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Cognitive Assessment Models With Few
Assumptions, and Connections With
Nonparametric Item Response Theory

Brian W. Junker, Carnegie Mellon University

Klaas Sijtsma, Tilburg University

Some usability and interpretability issues for
single-strategy cognitive assessment models are con-
sidered. These models posit a stochastic conjunctive
relationship between a set of cognitive attributes to be
assessed and performance on particular items/tasks
in the assessment. The models considered make few
assumptions about the relationship between latent
attributes and task performance beyond a simple
conjunctive structure. An example shows that these
models can be sensitive to cognitive attributes, even
in data designed to well fit the Rasch model. Several

stochastic ordering and monotonicity properties are
considered that enhance the interpretability of the
models. Simple data summaries are identified that
inform about the presence or absence of cognitive
attributes when the full computational power needed
to estimate the models is not available. Index terms:
cognitive diagnosis, conjunctive Bayesian inference
networks, multidimensional item response theory,
nonparametric item response theory, restricted
latent class models, stochastic ordering, transitive
reasoning.

There has been increasing pressure in educational assessment to make assessments sensitive to
specific examinee skills, knowledge, and other cognitive features needed to perform tasks. For
example, Baxter & Glaser (1998) and Nichols & Sugrue (1999) noted that examinees’ cognitive
characteristics can and should be the focus of assessment design. Resnick & Resnick (1992)
advocated standards- or criterion-referenced assessment closely tied to curriculum as a way to
inform instruction and enhance student learning. These issues are considered in fuller detail by
Pellegrino, Chudowsky, & Glaser (2001).

Cognitive assessment models generally deal with a more complex goal than linearly ordering
examinees, or partially ordering them, in a low-dimensional Euclidean space, which is what item
response theory (IRT) has been designed and optimized to do. Instead, cognitive assessment models
produce a list of skills or other cognitive attributes that the examinee might or might not possess,
based on the evidence of tasks that he/she performs. Nevertheless, these models have much in
common with more familiar IRT models.

Interpretability of IRT-like models is enhanced by simple, monotone relationships between model
parts. For example, Hemker, Sijtsma, Molenaar, & Junker (1997) considered in detail stochastic
ordering of the manifest sum-score by the latent trait (SOM), and stochastic ordering of the latent trait
by the manifest sum-score (SOL), in addition to the usual monotonicity assumption (see below). All
three properties are considered here for two conjunctive cognitive assessment models. Additionally,
a new monotonicity condition is considered, which asserts that the more task-relevant skills an
examinee possesses, the easier the task should be.
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Some Extensions of IRT Models for Cognitive Assessment

Consider J dichotomous item response variables for each of N examinees. Let Xij = 1 if
examinee i performs task j well, and 0 otherwise, where i = 1, 2, . . . , N , and j = 1, 2, . . . , J .
Let θi be the person parameter (possibly multidimensional) and βj be the item (difficulty) parameter
(possibly multidimensional). The item response function (IRF) in IRT is Pj (θi) = P [Xij = 1|θi, βj ].

Most parametric IRT and nonparametric IRT (NIRT) models satisfy three fundamental
assumptions:
1. Local independence (LI),

P(Xi1 =xi1, Xi2 =xi2, . . . , XiJ =xiJ , |θi, β1, β2, . . . , βJ )=
N∏
i=1

J∏
j=1

Pj (θi)
xij

[
1−Pj (θi)

]1−xij ,

(1)

for each i.
2. Monotonicity, in which the IRFs Pj (θi) are nondecreasing as a function of θi or, if θi is multidi-

mensional, nondecreasing coordinate-wise (i.e., nondecreasing in each coordinate of θi , with
all other coordinates held fixed).

3. Low dimensionality, in which the dimension K of θi is small relative to the number of items
J . In the Rasch model, for example, θi and βj are unidimensional real-valued parameters, and
logit Pj (θi) = θi − βj .

Many attempts (see, e.g., Mislevy, 1996) to blend IRT and cognitive measurement are based on a
linear decomposition of βj or θi . In the linear logistic test model (LLTM; e.g., Draney, Pirolli, &
Wilson, 1995; Fischer, 1995; Huguenard, Lerch, Junker, Patz, & Kass, 1997), βj is rewritten as a
linear combination of K basic parameters ηk with weights qjk and

logit Pj (θi) = θi −
K∑
k=1

qjkηk , (2)

where Q = [qjk] is a matrix usually obtained a priori based on an analysis of the items into the
requisite cognitive attributes needed to complete them, and ηk is the contribution of attribute k to
the difficulty of the items involving that attribute.

Multidimensional compensatory IRT models (e.g., Adams, Wilson, & Wang, 1997; Reckase,
1997) follow the factor-analytic tradition; they decompose the unidimensional θi parameter into an
item-dependent linear combination of underlying traits,

logit Pj (θi) =
K∑
k=1

Bjkθik − βj . (3)

Compensatory IRT models, like factor analysis models, can be sensitive to relatively large compo-
nents of variation in θ . However, they are generally not designed to distinguish finer components of
variation among examinees that are often of interest in cognitive assessment. Models like the LLTM

can be sensitive to these finer components of variation among items, but they also are not designed
to be sensitive to components of variation among examinees—person parameters are often of little
direct interest in an LLTM analysis.

Noncompensatory approaches, such as Embretson’s (1997) multicomponent latent trait model
(MLTM), are intended to be sensitive to finer variations among examinees in situations in which
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several cognitive components are required simultaneously for successful task performance. For the
MLTM, successful performance on an item/task involves the conjunction of successful performances
on several subtasks, each of which follows a separate unidimensional IRT model (e.g., the Rasch
model),

P
(
Xj = 1|θi

) =
K∏
k=1

P
(
Xjk = 1|θik

) =
K∏
k=1

exp(θik − βjk)

1 + exp(θik − βjk)
. (4)

Generally, conjunctive approaches have been preferred in cognitive assessment models that
focus on a single strategy for performing tasks (Corbett, Anderson, & O’Brien, 1995; Tatsuoka,
1995; VanLehn & Niu, in press; VanLehn, Niu, Siler, & Gertner, 1998). Multiple strategies are
often accommodated with a hierarchical latent-class structure that divides examinees into latent
classes according to strategy. A different model is used within each class to describe the influence of
attributes on task performance (e.g., Mislevy, 1996; Rijkes, 1996). Within a single strategy, models
involving more-complicated combinations of attributes driving task performance are possible (e.g.,
Heckerman, 1998), but they can be more challenging to estimate and interpret. The present paper
focuses on two discrete latent space analogues of the MLTM that make few assumptions about
the relationship between latent attributes and task performance beyond a stochastic conjunctive
structure.

Assessing Transitive Reasoning in Children

Method

Sijtsma & Verweij (1999) analyzed data from a set of transitive reasoning tasks. The data
consisted of the responses to nine transitive reasoning tasks from 417 students in second, third, and
fourth grade. Examinees were shown objects A, B, C, . . . , with physical attributes YA, YB, YC,
. . . . Relationships between attributes of all pairs of adjacent objects in an ordered series, such as
YA < YB and YB < YC, were shown to each examinee. The examinee was asked to reason about the
relationship between some pair not shown, for example, YA and YC. Reasoning that YA < YC from
the premises YA < YB and YB < YC, without guessing or using other information, is an example of
transitive reasoning (for relevant developmental psychology, see Sijtsma & Verweij, 1999; Verweij,
Sijtsma, & Koops, 1999).

The tasks were generated by considering three types of objects (wooden sticks, wooden disks,
and clay balls) with different physical attributes (sticks differed in length by .2 cm per pair, disks
differed in diameter by .2 cm per pair, and balls differed in weight by 30 g per pair). Each task
involved three, four, or five of the same type of object.

For a three-object task, there were two premises, AB (specifying the relationship between YA

and YB) and BC (similarly for YB and YC). There was one item, AC, which asked for the relationship
between YA and YC. For a four-object task, there were three premises (AB, BC, and CD) and two
items (AC and BD). For a five-object task, there were four premises (AB, BC, CD, DE) and three
items (AC, BD, and CE). Tasks, premises, and items within tasks were presented to each examinee
in random order. Explanations for each answer were recorded to evaluate the use of strategy.
Table 1 summarizes the nine tasks.

Results

Sijtsma & Verweij (1999) showed that the task response data fit a polytomous monotone homo-
geneity model (a model assuming only LI, unidimensionality, and monotonicity; see Van der Ark,
2001) well when (1) each item within a task was scored as correct—when a correct response and a
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Table 1
Nine Transitive Reasoning Tasks and Expected A-Posteriori (EAP) Rasch

Difficulties and Corresponding Posterior Standard Deviations (PSD)

Rasch Difficulties
Task Objects Attribute Premises Items EAP PSD

1 3 Sticks Length 2 1 −.38 .16
2 4 Sticks Length 3 2 1.88 .17
3 5 Sticks Length 4 3 6.06 .50
4 3 Disks Size 2 1 −1.78 .17
5 4 Disks Size 3 2 12.60 5.12
6 5 Disks Size 4 3 12.40 4.86
7 3 Balls Weight 2 1 −3.40 .22
8 4 Balls Weight 3 2 3.95 .25
9 5 Balls Weight 4 3 8.07 1.23

correct deductive strategy based on transitive reasoning were given (referred to as DEDSTRAT data);
and (2) the dichotomous item scores were summed within tasks to give task scores.

The data were recoded by the present authors for analysis with binary models. A task was
considered correct (scored 1) if all the items within that task were answered correctly using a
correct deductive strategy; otherwise, the task was considered incorrect (scored 0). This led to
417 × 9 scores. The scores for all examinees on Tasks 5 and 6, involving disk sizes, were 0.
Relatively large visual differences between disk sizes (diameters varied linearly, so disk areas
varied quadratically) seemed to encourage examinees to arrive at a correct answer for some items
by direct visual comparison, rather than by a deductive strategy. These responses were coded 0
because a deductive strategy was not used.

After deleting Tasks 5 and 6, which had all 0 responses, the computer program MSP5 (Molenaar
& Sijtsma, 2000) reported a very high scaling coefficient (H = .82) for the remaining seven tasks.
The scaling coefficients (Sijtsma, 1998) for the tasks, Hj , were between .78 and 1.00. No sample
violations of manifest monotonicity (Junker & Sijtsma, 2000) were found. The program RSP (Glas
& Ellis, 1994) was used to fit a Rasch model to the data. Again Tasks 5 and 6 were deleted along
with examinees who had all zero responses. This caused Item 9 to have all zero responses in the
reduced dataset, so it was deleted as well. For the remaining six items and 382 examinees, standard
Rasch fit statistics (Glas & Verhelst, 1995) indicated good fit. The Rasch model was refitted using
BUGS (Spiegelhalter, Thomas, Best, & Gilks, 1997). BUGS uses a Bayesian formulation of the
model that does not require items or persons to be deleted. Good fit again was found. The item
difficulty parameters (βj ) estimated by BUGS are shown in Table 1. βj was based on a fixed normal
θ distribution and a common N(µβ, σ 2

β ) prior for those with weak hyperpriors µβ ∼ N(0, 100) and
σ−2
β ∼ �(.01, .01).

If the transitive reasoning scale is to be used as evidence in designing or improving an instruc-
tional program for children or to provide feedback on particular aspects of transitive reasoning to
teachers and students, then analyses with the monotone homogeneity model and the Rasch model
will not help. They only provide the ranks or locations of examinees on a unidimensional latent
scale. Instead, task performance must be explicitly modeled in terms of the presence or absence of
particular cognitive attributes related to transitive reasoning.

To illustrate, consider the preliminary analysis of the nine tasks in Table 2. The first three
attributes are the ability to recognize or reason about transitivity in the context of length, size,
and weight. The tasks also place differential load on an examinee’s working memory capacity
(Carpenter, Just, & Shell, 1990; Kyllonen & Christal, 1990). Thus, the next three cognitive
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attributes correspond to three levels of working memory capacity: (1) manipulating the first two
premises given in a task in working memory; (2) manipulating a third task premise, if it is given;
and (3) manipulating a fourth task premise, if it is given.

The issue is not strictly model-data fit. If the objective is to know whether particular students
can focus on a transitive reasoning strategy in the context of weight problems, the total score on the
nine items—the central examinee statistic in Rasch and monotone homogeneity models—will not
help. Similarly, an LLTM can determine whether additional working memory load makes tasks more
difficult on average, but it cannot indicate whether a particular examinee has difficulty maintaining
a third premise in solving transitive reasoning problems. Models that partition the data into signal
and noise differently than unidimensional IRT models are clearly needed.

Two IRT-Like Cognitive Assessment Models

Two discrete latent attribute models are described. These allow both for modeling the cognitive
loads of items and for inferences about the cognitive attributes of examinees. In both models, the
latent variable is a vector of 0s and 1s for each examinee, indicating the absence or presence of
particular cognitive attributes. Table 2 shows which attributes the examinee needed to perform
each task correctly.

Table 2
Decomposition of Tasks Into

Hypothetical Cognitive Attributes

Context Premise
Length Size Weight 1st/2nd 3rd 4th

Qjk 1 2 3 4 5 6
1 1 0 0 1 0 0
2 1 0 0 1 1 0
3 1 0 0 1 1 1
4 0 1 0 1 0 0
5 0 1 0 1 1 0
6 0 1 0 1 1 1
7 0 0 1 1 0 0
8 0 0 1 1 1 0
9 0 0 1 1 1 1

To describe these models, consider N examinees and J binary task performance variables. A
fixed set of K cognitive attributes are involved in performing these tasks (different subsets of
attributes might be involved in different tasks). For both models,

Xij = 1 or 0, indicating whether examinee i performed task j correctly;

Qjk = 1 or 0, indicating whether attribute k is relevant to task j ; and

αik = 1 or 0, indicating whether examinee i possesses attribute k. (5)

Qjk are fixed in advance, similar to the design matrix in an LLTM. The Qjk can be assembled into
a Q matrix (Tatsuoka, 1995). Figure 1 illustrates the structure defined by Xij , Qjk and αik as a
Bayesian network.

The objective is to make inferences about the latent variables αik , indicating cognitive attributes
that examinees do or do not possess, or inferences about the relationship between these attributes and
observed task performance. Both models are easily specified using the latent response framework
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Figure 1
A One-Layer Bayesian Network for Conjunctive

Discrete Cognitive Attributes Models

(Maris, 1995), which is closely related to the notion of data augmentation in statistical estimation
(Tanner, 1996).

The DINA Model

The deterministic inputs, noisy “and” gate model (called the DINA model) has been the foundation
of several approaches to cognitive diagnosis and assessment (Doignon & Falmagne, 1999; Tatsuoka,
1995). It was considered in detail by Haertel (1989; also Macready & Dayton, 1977), who identified
it as a restricted latent class model. In the DINA model, latent response variables are defined as

ξij =
∏

k:Qjk=1

αik =
K∏
k=1

α
Qjk
ik , (6)

indicating whether examinee i has all the attributes required for task j . In Tatsuoka’s (1995)
terminology, the latent vectors αi· = (αi1, αi2, . . . , αiK) are called knowledge states, and the
vectors ξi· = (ξi1, ξi2, . . . , ξiJ ) are called ideal response patterns—they represent a deterministic
prediction of task performance from each examinee’s knowledge state.

The latent response variables ξij are related to observed task performances Xij according to the
probabilities

sj = P
(
Xij = 0|ξij = 1

)
(7)

and

gj = P
(
Xij = 1|ξij = 0

)
, (8)

where sj and gj are error probabilities—false negative and false positive rates—in a simple signal
detection model for detecting ξij from noisy observations Xij . sj and gj were selected to be
mnemonic, thinking of examinees’ slips and guesses, but genuine slipping and guessing behavior
might be the least important reason for observingXij �= ξij . Other reasons include poor wording of
the task description, inadequate specification of the Q matrix, use of an alternative solution strategy
by the examinee, and general lack of model fit. DiBello, Stout, & Roussos (1995) addressed this
issue in their discussion of the positivity of a task with respect to a cognitive attribute (see below).
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The IRF for a single task is

P
(
Xij = 1|ααα, s, g) = (1 − sj )

ξij g
1−ξij
j ≡ Pj (αi·) . (9)

Each ξij acts as an “and” gate (i.e., it is a binary function of binary inputs with value 1 if and

only if all the inputs are 1s), combining the deterministic inputs α
Qjk
ik . Each Xij is modeled as a

noisy observation of each ξij (cf. VanLehn et al., 1998). Equation 9 makes it clear that Pj (αi·) is
coordinate-wise monotone in αi· if and only if 1 − sj > gj . Assuming LI among examinees, the
joint likelihood for all responses under the DINA model is

P(Xij = xij , ∀ i, j |ααα, s, g) =
N∏
i=1

J∏
j=1

Pj (αi·)xij [1 − Pj (αi·)]1−xij

=
N∏
i=1

J∏
j=1

[
(1 − sj )

xij s
1−xij
j

]ξij [
g
xij
j (1 − gj )

1−xij
]1−ξij

. (10)

The NIDA Model

The noisy inputs, deterministic “and” gate model (called the NIDA model) was recently discussed
by Maris (1999) and has been used as a building block in more elaborate cognitive diagnosis models
(DiBello et al., 1995). In the NIDA model, Xij , Qjk , and αik are taken from Equation 5 and the
latent variable ηijk = 1 or 0 is defined, indicating whether examinee i’s performance in the context
of task j is consistent with possessing attribute k.

The ηijk are related to the examinee’s αi· according to the probabilities

sk = P
(
ηijk = 0|αik = 1,Qjk = 1

)
, (11)

gk = P
(
ηijk = 1|αik = 0,Qjk = 1

)
, (12)

and

P
(
ηijk = 1|αik = a,Qjk = 0

) ≡ 1 , (13)

regardless of the value a of αik . The definition in Equation 13 simplifies writing several expressions
below, and does not restrict the model in any way. sk and gk are mnemonically named false negative
and false positive error probabilities in a signal detection model for detecting αik from noisy ηijk .
Observed task performance is related to the latent response variables through

Xij =
∏

k:Qjk=1

ηijk =
K∏
k=1

ηijk . (14)

Thus, the IRF is

P(Xij = 1|ααα, s, g) =
K∏
k=1

P
(
ηijk = 1|αik,Qjk

) =
K∏
k=1

[
(1 − sk)

αik g
1−αik
k

]Qjk

=
K∏
k=1

(
1 − sk

gk

)αikQjk K∏
k=1

g
Qjk
k ≡ Pj (αi·) . (15)
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For the NIDA model, noisy inputs ηijk , reflecting attributes αik in examinees, are combined in a
deterministic “and” gate Xij . Again, the IRF is monotone in the coordinates of αi· as long as
(1 − sk) > gk . The joint model for all responses in the NIDA model is

P(Xij = xij , ∀ i, j |ααα, s, g) =
N∏
i=1

J∏
j=1

Pj (αi·)xij [1 − Pj (αi·)]1−xij

=
N∏
i=1

J∏
j=1

{
K∏
k=1

[
(1 − sk)

αik g
1−αik
k

]Qjk}xij {
1 −

K∏
k=1

[
(1 − sk)

αik g
1−αik
k

]Qjk}1−xij
. (16)

Exploring Monotonicity

The DINA and NIDA models are stochastic conjunctive models for task performance. Under
monotonicity (1 − s > g), examinees must possess all attributes listed for each task to maximize
the probability of successful performance. The DINA and NIDA models also are restricted latent
class models (Haertel, 1989), and therefore closely related to IRT models, as suggested by Equations
10 and 16. [If Pj (αi·) were replaced with Pj (θi), the setting would be IRT: αi· plays the role of the
latent variable θi , and sk and gk play the role of βj .] These models also can be seen as one-layer
Bayesian inference networks for discrete variables (Mislevy, 1996; VanLehn et al., 1998) for task
performance (see Figure 1). In general, Bayesian network models do not need to be conjunctive
(e.g., Heckerman, 1998), but when examinees are presumed to be using a single strategy, conjunctive
models seem natural (e.g., DiBello et al., 1995).

Method. To explore whether monotonicity actually holds in real data, BUGS (Version 0.6;
Spiegelhalter et al., 1996) was used to fit the DINA and NIDA models to the dichotomous DEDSTRAT

data using the Q matrix in Table 2. Bayesian formulations of the models were used. Population
probabilities πk = P [αik = 1] were assumed to have independent, uniform priors Unif[0, 1] on
the unit interval. Independent, flat priors Unif[0, gmax] and Unif[0, smax] also were used on the
false positive error probabilities g1, g2, . . . , and false negative error probabilities s1, s2, . . . , in
each model. When gmax and smax are small, these priors tend to favor error probabilities satisfying
1−s > g. gmax and smax also were estimated in the model, using Unif[0, 1] hyperprior distributions.

For each model, the Markov chain monte carlo (MCMC) algorithm compiled by BUGS ran five
times, for 3,000 steps each, from various randomly selected starting points. The first 2,000 steps
of each chain were discarded as burn-in, and the remaining 1,000 steps were thinned by retaining
every fifth observation. Thus, there were 200 observations per chain. Both models showed evidence
of under-identification (slow convergence and multiple maxima), as was expected (Maris, 1999;
Tatsuoka, 1995).

Results. Tables 3 and 4 list tentative expected a posteriori (EAP) and posterior standard devia-
tions (PSDs) for each set of error probabilities in the two models, using 1,000 MCMC steps obtained
by pooling the five thinned chains for each model. Most of the point estimates satisfied monotonic-
ity [1 − s > g (or equivalently, g + s < 1)]. The exceptions were the error probabilities for Tasks
4 and 8 under the DINA model. The posterior probabilities in each model that 1 − s > g for each
task (DINA model) or latent attribute (NIDA model) were near .50. Although this did not contradict
the hypothesis that monotonicity held, it was not strongly confirmed.

In the DINA model, Tasks 5 and 6 (all examinees scored 0) yielded the estimates ĝj = P̂ [Xij =
1|ξij = 0] = .002 (PSD = .002). Except for these two tasks, all error probabilities in the DINA model
were near their prior means with fairly large PSDs, suggesting that the attributes outlined in Table 2
were not very predictive of successful task performance.
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Table 3
Tentative EAP Estimates and PSDs

for ĝj and ŝj in the DINA Model

ĝj ŝj [(1 − ĝj )/ĝj ]×
j EAP PSD EAP PSD 1 − ŝj > ĝj [(1 − ŝj )/ŝj ]
1 .478 .167 .486 .277 yes 1.15
2 .363 .162 .487 .281 yes 1.85
3 .419 .255 .479 .292 yes 1.51
4 .657 .199 .488 .279 no .55
5 .002 .002 .462 .270 yes 581.09
6 .002 .002 .464 .270 yes 576.43
7 .391 .420 .486 .274 yes 1.65
8 .539 .242 .489 .275 no .89
9 .411 .162 .480 .283 yes 1.55

Maximum .910 .081 .910 .079

However, the error probabilities in the NIDA model seemed to move farther from their prior means,
in some cases with relatively small PSDs. Attributes 4, 5, and 6, indicating increasing cognitive load,
had decreasing gks and generally increasing sks, reflecting the successively increasing difficulty of
tasks involving these attributes. The EAP estimates of gmax and smax in both models were above
.870 with small PSDs. This reflects the large PSDs (and, therefore, large estimation uncertainty)
associated with at least some of the error probabilities in each model. It also suggests that the prior
preference for monotonicity (1 − s > g) was not very strong—the mild evidence for monotonicity
seen in the model fit might reflect the data and not the prior distribution choices.

Table 4
Tentative EAP Estimates and PSDs for

ĝk and ŝk in the NIDA Model

ĝk ŝk

k EAP PSD EAP PSD 1 − ŝk > ĝk (1 − ŝk)/ĝk log(1 − ŝk)/ĝk

1 .467 .364 .369 .392 yes 1.351 .301
2 .749 .207 .161 .125 yes 1.120 .113
3 .764 .246 .005 .009 yes 1.302 .264
4 .364 .319 .163 .318 yes 2.299 .833
5 .176 .168 .785 .129 yes 1.222 .200
6 .061 .115 .597 .294 yes 6.607 1.888

Maximum .877 .109 .877 .108

A NIRT Perspective on Cognitive Assessment Models

One strength of the NIRT approach is that it encourages researchers to consider fundamental
model properties that are important for inference about latent variables from observed data.

Data Summaries Relevant to Parameter Estimation

The DINA model. Junker (2001) considered the DINA model as a possible starting place for
formulating a NIRT for cognitive assessment models. Using calculations for the complete conditional
distributions often employed in MCMC estimation algorithms, he showed that:
1. Estimation of the “slip” probabilities sj were sensitive only to an examinee’s Xij on tasks for

which he/she was hypothesized to have all the requisite cognitive attributes (ξij = 1).
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2. Estimation of the “guessing” probabilities gj depended only on an examinee’s Xij on tasks
for which one or more attributes was hypothesized to be missing (ξij = 0).

3. Estimation of αik , indicating possession of attribute k by examinee i, was sensitive only to
performance on those tasks for which examinee i was already hypothesized to possess all
other requisite cognitive attributes.

The posterior odds of αik = 1, conditional on the data and all other parameters are (Junker, 2001)

J∏
j=1

(
sj

1 − gj

)ξ
(−k)
ij Qjk

·
J∏
j=1


(

1 − gj

gj
· 1 − sj

sj

)ξ
(−k)
ij Qjk



xij

· π
α
ik(1)

παik(0)
, (17)

where

ξ
(−k)
ij =

∏
#�=k:Qj#=1

αi# , (18)

which indicates the presence of all attributes needed for task j except attribute k. παik(1)/π
α
ik(0) are

the prior odds. The first product in Equation 17 is constant in the data. The second product shows
that the odds of αik = 1 are multiplied by [(1 − gj )/gj ] × [(1 − sj )/sj ] for each additional correct
task j , assuming that task j involves attribute k, and that all other attributes needed for task j have
been mastered. Otherwise, there is no change in the odds. If monotonicity holds, this multiplier
is greater than 1. Table 3 shows that these multipliers ranged from .55 to 1.85, except for Tasks 5
and 6. (Tasks 5 and 6 had very high multipliers because the model was able to estimate gj s near
zero, because no one correctly answered those tasks.) Combining the influence of these multipliers
with the effect of ξ (−k)ij (Equation 18), it can be seen that correctly answering additional tasks in
this model might not appreciably change the odds that an examinee possesses any one of the latent
attributes (cf. VanLehn et al., 1998).

The NIDA model. A Bayesian version of the NIDA model is considered. Equation 16 is multi-
plied by unspecified, independent priors

π(s) =
∏
k

πsk (sk), π(g) =
∏
k

π
g
k (gk) (19)

and

π(ααα) =
∏
ik

παik(αααik) . (20)

The complete conditional distribution for any parameter, such as the “guessing” probability gk ,
is proportional to the product of those factors in Equation 16 containing gk and the prior density
π
g
k (gk). For gk , this is

∏
i:αik=0

∏
j :Qjk=1

(
cikgk

)xij (
1 − cikgk

)1−xij
π
g
k (gk) , (21)

where

cik =
∏
#�=k

[
(1 − s#)

αi#g
1−αi#
#

]Qj#

. (22)
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Similarly, the complete conditional distribution for each sk is proportional to

∏
i:αik=1

∏
j :Qjk=1

[
cik(1 − sk)

]xij [
1 − cik(1 − sk)

]1−xij
πsk (sk) . (23)

Estimates of gk depend precisely on those task responses for which attribute k was required of
the examinee but he/she did not possess. sk depends on those task responses for which attribute k
was required of and possessed by the examinee.

The complete conditional distribution for each latent attribute indicator αik is proportional to

[
cik(1 − sk)

αik g
1−αik
k

]mi
k
[
1 − cik(1 − sk)

αik g
1−αik
k

]nk−mi
k
παik(αik) , (24)

where

mi
k =

∑
j :Qjk=1

xij =
J∑
j=1

xijQjk = number of tasks correct involving attribute k, (25)

and

ηk =
J∑
j=1

Qjk = total number of tasks involving attribute k. (26)

The posterior odds of αik = 1, conditional on the data and all other parameters, is equal to

(
1 − sk)

gk

)mi
k

[
1 − cik(1 − sk)

1 − cikgk

]nk−mi
k

· π
α
ik(1)

παik(0)
, (27)

for the NIDA model.
When monotonicity (1 − sk > gk) holds, the first term (in parentheses) in Equation 27 is greater

than 1 and the second term (in brackets) is less than 1. Thus, the odds of αik = 1 increase as
mi
k increases. Essentially, the conditional odds of αik = 1 are multiplied by (1 − sk)/gk for each

additional correct task involving attribute k. This is done regardless of the examinee’s status on the
other attributes. (cik in Equation 22 is typically less than 10−5, so the second term in Equation 27
is negligible.)

Table 4 shows that these multipliers ranged approximately from 1.1–1.4, except for the higher
multipliers for Attribute 4 (cognitive capacity to handle the first two premises in a task) and Attribute
6 (cognitive capacity to handle the fourth premise in a task). Attribute 4 had moderately low
estimated guessing and slip probabilities; Attribute 6 had a very low estimated guessing probability.
This increased the model’s certainty that each of these two attributes was possessed when an
examinee correctly accomplished a task depending on that attribute.

Hartz, DiBello, & Stout (2000) noted that (1 − sk)/gk measures what DiBello et al. (1995) call
positivity, which is approximately the extent to which task performance is a deterministic function
of the knowledge state αi·. Analysis of Equation 27 shows that attributes with high positivity are
strongly credited in the NIDA model when the corresponding tasks are performed well. Comparing
Equation 17 with Equation 27 shows that the posterior odds of αik = 1 tend to be more sensitive to
the data under the NIDA model than under the DINA model.
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Three NIRT Monotonicity Properties

For models satisfying LI, monotonicity, and low dimensionality, it follows immediately from
Lemma 2 of Holland & Rosenbaum (1986) that for any nondecreasing summary g(X) of X =
(X1, . . . , XJ ), E[g(X)|αi·] is nondecreasing in each coordinate αik of αi·. This implies SOM

(Hemker et al., 1997)—P [X+ > c|αi·] is nondecreasing in each coordinate αik of αi·. Little is
known about SOL (Hemker et al., 1997)—P [αi1 > c1, . . . , αik > ck|X+ = s]—when the latent trait
is multidimensional. A weaker property related to SOL is that

P


αik = 1

∣∣∣∣αi1, . . . , αi(k−1), αi(k+1), . . . αiK and
∑

j :Qjk=1

Xij = s


 (28)

is nondecreasing in s, with all other parameters fixed.
For the NIDA model, Equation 28 is immediate from Equation 27, because by Equation 25,

mi
k = ∑

j :Qjk=1 Xij in Equation 28. However, Equation 28 does not need to hold for the DINA

model, as Equation 17 shows. If the products of odds [(1 − gj )/gj ] × [(1 − sj )/sj ] vary greatly,
Equation 17 does not need to be monotone in mi

k = ∑
j :Qjk=1 Xij .

Finally, a new type of monotonicity condition seems plausible for some cognitive assessment
models. In a standard monotone unidimensional IRT model, higher θ is associated with higher
probability of correctly performing a task. A corresponding property in NIDA and DINA models
might focus on the relationship between the number of task-relevant latent attributes the examinee
has and the probability of correct task performance. It might be required that the IRFs in Equations
9 and 15 be nondecreasing in

mij =
K∑
k=1

αikQjk = number of task-relevant attributes possessed. (29)

This monotonicity property is immediate for the DINA model when 1 − sj > gj , because

Pj (αi·) = (1 − sj )
ξij g

1−ξij
j (30)

equals gj as long as mij <
∑K

k=1 Qjk , and changes to 1 − sj when mij = ∑K
k=1 Qjk .

For the NIDA model, this monotonicity condition is generally not true. In the NIDA model,

Pj (αi·) =
K∏
k=1

[(1 − sk)/gk]αikQjk
K∏
k=1

g
Qjk
k (31)

varies with mij through the first term, because j is held fixed. The logarithm of this term is∑K
k=1 αikQjklog(1 − sk)/gk . Fixing i and j , setting ek = αikQjk and pk = log(1 − sk)/gk , mono-

tonicity of Pj (αi·) in mij is equivalent to

min
e:e+=s+1

K∑
k=1

ekpk ≥ max
e:e+=s

K∑
k=1

ekpk , (32)

for each s, where e = (e1, . . . , eK) and e+ = ∑
k ek . This constrains the variability of pk =

log(1 − sk)/gk . When the eks are unrestricted, Equation 32 is equivalent to

s0+1∑
k=1

p′
k ≥

K∑
k=K−s0+1

p′
k , (33)
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where p′
k are the pk renumbered so that p′

1 ≤ p′
2 ≤ . . . ≤ p′

K , and s0 is the largest integer not
exceeding (K − 1)/2. Equation 32 holds for all s and all e if and only if it holds for s0 and those
es that allocate the smallest s0 + 1 ps to one sum and the largest s0 ps to the other. When Equation
32 or Equation 33 holds, all IRFs in the NIDA model are monotone in mij .

For the NIDA parameter estimates in Table 4, p′
1 + p′

2 + p′
3 = .577 < 2.721 = p′

5 + p′
6. Thus,

there is no guarantee of monotonicity for all Pj (αi·) in mij . However, the eks are restricted by the
Qjks. In the transitive reasoning data, Qjk limited the number of attributes that could affect each
task to two, three, or four. The two-attribute tasks (Tasks 1, 4, and 7) had IRFs that were monotone
in mij . On the other hand, none of the other tasks had monotone IRFs. In Table 4, the problem
is the vast disparity between Attribute 4 (maintaining the first two premises of a task), with p4 =
.833, and Attribute 5 (maintaining the third premise), with p5 = .200. Task 2 involved Attributes
1, 4, and 5, for example, and p1 + p5 < p4, violating the condition in Equation 32. Hence, P2(αi·)
cannot be monotone in mi2.

Conclusions

Even when the fit is good, standard unidimensional IRT modeling might not be as relevant as
some discrete attributes models, if the goal of testing is cognitive assessment or diagnosis. Two
conjunctive cognitive attributes models, the DINA and NIDA models, have been shown to satisfy
familiar multidimensional generalizations of standard IRT assumptions. Thus, intuitions about the
behavior and interpretation of multidimensional IRT models carry over, at least in part, to these
newer models.

In a transitive reasoning example, interesting structure was found at the cognitive attributes level,
despite the data having been designed to fit the Rasch model. It is probable that data designed to
be informative about a handful of cognitive attributes through the DINA or NIDA models would fare
quite well in terms of model fit and ability to infer the presence or absence of particular attributes.

Relating model parameters to simple and useful data summaries is important when computational
machinery is not available (e.g., in embedded assessments; cf. Wilson & Sloane, 2000). For
example, a natural new monotonicity condition was considered, which asserts that the more task-
relevant skills an examinee possesses, the easier the task should be. This property comes “almost
for free” in one of the two models considered here, and it places interesting constraints on the
parameters of the other model. Some model parameters also were related here to simple and useful
data summaries, such as the number of tasks correctly performed involving a particular attribute.
This is a beginning toward a clearer theory of which data summaries are relevant to the cognitive
inferences desired over a wide variety of cognitive assessment models (cf. Junker, 2001). Such a
theory would be an important contribution from the interface between NIRT and PIRT methodology.
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