Contiguous Representations for Robust Learning (Aleven & Butcher)

From LearnLab
Revision as of 15:57, 26 February 2007 by Kirsten-Butcher (talk | contribs)
Jump to: navigation, search

Learning with Diagrams in Geometry: Strategic Support for Robust Learning

Vincent Aleven & Kirsten Butcher

Abstract

Does integration of visual and verbal knowledge during learning support deep understanding? Can student interactions with visual information during problem-solving support robust learning? The overall goal of this project is to gain a better understanding of 1) visual and verbal knowledge components in a problem-solving environment and, 2) how interacting with visual information can support the development of deep understanding. Ultimately, we are interested in coordination and integration processes in learning with visual and verbal knowledge components, and how these processes may support robust learning.

We are using the Geometry Cognitive Tutor as a research vehicle for our project. In geometry, visual information is represented in a problem diagram and verbal/symbolic information is represented in text that contains given and goal information as well as in conceptual rules/principles of geometry. The goals of this research are to investigate how coordination between and integration of visual and verbal information influence robust learning processes, as measured by knowledge retention and transfer. By coordination, we mean the processes that support mapping between relevant visual and verbal information as well as the processes that keep relevant knowledge components active. For example, in geometry a student needs to map between text references to angles and their location in a diagram and will need to maintain the numerical (given or solved) value of that angle to use in problem solving. By integration, we mean knowledge construction events that involve both visual and verbal knowledge components. For example, in geometry a student may need to construct an understanding of linear angles that includes both a verbal definition (e.g., “two adjacent angles that form a line”) and a visual situation description (e.g., a visual representation of the two angles formed by intersection of a line).

Glossary

See Visual-Verbal Learning Project Glossary

Research question

  • Do students learn more with contiguous representations that support direct students' interaction and reasoning with diagrams during practice? Is a contiguous representation sufficient to support integration of visual and verbal knowledge components?

Background & Significance

In this research, we draw upon previous work in learning with multimedia sources, self-explanations, and Cognitive Tutors. We hypothesize that two key cognitive processes support integrated knowledge development and robust learning when using visual and verbal representations. These processes are: 1) Successful mapping between visual and verbal information, and 2) Integration processes that combine visual and verbal representations into integrated knowledge components. Previous research has suggested that contiguous representations -- those that provide close temporal and physical proximity between visual and verbal elements during learning -- can support understanding of multimedia materials (e.g., Mayer, 2001); these benefits have been hypothesized to result from the easing of cognitive load required for mapping between visual and verbal information. We are investigating if these benefits can be seen during real classroom learning when students engage in extended practice with learning materials. Our research examines the potential benefits of contiguity during intelligent tutoring for robust learning in classroom environments.

In the context of the Geometry Cognitive Tutor, contiguity is achieved by placing related representations, such as a diagram and a workspace in which answers are entered, in close proximity that reduces (and in some cases, removes) the need for mapping between visual and verbal information. Although contiguous representations may reduce the initial cognitive load associated with mapping between representations, cognitive load demands may be less influential in classroom environments where practice is extended and distributed (ADD REFS). Thus, we assume that contiguous representations can support robust learning by promoting integration of visual and verbal information during practice. That is, contiguity may support students' connection between and integration of visual and verbal information leading to more robust knowledge of geometry principles. If these assumptions are true, we would expect to see similar performance on practiced problems for students who trained with contiguous vs. noncontiguous representations. However, we would expect students using the contiguous representations to demonstrate better knowledge transfer.