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C H A P T E R 10

Laboratory Methods for Assessing
Experts’ and Novices’ Knowledge

Michelene T. H. Chi

Introduction

Expertise, by definition, refers to the mani-
festation of skills and understanding result-
ing from the accumulation of a large body
of knowledge. This implies that in order to
understand how experts perform and why
they are more capable than non-experts,
we must understand the representation of
their knowledge, that is, how their knowl-
edge is organized or structured, and how
their representations might differ from those
of novices. For example, if a child who is
fascinated with dinosaurs and has learned
a lot about them correctly infers attributes
about some dinosaurs that was new to them
by reasoning analogically to some known
dinosaurs (e.g., the shape of teeth for car-
nivores versus vegetarians), we would not
conclude that the “expert” child has a
more powerful analogical reasoning strat-
egy. Instead, we would conclude that such
a global or domain-general reasoning strat-
egy is available to all children, but that
novice children might reason analogically to
some other familiar domain, such as animals

(rather than dinosaurs), as our data have
shown (Chi, Hutchinson, & Robin, 1989).
Thus, the analogies of domain-novice are
less powerful not necessarily because they
lack adequate analogical reasoning strategies,
although they may, but because they lack the
appropriate domain knowledge from which
analogies can be drawn. Thus, in this frame-
work, a critical locus of proficiency lies in the
representation of their domain knowledge.

This chapter reviews several methods that
have been used to study experts in the
laboratory, with the goal of understanding
how each method reveals the structure of
experts’ knowledge, in contrast to that of
novices. The theoretical assumption is that
the structure or representation of experts’
knowledge is a primary determiner of how
experts learn, reason, remember, and solve
problems.

This chapter has three sections. It starts by
briefly reviewing the historical background
to studies of the experts’ representations.
The second section describes four general
types of methods that have been commonly
used to study expert knowledge. Finally, I
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briefly summarize what these methods can
uncover about differences in the knowledge
representations of experts and novices.

A Brief History on Representation
in the Study of Expertise

The studies of representation in expertise
have historically been intimately related to
the type of problems being used. In early
research on problem solving, the study of
representation was carried out in the context
of insight-type problems, such as Duncker’s
(1945) candle problem. The goal of this
problem is to mount three candles at eye
level on a door. Available to use for this prob-
lem are some tacks and three boxes. Partic-
ipants were presented with the tacks either
contained in the three boxes or outside of
the boxes so that the boxes were empty. The
solution requires that one re-represents the
function of the boxes not as a container but
as a platform that can be mounted on a wall
to hold a candle. All the participants pre-
sented with the empty boxes could solve the
problem, whereas less than half of the par-
ticipants given the full boxes could solve it.

The key to all of these kinds of insight
problems is to re-represent the problem in
a way to either release a constraint that is
commonly assumed, or to think of some new
operator, that is again not the conventional
one. So in the case of the candle problem,
one could say that the conventional func-
tional attribution that one applies to boxes
is use as a container. Solving the problem
requires thinking of a new function or affor-
dance for boxes, in this case, as objects that
can hold things up rather than hold certain
kinds of things inside.

Although insight problems investigated
the role of representation in the under-
standing phase of problem solving (i.e., how
the elements, constraints, and operators of
a problem are encoded and interpreted),
insight problems did not lend themselves
well to the study of expertise. That is, since
expertise is defined as the accumulation of a
large storehouse of domain knowledge, it is

not clear how and/or what domain knowl-
edge influences the solution of insight prob-
lems.

A next generation of problem-solving
research explored both knowledge-lean
(puzzle-like) problems (such as the Tower
of Hanoi) as well as knowledge-rich prob-
lems (such as in chess). Even though chess
is arguably more knowledge-rich than the
Tower of Hanoi problem, it shares similar-
ities with puzzles and other “toy” domains
in that the understanding phase of the rep-
resentation had been assumed to be straight-
forward (But see Ericsson, Chapter 13 , and
Gobet and Charness, Chapter 30). That is,
for a domain such as chess, the understand-
ing phase of the representation needs to
include the chess pieces, the permissible
operators (or moves) for each kind of chess
piece, and the goal state of checking and win-
ning. In short, the understanding phase of
the representation had been assumed to not
clearly discriminate experts from novices.

If understanding is not the phase that
affects the choice of efficient moves, then
what is? One obvious answer is how effec-
tively a solver can search for a solution. The
classical contribution by Newell and Simon
(1972) put forth the idea that what differen-
tiates experts from novices is the way they
search through “problem spaces.” A problem
space includes not only the elements, the
operators, but also all the possible or permis-
sible “states” created by the application of
operators to the elements, which are entailed
by the permissible strategies for guiding the
search through this problem space. In this
perspective, a representation is a model of
the search performance of a solver on a spe-
cific problem (Newell & Simon, 1972). Thus,
a “problem representation” consists of:

1. An understanding phase – the phase in
which information about the initial state,
the goal state, the permissible operators,
and the constraints is represented (so for
chess, that would be the pieces and their
positions on the chess board, the moves
allowed and disallowed for each kind of
chess piece, etc.), and
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2 . A search phase – the phase in which
a step-by-step search path through the
problem space is represented.

Because the understanding phase had been
assumed to be straightforward, differences
between experts and novices are assessed via
comparing differences in the search phase.
A variety of different search heuristics have
been identified, such as depth-first versus
breadth-first searches, backward versus for-
ward searches, exhaustive versus reduced
problem-space searches, and so forth.

This view – that differences in search
strategies or heuristics accounted for dif-
ferences in expertise – was also applied
to knowledge-rich domains for which the
understanding phase may not be so straight-
forward. A perfect example is the work
of Simon and Simon in the domain of
physical mechanics. In this research, Simon
and Simon (1978) compared the problem-
solving skills of an expert and a novice by
representing their solution paths in terms
of a sequence of equations (a set of pro-
ductions or condition-action rules) that they
used to solve a physics problem. Based
on this sequencing, the expert’s representa-
tion was characterized as a forward-working
search (working from initial state toward the
desired end state in a series of steps), whereas
the novice’s representation was character-
ized as a backward-working search (work-
ing from the desired end state back to the
initial state). Thus, the postulated repre-
sentational difference between the expert
and the novice was restricted to the search
phase, even though the understanding phase
may be a more crucial component for this
knowledge-rich domain.

The revelation that search may not be the
entire story came from the work of de Groot
(1966). He found that world-class chess
players did not access the best chess moves
from an extensive search; rather, they often
latched on to the best moves immediately after
the initial perception of the chess positions.
For example, de Groot could not find any dif-
ferences in the number of moves considered,
the search heuristics, or the depth of search

between masters and less-experienced (but
proficient) players. What he did find was
that the masters were able to reconstruct a
chess position almost perfectly after view-
ing it for only 5 seconds. This ability could
not be attributed to any superior general
memory ability, for when the chess positions
were “randomized,” the masters performed
just about as poorly as the less-experienced
players. This finding suggests that the mas-
ters’ superior performance with meaningful
positions must have arisen from their ability
to perceive structure in such positions and
encode them in chunks.

The findings that chess experts can per-
ceive coherent structures in chess positions
and rapidlly come up with an excellent
choice of moves suggest that the under-
standing phase must be more than merely
the straightforward encoding of the ele-
ments and permissible operators to apply
to the elements. Moreover, the applica-
tion of different search heuristics cannot be
the characterization that differentiates the
experts from the novices in the search phase.
Thus, what differentiated the experts and
the novices’ problem representation is deter-
mined by the representation of their domain
knowledge, of chess in this case. This recog-
nition led Chase and Simon (1973a, b) to
the identification and characterization of the
structures or chunks of meaningful chess
patterns in memory. Thus, the work of de
Groot (1966) and Chase and Simon (1973a,
b) represented a first attempt at representing
not just a problem solution, but knowledge of
the domain. Subsequent work on expertise
attempted to focus on how domain knowl-
edge is represented in a way that leads to
better solutions.

For example, we have shown that expert
physicists’ representation of their domain is
more principle based, whereas novices’ rep-
resentations are more situation or formula
based (Chi, Feltovich, & Glaser, 1981). Thus,
the expertise work in the 80's reemphasized
the understanding phase of representation,
but it differed from the earlier work on
insight and other knowledge-lean problems
in that the focus was on the structure and
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organization of domain knowledge, and not
merely the structure of the problem.

The next challenge for researchers is to
combine the understanding phase and the
search phase of a representation in order
to understand how it differentiates experts
from novices. In addition, new challenges
are also presented when expertise is being
investigated in real-world domains. Many
complexities are involved when one stud-
ies expertise in real-world domains, where
problems are complex and dynamic, so that
the “space” is constantly changing with con-
textual dependencies and contingencies. In
this kind of real-world scenarios, the space-
search model of problem solving does not
always apply as an explanatory mechanism.
It is also essentially mute about problem
finding, which is a main phenomenon in real-
world problem-solving (see Klein, Pliske,
Crandall, & Woods, 2005).

Empirical Methods to Uncover
Representational Differences

The nature of expertise can be ascertained in
two general ways. One way is to see how they
perform in tasks that are familiar or intrinsic
to their domain of expertise. For example,
selecting the best chess move, generating the
optimal blueprint, or detecting a cancerous
mass on X-rays are tasks that are intrinsic
to the domains of chess playing, on being
an expert architect, and on being an expe-
rienced radiologist. This has been referred
to as the study of performance at “familiar
tasks” (Hoffman, 1987; Hoffman, Shadbolt,
Burton, & Klein, 1995). Although these
tasks might be abridged or in many ways
adapted for empirical investigation under
conditions of experimental control and
the manipulation of variables, they are
nevertheless more-or-less representative of
what the domain experts do when they are
doing their jobs.

Alternatively, one can use contrived tasks
(Hoffman, 1987; Vicente & Wang, 1998) that
are likely to be either unfamiliar to the prac-
titioner, or that depart more radically from

their familiar intrinsic tasks. Contrived tasks
serve different purposes so that there is a
continuum of contrived tasks, based on the
degree of modifications to the familiar task
in order to “bring the world into the labo-
ratory,” as it were (Hoffman et al., 1995).
However, there is a set of standard tasks that
are commonly undertaken in psychological
laboratories, such as recall. Recall of chess
positions, for example, can be considered a
contrived task since chess experts’ primary
skill is in the selection of the best moves, not
in recalling chess patterns. Although experts
do recall games for a number of reasons (e.g.,
knowledge sharing), asking them to recall
chess patterns can be thought of as a con-
trived task.

It is often the case that asking experts to
perform in their familiar intrinsic tasks will
show only that they are faster, more error
free, and in general better in all ways than
the novices. Their efficiency and speed can
often mask how their skills are performed.
Asking experts to perform contrived tasks,
on the other hand, can have several advan-
tages. First, a contrived task is often one that
can be undertaken just as competently by a
novice as an expert. Thus, it is not merely
the completion, efficiency, or correctness
of performance at a contrived task that is
being evaluated, but rather, what the perfor-
mance reveals about the knowledge struc-
ture of the individual, whether an expert
or a novice. More importantly, a contrived
task can shed light on experts’ shortcomings
(see Chi, Chapter 2), whereas an intrinsic
task will not, by definition of expertise. A
key limitation of contrived tasks, however, is
that if the contrived task departs too much
from the familiar task (e.g., lacks ecological
validity and/or representativeness), then the
model of performance that comes out may
be a model of how the person adapts to the
task, not a model of their expertise.

In this section, I describe four contrived
tasks that have been used most extensively in
laboratory studies of expertise with the goal
of uncovering representational differences.
The four methods are: recalling, perceiving,
categorizing, and verbal reporting. Studies
using these four methods are grouped on
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the basis of the tasks that were presented to
the participants, and not the responses that
they gave. For example, one could present
a perceptual task and ask for verbal reports
as responses. However, such a task would
be classified here as a perceptual task and
not a verbal reporting task. Clearly there are
many combinations of methods and many
optional ways to classify a task used in a spe-
cific study. The choice here reflects only the
organization of the presentation in this chap-
ter. Moreover, many studies use a combina-
tion of several methods.

recall

One of the most robust findings in exper-
tise studies comes from using the method of
free recall. Experts excel in recalling mate-
rials from their domain of expertise, such
as better, faster, and more accurate recall,
in domains ranging from static chess posi-
tions (Chase & Simon, 1973a) to dynamic
computer-simulated thermal-hydraulic pro-
cess plant (Vicente, 1992). The classic study
by de Groot (1966) in the domain of
chess involved presenting chess players with
meaningful chess boards for a brief inter-
val, such as 5 seconds, to see how many
pieces they could recall by reproducing the
arrangements of the pieces on a blank board.
Chess masters were able to recall the posi-
tions almost perfectly (consisting of around
25 pieces). Less experienced players, on the
other hand, typically recall only about 5 to
7 pieces (Chase & Simon, 1973a). However,
when de Groot (1966) asked the players to
find the best move, the masters and the less
experienced players did not differ signifi-
cantly in the number of moves they searched
nor the depth of their search, even though
the masters were always able to find and
select the best move. Likewise, Klein, Wolf,
Militello, and Zsambok (1995) found that
the first move that expert chess players con-
sider is significantly better than chance. Fur-
thermore, chess experts do not differ from
class-C players in the percentage of blunders
and poor moves during regulation games,
but do differ during blitz games. In fact, the
experts showed very little increase in rate
of blunders/poor moves from regulation to

blitz, but the class-C players showed a big
difference (Calderwood, Klein, & Crandall,
1988).

These findings suggest that it is not
the experts’ superior search strategies that
helped them find the best move. Neither
can the master players’ superior recall be
attributed to any differences in the mem-
ory capacities of the master and less experi-
enced players, since masters can only recall a
couple more pieces when the pieces are ran-
domly placed on the chess board (Chase &
Simon, 1973a).

This same pattern of results was also
obtained when Go (or Gomoku) play-
ers were asked to recall briefly presented
Gomoku (or Go) board patterns. Both Go
and Gomoku utilize the same lattice-like
board with two different colored stones, but
the object of the two games is very different:
In Go the goal is to surround the opponent’s
stone and in Gomoku it is to place five stones
in a row (Eisenstadt & Kareev, 1975). The
success of players in recalling board configu-
rations suggests that it is the meaningfulness
of the configurations that enables the strong
players’ better recall.

In order to understand how experts and
novices might organize their knowledge to
result in differential recall, Chase and Simon
(1973a,b) incorporated two additional pro-
cedures in conjunction with their recall
procedure, both aimed at segmenting the
sequence in which players place the chess
pieces during recall. The first procedure
tape-recorded players as they reproduced
chess pieces from memory and used the
pauses in their placement of pieces to seg-
ment the sequence of placements. The sec-
ond procedure was to modify the task from
a recall to a visual memory task. In this
modified visual task, players were simply
asked to copy chess positions. The head
turns they made to view the positions in
order to reproduce the chess positions were
used to segment the sequence of placements,
that is, to reveal how the game arrays were
“chunked.” The results showed that players
recalled positions in rapid bursts followed
by relatively longer pauses (i.e., > 2 sec-
onds), and they reproduced a meaningful
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cluster of pieces after a head turn. Because
the master players recalled and reproduced a
greater number of pieces before a long pause
and a head turn, respectively, these two
results, together, suggest that chess experts
had many more recognizable configurations
of chess patterns in their knowledge base,
and these configurations (based on power
in controlling regions of the board) were
comprised of a greater number of pieces.
The representational differences between
the masters and less proficient players were
that the masters had a greater number of
recognizable patterns (or chunks) in mem-
ory, and each pattern on average contained
a greater number of pieces.

More important, when memory perfor-
mance was reanalyzed in terms of experts
and non-expert chunks, the number of
chunks recalled by experts and non-experts
were now about the same, implying that
their basic memory capacity is not that dif-
ferent after all, validating the finding of the
depressed expert-recall performance for ran-
domized board arrangements. The findings
of equivalent recall for randomized positions
and equivalent recall in terms of number of
patterns, together, confirm that both expert
and non-expert players are subject to the
same short-term memory capacity limita-
tions, but the limitation is not the point. The
point is how people come to create meaning-
ful chunks.

The recalled chess patterns (as deter-
mined by segregated pauses and head turns),
when analyzed in detail, showed that they
tended to consist of commonly occurring
patterns that are seen in regular routine
playing of chess, such as clusters in attack
and defense positions. It seems obvious that
such “local” patterns may be used to form
representations at a higher level of familiar
“global” patterns. Direct evidence of such a
hierarchical representation can be seen also
in the domain of architecture. Using the
same recall procedure, looking at pauses,
Akin (1980) uncovered a hierarchical repre-
sentation of blueprints, with such things as
doors and walls at the lowest level and rooms
at a higher level, and clusters of room at the
highest level.

The chunking of patterns into a hierarchi-
cal representation applies not only to games
and architecture, but to other domains, such
as circuit fault diagnosis. Egan and Schwartz
(1979) found that expert circuit technicians
chunk circuit elements together according
to the function, such as chunking resistors
and capacitors because together they per-
form the function of an amplifier. Here too,
chunking leads to superior recall for experts
as compared to non-experts. Moreover, the
skilled electronic technicians’ pattern recall
was faster and more accurate, again suggest-
ing that the local patterns formed higher-
order patterns.

The recall superiority of experts can be
captured not only in visual tasks, but also in
verbal tasks. Looking at a practical domain,
Morrow, Mernard, Stine-Morrow, Teller, and
Bryant (2001) asked expert pilots and some
non-pilots to listen to Air Traffic Control
messages that described a route through an
air space. Participants were then asked to
read back each message and answer a probe
question about the route. Expert pilots were
more accurate in recalling messages and in
answering the question than non-experts.

In sum, several different types of recall-
related contrived tasks provide some insight
into the experts’ and non-experts’ represen-
tation of their domain, such as patterns of
familiar chunks, clusters of circuit elements
with related function, and hierarchical orga-
nization of chunks.

perceiving

Perception tasks address the issue of what
experts versus non-experts perceive in a
given amount of time (Chase & Chi, 1981).
A good example of a perceptual task is
examining X-ray films. Although the goal
of examining X-ray films is usually to diag-
nose disease, one can also determine what
experts and novices see (literal stimulus fea-
tures) and perceive (meanings of the fea-
tures or patterns of features). Lesgold et al.
(1988) asked four expert radiologists with
10 or more years of experience after res-
idency, and eight first-to-fourth year resi-
dents to examine X-ray films for as long as
they wished, commenting on what they saw
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as well as verbally expressing their diagnoses.
Although diagnosis is the familiar intrin-
sic task, the participants were also asked to
undertake a more contrived task, which was
to draw contours on the films showing what
they believed to be the problematic areas,
as a way of identifying the relevant features
they saw. (The films showed diseases such as
multiple tumors or collapsed lung.) Two of
the four experts, but only one of the eight
residents, diagnosed the collapsed lung film
accurately. Did they see the features in the
films differently? Both experts and residents
saw the main feature, which was the col-
lapse of the middle lobe, producing a dense
shadow. However, this feature can lead only
to a tumor diagnosis; the correct diagnosis of
collapsed lung must require seeing the dis-
placed lobe boundaries or hyperinflation of
the adjacent lobes. Residents did not see the
more subtle cues and the relations among
the cues.

In addition to the accuracy of the diag-
noses, the researchers looked at two kinds
of coding of the protocols. The first coding
was the diagnostic findings, which referred
to the attribution of specific diagnostic prop-
erties in the film. For example, one finding
might be “spots in the lungs.” The second
coding was the meaningful clusters. A clus-
ter is a set of findings that had a meaningful
path or reasoning chain from each finding
to every other finding within the set. That
is, the participants would relate the features
logically to entail a diagnostic explanation.
For example, if the participants commented
that such spots might be produced by blood
pooling, which in turn could have been pro-
duced by heart failure, then such a reasoning
chain would relate the findings into a cluster.
The results showed that the experts identi-
fied around three more findings per film, and
had about one more cluster than the resi-
dents. This suggests that the experts not only
saw more critical features on a film than the
residents, but perceived more interrelations
among the features.

Moreover, experts had finer discrimina-
tions. For example, the tumor film showed a
patient with multiple tumors. For this tumor
film, residents tended to merge local fea-

tures (the tumors) as “general lung haziness.”
That is, they interpreted the hazy spots in
the lungs as indicating fluid in the lungs,
suggesting congestive heart failure, whereas
experts saw multiple tumors. Residents also
saw the heart as enlarged, while the experts
did not. Residents also interpreted the cues
or features they saw rather literally. For
example, a large size heart shadow implied
an enlarged heart, whereas experts might
adjust their evaluation of the heart to other
possibilities, such as a curvature in the spine.

The results of this study show basically
that experts perceive things differently from
non-experts. There are many other studies
that show the same kind of results (see Klein
& Hoffman, 1992). This includes the percep-
tion tasks of reproducing chess board pat-
terns as discussed earlier. Reitman (1976)
also replicated the Chase and Simon (1973a)
study for the game of Go. In addition to
asking participants to reproduce patterns
of Go stones as quickly and accurately as
possible while the stimulus board pattern
remained exposed throughout the trial, she
also asked the Go experts to draw circles (on
paper transcriptions of the real game posi-
tions) showing stones that were related, and
if appropriate, to indicate which groups of
stones were related on yet a higher strategic
level. The results showed that the experts
partitioned the patterns not into a strictly
nested hierarchy, but rather into overlap-
ping subpatterns, as one might expect given
the nature of Go – a given stone can par-
ticipate in, or play a strategic role in, more
than one cluster of stones. Although there
were no novice data on penciled partition-
ing, the expert’s partitioning into overlap-
ping structures suggests this more interre-
lated lattice-like (versus strictly hierarchical)
representation.

The perceptual superiority of experts
applies to dynamic situations as well, such as
perception of satellite infrared image loops
in weather forecasting (Hoffman, Trafton,
& Roebber, 2005), or watching a video-
tape of classroom lesson (Sabers, Cushing,
& Berliner, 1991). For example, when expert
and novice teachers were asked to talk out
loud while watching a videotaped classroom
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lesson that showed simultaneous events
occurring throughout the classroom, the
experts saw more patterns by inferring what
must be going on (such as “the students’
note taking indicates that they have seen
sheets like this . . . ”), whereas the non-expert
teachers saw less, saying that “I can’t tell
what they are doing. They are getting ready
for class.” In short, the explanations experts
and non-experts can give reveal the fea-
tures and meaningful patterns they saw and
perceived.

A related task is detection of the presence
of features or events accompanied by mea-
surement of reaction times. For example,
Alberdi et al. (2001) asked some more- and
some less-experienced physicians to view
traces on a computer screen showing five
physiological measurements, such as heart
rate, transcutaneous oxygen, etc. The traces
represented both key events, such as devel-
oping pneumothorax, as well as more sec-
ondary but still clinically noteworthy events.
Although the less-experienced physicians
were almost as good in detecting and identi-
fying the key events, they were significantly
worse than the more-experienced physi-
cians in detecting the secondary events. The
more-experienced physicians were also sig-
nificantly better at detecting artifacts. This
suggests that they were not only better at
detecting secondary events, but that they
also made finer discriminations between
meaningful events versus literal stimulus
features.

It should perhaps be pointed out that
such results do not arise from experts hav-
ing better visual acuity. Nor do the results
mean that the experts’ perceptual superior-
ity is necessarily visual (vs. analytical). That
is, expertise involves perceiving more, not
just seeing more. To deny the first interpre-
tation, one can show that novices’ visual
acuity is just as good as experts in some
other domain for which they have no exper-
tise. However, expertise can enhance sensi-
tivity to critical cues, features, and dimen-
sions. Snowden, Davies, and Roling (2000)
found expert radiologists to be more sen-
sitive to low contrast dots and other fea-
tures in X-rays. This increased sensitivity

can be driven “top down” by more devel-
oped schemas (rather than a better devel-
oped acuity) since greater experience with
films means they have more familiarity with
both under- and overexposed films. To dis-
prove the second interpretation – that per-
ceptual superiority is necessarily visual – one
can show that experts can excel in per-
ception even if the materials are not pre-
sented visually, as in the case of chess masters
playing blindfolded chess (Campitelli &
Gobet, 2005) and expert counselors form-
ing an accurate model of a client from lis-
tening to a transcript of a counseling session
(Mayfield, Kardash, & Kivlighan, 1999).

In sum, this section summarized percep-
tion tasks and related contrived tasks such as
asking experts and novices to circle Go pat-
terns or draw contours of X-ray films. The
point of these studies is not merely to show
whether experts are superior in performing
these kinds of tasks, but to uncover their
underlying representations and skills that
derive from practice and perceptual learn-
ing, such as more interrelated clustering of
findings on X-ray films and their representa-
tion of secondary events.

categorizing

Sorting instances according to categories is
a simple and straightforward task that can
be readily undertaken by experts and non-
experts. One procedure is to ask participants
to sort problem statements (each problem
typed on a 3 × 5 card) into categories on
the basis of similarities in the solution or
some other functional categories. Chi et al.
(1981) solicited the participation of physics
graduate students (who technically would
be apprentices or perhaps journeymen on
the proficiency scale, but probably not fully
expert) and undergraduate students (who
had completed a semester of mechanics with
an A grade, making them “initiates” and not
really novices). They were asked to sort 24

physics problems twice (for consistency),
and also to explain the reasons for their sort-
ing. One would not necessarily expect quan-
titative differences in the sortings produced
by the two skill groups, such as the num-
ber of groups, or the number of problems in
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the groups – since anyone could sort prob-
lems on any of a nearly boundless number
of dimensions or criteria. The real interest
lies in the nature of the sortings. Based on
analyses of both the problems that the par-
ticipants categorized into the same groups
as well as their explanations for the sort-
ings, it became apparent that the under-
graduates grouped problems very differently
from the graduate students. The undergrad-
uates were more likely to base their sorting
on literal surface features, such as the pres-
ence of inclined planes or concepts such as
friction, whereas the graduate students were
much more likely to base their sorting on
domain principles that would be critical to
the solutions (e.g., such as problems that
involve Newton’s Second Law or the laws
of thermodynamics such as conservation of
energy). This finding was further replicated
by a specially designed set of problems that
had either the same surface features but dif-
ferent deep principles, or different surface
features but the same deep principles. The
same results emerged, namely, that under-
graduates sorted according to the surface
features and graduates tended to sort accord-
ing to the deep principles.

One interpretation of such results is that
the undergraduates’ schemas of problems
are based on physical entities and literal for-
mulas, whereas experts’ schemas are more
developed and organized around the prin-
ciples of mechanics. This means that the
explicit words or terminologies and dia-
grams used in the problem statements are
connected (in experts’ reasoning) to the
basic principles. However, that connection
is not necessarily direct. For instance, an
inclined plane per se does not by itself indi-
cate a Newton’s-Second-Law problem for an
expert physicist. An additional study asking
participants to cite the most important fea-
tures in a problem statement showed that
the words in the problem statements are
mediated by some intermediate concepts,
such as a “before and after situation.” Thus,
the words in a problem interact to entail con-
cepts, and experts’ solutions may be based on
these higher-level concepts (Chi et al, 1981;
Chi & Ohlsson, 2005).

Much research followed that replicated
the basic finding of shallow versus deep
representations for novices versus experts.
For example, when expert and novice pro-
grammers were asked to sort programming
problems, the experts sorted them accord-
ing to the solution algorithms, whereas the
novices sorted them according to the areas
of applications, such as creating a list of
certain data types (Weiser & Shertz, 1983).
Similarly, when expert and novice coun-
selors were asked to categorize client state-
ments from a counseling script as well as
to map the relationships among the cate-
gories, novices tended to categorize and map
on the basis of superficial details, such as
the temporal order of the client statements
(Mayfield et al., 1999), whereas the expert
counselors tended to categorize and map on
the basis of more abstract, therapeutically
relevant information. Similarly, Shafto and
Coley (2003) found that commercial fish-
ermen sorted marine creatures according to
commercial, ecological, or behavioral fac-
tors, whereas undergraduates sorted them
according to the creatures’ appearance.

Many variations of the sorting task have
also been used. One variation is to ask par-
ticipants to subdivide their groups further,
to collapse groups, or to form multiple and
differing sortings in order to shed light on
the hierarchical structure of their knowledge
representations (Chi, Glaser, & Rees, 1982).
For example, by asking a young dinosaur
“expert” to collapse his initial categories
formed about different types of dinosaurs,
the child would collapse them into two
major superordinate categories– meat-eaters
and plant-eaters (Chi & Koeske, 1983)– sug-
gesting that the superordinate categories are
somewhat well defined.

Another variation is a speeded category-
verification task. In such a task, a cate-
gory name appears first, followed by a pic-
ture. Participants press “true” if the picture
matched the word, such as a picture of a
dog with the term “animal,” and “false” if
it does not match, and reaction latencies
can be measured. Moreover, the words can
refer to a superordinate category such as
“animals,” a basic-object-level category such



P1: KAE
052184097Xc10 CB1040B/Ericsson 0 521 84087 X February 27, 2006 11:24

176 the cambridge handbook of expertise and expert performance

as “dog,” or a subordinate category such as
“dachshund.” The basic-object level is nor-
mally the most accessible level for catego-
rizing objects, naming objects, and so forth
(Rosch, Mervis, Gray, Johnson, & Boyes-
Braem, 1976). It has a privileged status in
that it reflects the general characteristics of
the human perceiver and the inherent struc-
ture of objects in the world (i.e., frequency of
experience and word use). The basic-object
level is also the first level of categorization
for object recognition and name retrieval.

Dog experts showed the typical pattern of
responses for their non-expert domain, such
as birds, in that their reaction times were
faster at the basic level than at the super-
ordinate or the subordinate levels (Tanaka
& Taylor, 1991; Tanaka, 2001). However, in
their domain of expertise, the experts were
just as fast at categorizing at the subordinate
level as they are at categorizing at the basic-
object level. For example, dog experts can
categorize a specific dog as a dachshund as
fast as they can categorize a dachshund as a
dog. This downward shift in the creation of a
second, more specific basic level in a hierar-
chy means that the experts’ hierarchies are
more differentiated even at the subordinate
level (see also Hoffman, 1987). Moreover,
this finer subordinate-level discrimination is
evident even in child “experts” (Johnson &
Eilers, 1998).

In sum, the categorization tasks described
here, consisting of sorting and category
verification, can reveal the structure of
experts’ knowledge, showing how it is more
fully developed and differentiated at both
the subordinate levels and the superordin-
ate levels.

verbal reporting

One of the most common methods in the
study of expertise is to elicit verbal reports.
(It should be kept in mind that verbal report-
ing and introspection are different in impor-
tant ways. Verbal reporting is task reflec-
tion as participants attend to problems. It
is problem centered and outward looking.
Introspection is to give judgments concern-
ing one’s own thoughts and perceptions.)
Verbal reporting, as a category of task, can

be done either as an ongoing think-aloud
protocol (Ericsson & Simon, 1984 ; see
Ericsson, Chapter 13), as answers to inter-
view questions (Cooke, 1994), or as expla-
nations (Chi, 1997).

These three techniques are quite differ-
ent. For concurrent think-aloud protocols,
the participants are restricted to verbalize
the problem information to which they are
attending. In interviews, especially struc-
tured interviews, the questions are usually
carefully crafted (i.e., to focus on a specific
topic or scenario) and are often sequenced
in a meaningful order (see Hoffman & Lin-
tern, Chapter 12). Explanations, on the other
hand, are given sometimes to questions gen-
erated by a peer, by oneself, or by an exper-
imenter. Explanations can be retrospective
and reflective. (Differences between think-
aloud protocols and explanations are elabo-
rated in Chi, 1997.) Not only are there dif-
ferent ways to collect verbal reports, but
there are other important issues that are
often debated. One issue, for example, con-
cerns whether giving verbal reports actu-
ally changes one’s processing of the task
(Nisbett & Wilson, 1977), and another issue
is whether different knowledge elicitation
methods elicit different “kinds” of knowl-
edge from the participants – the “differential
access hypothesis” (Hoffman et al., 1995).

Not only can verbal reports be collected
in several different ways, but they can be
collected within the context of any num-
ber of other tasks, such as a perception task,
a memory task, or a sorting task, as some
of our earlier examples have shown. Thus,
providing verbal reports can be a task in its
own right – as in the case of a free-flowing,
unstructured interview (Cullen & Bryman,
1988), or simply asking the participant to
say what he or she knows about a concept
(Chi & Koeske, 1983). But a verbal proto-
col can also be solicited in the context of
some other task (such as solving problems
or analyzing documents). However, to be
consistent with the heuristic of this chapter,
the studies below are grouped in this section
according to the main task presented to the
participants. In this regard it is worth noting
that in some domains, giving a concurrent
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or retrospective verbal report is part of the
familiar intrinsic task (e.g., coroner’s audio
record during autopsies; and during weather
forecasting briefings, forecasters think aloud
as they examine weather data).

The most difficult aspect of verbal report
methods is data analysis. That is, how does
one code and analyze verbal outputs? Again
there are many methods; they can only be
alluded to here (see Chi, 1997; Ericsson &
Simon, 1984 , for explicit techniques, and
Ericsson, Chapter 13). Typically, think-aloud
protocols are analyzed in the context of the
cognitive task, which requires a cognitive
task analysis in order to know the functional
problem states that are to be used to cat-
egorize individual statements. The goal of
protocol analysis then is to identify which
sequence of states a particular participant
progresses through, and perhaps a computa-
tional model is built to simulate those steps
and the solution procedures. For explana-
tions, coding methods involve segmenting
and judging the content of the segments in
terms of issues such as whether it is substan-
tive or non-substantive (Chi, Siler, Jeong,
Yamauchi, & Hausmann, 2001), principle
oriented (deep) or entity oriented (shallow)
(Chi et al., 1981). Note that an analysis of ver-
bal data means that the content of the data is
not always taken literally or word-for-word.
That is, we are not asking experts and novices
their subjective assessment of how they per-
formed, or how they have performed. This
is because much of expert knowledge is not
explicit nor subject to introspection.

How people perform can be captured
by the coding scheme. A study by Simon
and Simon (1978) provides a good exam-
ple. They collected concurrent protocols
from an expert and a novice as they were
solving physics problems. The researchers
coded only the equation-related parts of
the protocols. By examining what equa-
tions were articulated, and when, the
researchers were able to model (using a
production-system framework) each partic-
ipant’s problem-solving procedure and strat-
egy. The researchers showed that the expert
solved the problems in a forward-working
strategy, whereas the novice worked back-

ward from the goal (as one would predict
on the basis of studies described earlier in
this chapter). The same forward-backward
search patterns were obtained also in the
domain of genetics with experts and novices
(Smith & Good, 1984).

In a different kind of domain and task,
Wineburg (1991) asked historians and his-
tory students to give think-aloud proto-
cols while they constructed understanding
of historical events from eight written and
three pictorial documents. The participants’
task was to decide which of the three pic-
tures best depicted what happened dur-
ing the Battle of Lexington at the start
of the Revolutionary War, the event pre-
sented in the documents. Statements in
the participants’ picture-evaluation proto-
cols were coded into four categories: descrip-
tion, reference, analysis, and qualification.
Both experts and students provided descrip-
tive statements, but the experts made more
statements that fell into the other three
categories. This is not surprising since the
experts obviously had more to say, being
more knowledgeable. What is more interest-
ing is to identify the first category for which
both the experts and novices described the
picture using the same number of state-
ments. The quality of those descriptions was
different. Historians noted 25 of the 56 pos-
sible key features in the paintings that had
a bearing on the historical accuracy of the
paintings, whereas the students noted only
four features on average. Moreover, in select-
ing the most accurate painting, historians
did so on the basis of the correspondence
between the visual representations and the
written documents, whereas the students
often chose on the basis of the quality of the
artwork, such as its realism and detail. This
suggests that the experts’ representations
were much more meaningfully integrated.

Interviewing techniques can include both
open-ended questions and more direct ques-
tions. For example, Hmelo-Silver and Pfef-
fer (2004) asked experts and students both
direct questions about aquaria, such as
“What do fish do in an aquarium?” and
open-ended questions, such as thinking out
loud while attempting to “Draw a picture
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of anything you can think is in an aquar-
ium.” Since biological systems and devices
often can be characterized by their struc-
ture, behavior, or function (Gellert, 1962 ;
Chi, 2000, p. 183 ; Goel et al., 1996), the
protocols were coded according to state-
ments relating to those three categories.
There were no differences between the
experts and the novices in the number of
statements referring to the structures, but
there were predictable and significant dif-
ferences in the number of statements refer-
ring to behaviors and functions. The novices
often did not offer additional behavioral or
functional information even when probed.
This suggests that the experts represent the
deeper features (i.e., behavior and function),
whereas novices think in terms of literal fea-
tures (i.e., the structure).

In sum, the goal of these verbal reporting
methods is to capture the underlying repre-
sentations of the experts and novices, such
as whether their searches are forward ver-
sus backward, whether their understanding
of pictures and text are integrated versus lit-
eral, or whether their understanding mani-
fest deep (behavioral and functional) versus
shallow (structural) features.

Representational Differences

If the difference in representation (reflect-
ing the organization of knowledge and not
just the extent of knowledge) is one key
to understanding the nature of expertise,
then in what ways do the representations
of experts and novices differ? In this sec-
tion, I briefly address dimensions of repre-
sentational differences, as captured by the
empirical tasks of recalling, perceiving, cat-
egorizing, and verbal reporting described
above. Each of these tasks has revealed
ways in which representations of experts and
novices differ.

knowledge extent

An obvious dimension of difference is that
experts have more knowledge of their
domain of expertise. More knowledge must

be measured in terms of some units. Without
being precise, a “bit” of knowledge can be a
factual statement, a chunk/familiar pattern,
a strategy, a procedure, or a schema. Chase
and Simon (1973a, b) estimated an expert
chess (master-level) player to know between
10,000 and 100,000 chunks or patterns,
whereas a good (Class-A) player has around
1000 chunks; and Miller (1996, pp. 136–138)
estimated college-educated adults to know
between 40,000 to 60,000 words. Hoff-
man et al., (in press; Hoffman, Trafton, &
Roebber, 2006) estimate that it would take
thousands of propositions to capture the
expert weather forecaster’s knowledge just
about   severe   weather in one   particular
climate.  Regardless of how  one wishes to
quantify it, clearly, one can expect experts
to know more than non-experts (includ-
ing journeymen and especially compared to
apprentices, initiates, and novices). Indeed,
this is one definition of expertise. The recall
task summarized earlier also revealed how
the number of chunks and the chunk sizes
differ for experts versus non-experts.

Aside from the sheer number of “bits”
(however these are defined) in their knowl-
edge base, a related concept to the dimen-
sion of size is completeness. Completeness
has a different connotation than the idea of
merely greater amount or extent of knowl-
edge. In real-world domains knowledge is
always expanding. Any notion of “complete-
ness” becomes very slippery.

In terms of frame theory, one can con-
ceive of completeness in terms of the avail-
ability or number of slots, or necessary
slots. For example, a tree expert might have
slots for “susceptibility to different diseases”
with knowledge about potential diseases
(values) for each kind of trees, whereas a
novice might not have such slots at all.
The earlier-described finding from a per-
ception task showed that the more- (but
not the less-) experienced physicians were
able to recognize secondary events on traces
of physiological measurements (Alberdi et
al., 2001), can be interpreted to indicate
that the more-experienced physicians had
more complete frames or schemas. Greater
amount of knowledge might also refer to
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more details in the experts’ representation
than in novices’, for a particular domain.

Another way to discuss knowledge extent
is in terms of the content. Experts might not
have just more production systems than non-
experts for solving problems, but they might
have different production systems, as shown
by Simon and Simon’s (1978) study of physi-
cists using a verbal-reporting task. For exam-
ple, experts might have rules relevant to the
principles, whereas novices might have rules
relevant to the concrete entities in the prob-
lem statement (Chi et al., 1981). This can
mean that the experts’ production systems
are deeper and more generalizable.

In sum, differences in the size or extent
of the knowledge as a function of profi-
ciency level can be uncovered in a number of
contrived tasks that have been discussed in
this chapter.

the organization of knowledge

The hierarchical representation of knowl-
edge can be inferred from the way experts
cluster in their recall, as in the case of recall-
ing architectural plans (Akin, 1980) and cir-
cuit diagrams (Egan & Schwartz, 1979). If
we therefore assume that representations
are sometimes hierarchical (depending on
the domain), then in what further ways
are the experts’ representations different
from novices?

One view is that non-experts might have
missing intermediate levels. For example,
using a recall task, Chiesi, Spilich, and
Voss (1979) found that individuals with
high or low prior knowledge of baseball
were equally capable at recalling individ-
ual sentences that they had read in a base-
ball passage. However, the experts were
better at recalling sequences of baseball
events because they were able to relate each
sequence to the high-level goals such as win-
ning and scoring runs. This suggests that
the basic actions described in the individual
sentences were not connected to the high-
level goals in the novices’ understanding. Per-
haps such connections have to be mediated
by intermediate goals, which may be miss-
ing in novices’ hierarchical structure. The
same pattern of results was found in chil-

dren’s representation of knowledge about
“Star Wars.” The “Star Wars” game can be
represented in a hierarchical structure, con-
taining high-level goals such as military dom-
inance, subgoals such as attack/destroy key
leaders, and basic actions, such as going to
Yoda (Means & Voss, 1985).

Similar findings have been obtained also
in studies of medical domains, in which
physician’s diagnostic knowledge has been
represented in terms of hierarchical levels
(Patel & Arocha, 2001). In such a repre-
sentation, studies using a perception task
show that physical observations are inter-
preted in terms of findings, which are obser-
vations that have medical significance and
must be clinically accounted for. At the next
level are facts, which are clusters of findings
that suggest prediagnostic interpretation. At
the highest level are diagnoses. Novices’ and
experts’ representation can differ in that
novices can be missing some intermediate-
level knowledge, so that decisions are then
made on the basis of the findings level, rather
than the facts level.

A third way to conceive of differences in
hierarchical representations of experts and
novices is a in the level of the hierarchy that
is most familiar or preferred for domains
in which the hierarchical relationships is
one of class-inclusion. Expert versus non-
expert differences arise from the preferred
level within the hierarchy at which experts
and novices operate or act on. According
to Rosch et al. (1976), to identify objects,
people in general prefer to use basic-object-
level names (bird, table) to superordinate-
level names (e.g., animals, furniture). People
are also generally faster at categorizing
objects at the basic-object level than at the
superordinate or subordinate levels (e.g.,
robin, office chair). Experts, however, are
just as facile at naming and verifying the
subordinate-level objects as the basic-level,
suggesting that the overall preferential treat-
ment of the basic level reflects how knowl-
edge about the levels are structured, and not
that the basic level imposes a certain struc-
ture that is more naturally perceived. Using
a sorting task, this differentiated preference
for experts and novices has been replicated
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in several domains, such as birds (Tanaka &
Taylor, 1991), faces (Tanaka, 2001), dinosaurs
(Chi et al., 1989), and geological and archae-
ological classification (Burton et al., 1987,
1988, 1990).

Just as the notion of knowledge extent
can be slippery (because knowledge is never
static), so too the notion of hierarchi-
cal memory organization can be slippery.
For example, instead of conceiving of non-
experts’ memory representation as missing
the intermediate levels, another view is that
their representations are more like lattices
than hierarchies (Chi & Ohlsson, 2005).
(Technically, a lattice would involve cross
connections that would be “category viola-
tions” in a strict hierarchy or “is-a” tree.) It
is valuable to look at an extreme, that is,
domains where everything can be causally
related to everything else, and neither hierar-
chies, lattices, nor chains suffice to represent
either the world or knowledge of the world,
such as the weather forecaster’s understand-
ing of atmospheric dynamics (e.g., thunder-
storms cause outflow, which in turn can trig-
ger more thunderstorms). We do not yet
have a clear understanding of how dynamic
systems are represented (Chi, 2005). On the
other hand, for a domain such as terrain
analysis in civil engineering, much of the
expert’s knowledge is very much like a hier-
archy, highly differentiated by rock types,
subtypes, combinations of layers of subtypes,
types of soils, soil-climate interactions, etc.
(Hoffman, 1987).

In sum, although any inferences about
knowledge representation need to be
anchored in the context of a specific
domain, contrived tasks such as recalling,
perceiving, and categorizing can allow us to
differentiate the ways experts’ and novices’
knowledge is organized.

“depth” of knowledge

Representational differences can be char-
acterized not only by extent and orga-
nization, but also by dimensions such as
deep versus shallow, abstract versus con-
crete, function versus structure, or goal-
directed versus taxonomic. Such differences
have been revealed using a sorting task, to
show, for example, that physicists represent

problems at the level of principles, whereas
novices represent them at the concrete
level of entities or superficial features (Chi
et al., 1981), or that landscaping experts sort
trees into goal-derived categories (e.g., shade
trees, fast-growing trees, etc.), whereas tax-
onomists sort trees according to biological
taxa (Medin, Lynch, Coley, & Atran, 1997).

Such differences can be revealed also
in perception tasks. For example, a patient
putting his hands on his chest and leaning
forward as he walks slowly is interpreted by
novices merely as someone having back pain
(a literal interpretation), whereas a more
expert physician might interpret the same
observation as perhaps suggesting that the
patient has some unspecified heart problem
(Patel & Arocha, 2001). Differences can also
be revealed in a verbal reporting task, such as
explaining the behavior/function of fish in an
aquarium versus explaining the structure of
fish (Hmelo-Silver & Pfeffer, 2004). Differ-
ences can be revealed in a task that involves
explaining causal relationships – a novice’s
explanations might focus on the time
and place of an historical event, whereas
an expert’s explanations might focus on
using the time to reconstruct other events
(Wineburg, 1991).

In short, all four of the task types
reviewed here can reveal differences bet-
ween experts’ and novices’ representations
in terms of depth.

consolidation and integration

A fourth dimension of representational dif-
ferences between experts and non-experts
is that the experts’ representation may be
more consolidated, involving more efficient
and faster retrieval and processing. A related
way to characterize it might be the integrat-
edness or coherence of a representation, that
is, the degree to which concepts and prin-
ciples are related to one another in many
meaningful ways (e.g., Falkenhainer, Forbus,
& Gentner, 1990; Schvaneveldt et al., 1985).
One interpretation of integratedness is the
interaction of features. Evidence for this
interpretation can be seen in physics experts’
and non-experts’ representations (Chi et al.,
1981), in which they identify features
that are combined or integrated to form
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higher-level concepts in a sorting task, as
well as in physicians’ ability to form clus-
ters of observations for their prediagnostic
interpretation in a perception task (Patel &
Arocha, 2001).

For example, given a physics problem
statement and asked to identify the features
that determine their basic approach to the
solution, novices will solve a problem on the
basis of the explicit concrete entities men-
tioned in the statement, whereas experts will
solve a problem on the basis of derivative
features (such as a “before and after” situa-
tion), in which the interactions of the con-
crete entities in the problem statement are
integrated to describe the problem situation
as “before and after” (see Chi et al., 1981,
Table 11). Tabulating the frequencies with
which the two experts and novices cited con-
crete entities (such as spring, friction) ver-
sus higher-level dynamic features (such as
a “before and after” situation, or a physi-
cal state change), there were 74 instances
in which the experts cited dynamic fea-
tures versus 21 references to concrete enti-
ties, whereas the reverse was true for novices,
who cited 39 instances of concrete entities
versus only two instances of dynamic fea-
tures. The more integrated nature of the
experts’ knowledge base was also reflected in
the reasoning chains that expert radiologists
manifested in their diagnoses, cited earlier
(Lesgold et al., 1988).

In short, recall, perception, and cate-
gorization tasks can all reveal differences
in the consolidation and integration of
representations.

Conclusion

The goal of this chapter was to describe
and illustrate the kind of laboratory meth-
ods that can be used to study the nature of
expertise. The four general types reviewed –
recall, perception, categorization, and ver-
bal reports – are domain independent, or
contrived tasks. These are tasks that are not
necessarily expressive of the skills of the
experts because they do not precisely mimic
the tasks the experts usually perform. But
these tasks, used often in the laboratories or

under controlled conditions (although they
can be used also in cognitive field research),
are suggestive of the ways that the mental
representations of experts and novices can
differ. The recall paradigm has revealed the
differences in experts’ and novices’ repre-
sentations in terms of chunks (coherent pat-
terns) and organized structure; perception
tasks have revealed phenomena of percep-
tual learning and differences in the salience
of relevant features and the interrelated-
ness or integration of cues into meaning-
ful patterns; and both the sorting and ver-
bal reporting tasks have revealed differences
in the depth and structure of knowledge
representations.

There are of course important deeper and
lingering issues that this chapter has not
covered. A key issue is how exactly   do 
the experts’ knowledge representations fac-
ilitate or inhibit their performance for a spe-
cific skill. Some treatment of this issue
just for the task of memory recall can be
gleaned from papers by Ericsson, Delaney,
Weaver, and Mahadevan (2004) and Vicente
and Wang (1998). Moreover, although our
interest focuses on understanding “relative
expertise” (see Chi, Chapter 2), with the
assumption that novices can become experts
through learning and practice, in this chap-
ter I have said little about another important
issue of how one can translate differences in
the representations of novices and experts
into instruction and training (i.e., how we
can train novices to become experts).
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