), Empirical studies of programmers. Nor-
wood, NJ: Ablex

Spohrer, }. G., Soloway, E, & Pope, E (1985). Where the bugs are. In . Borman & B
Curtis {(Eds ), Proceedings of CHI "85 Human Factors in Computing Systems. New
York: Association for Computing Machinery.

Thorndike, E. (1906} Principles of teaching New York: Seiler

{Accepted January 11, 1988)



