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Abstract

In this paper we present an evaluation of a
proof of concept for a novebehavior ori-
entedapproach to authoring and maintaining
domain specific knowledge sources for robust
sentence-level language understanding. What
we mean by behavior oriented is that Carmel-
Tools provides a layer of abstraction between
the author and the knowledge sources, free-
ing up the author to focus on the desired lan-
guage processingehaviorthat is desired in
the target system rather than the linguistic de-
tails of the knowledge sources that would make
this behavior possible. Furthermore, Carmel-
Tools offers greater flexibility in output rep-
resentation than the context-free rewrite rules
produced by previous semantic authoring tools,
allowing authors to design their own predicate
language representations.
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havior possible. Thus, Carmel-Tools is meant to make
the knowledge source engineering process accessible to
a broader audience. Our evaluation demonstrates how
Carmel-Tools can be used to interpret sentences in the
physics domain as part of a content-based approach to
automatic essay grading.

Sentence:The man is moving horizontally at a constant
velocity with the pumpkin.

Predicate Language Representation:

((velocity id1 man horizontal constant non-zero)
(velocity id2 pumpkin ?dir ?mag-change ?mag-zero)
(rel-value id3 id1 id2 equal))

Gloss: The constant, nonzero, horizontal velocity of the
man is equal to the velocity of the pumpkin.

Figure 1: Simple example of how Carmel-Tools builds
knowledge sources that are capable of assigning repre-
sentations to sentences that are not constrained to mirror
the exact wording, structure, or literal surface meaning of
the sentence.

One of the major obstacles that currently makes it imprac-

tical for language technology applications to make use of Current authoring tools for building semantic knowl-
sophisticated approaches to natural language understaedge sources, such as GATE (Cunningham et al., 2003)
ing, such as deep semantic analysis and domain level remzd Alembic (Jay et al., 1997), are tailored for informa-
soning, is the tremendous expense involved in authorirgn extraction tasks that emphasize the identification of

and maintaining domain specific knowledge sources. Inamed entities such as people, locations, organizations,
this paper we describe an evaluation of Carmel-Tools astates, and addresses. While regular expression based rec-
proof of concept for a novddehavior orientechpproach ognizers, such as JAPE (Cunningham et al., 2000), used
to authoring and maintaining domain specific knowledgéor information extraction systems, are not strictly lim-
sources for robust sentence-level language understariigdd to these standard entity types, it is not clear how
ing. What we mean by behavior oriented is that Carmethey would handle concepts that express complex rela-
Tools provides a layer of abstraction between the authdionships between entities, where the complexity in the
and the knowledge sources, freeing up the author to f@onceptual representation can be realized with a much
cus on the desired language procesdirbaviorthat is greater degree of surface syntactic variation. Outside
desired in the target system rather than the linguistic def the information extraction domain, a concept acqui-
tails of the knowledge sources that would make this besition grammar authoring environment called SGStudio



(Wang and Acero, 2003) offers similar functionality tocause of the important role of language in the learning
JAPE for building language understanding modules foprocess (Chi et al., 2001), and because of the unique de-
speech-based dialogue systems, with similar limitationsnands educational applications place on the technology,
Carmel-Tools aims to overcome this limitation by induc-especially where detailed feedback based on student lan-
ing patterns that match against a deep syntactic pargaage input is offered to students, educational applica-
rather than a stream of words, in order to normalize a$ons are as a field ripe for harvest for computational lin-
much surface syntactic variation as possible, and thus rguists.

ducing the number of patterns that the learned rules MUStThe area of automated essay grading has enjoyed a
account for. Furthermore, Carmel-Tools offers greateg oo+ qeal of success at applying shallow language pro-
erX|l_3|I|ty in output representation than the QonteXt'fr_eecessing techniques to the problem of assigning general
rewrite ruIe_s produced by previous semantic ?Uthor'nguality measures to student essays (Burstein et al., 1998;
tools, allowing authors to design their own predlcate lane itz et al., 1998). The problem of providing reliable, de-
guage representations that are not constrained to followe content-based feedback to students is a more diffi-
ﬂ:e structulre ofdth_e Input ftext (See F|gure| lfora S'lm'cult problem, however, that involves identifying individ-
ple example and Figure 2 for a more complex example.) | hieces of content (Christie, 2003), sometimes called
This flexibility allows a wider range of linguistic expres- «,,cwer aspects” (Wiemer-Hastings et al., 1998). Previ-
sions that express the same idea to b(_a represented.mfsw’ tutorial dialogue systems such asT®-TUTOR
same way. While language understanding systems Wiy iemer.Hastings et al., 1998) and Research Methods
this style of analysis are not a new idea, the contributiOﬁlutor (Malatesta et al., 2002) have used LSA to per-
of this work is a set of authoring tools that allow non-, ., 4 analysis of the correct answer aspects present
linguists to auth(_)r Fhe semantic knowledge sources. Rﬁi extended student explanations. While straightfor-
sults from a prellmlnary user _study_show that users witl) .4 applications of bag of words approaches such as
very little exposure to Imgwstscs (e, one und_ergraduLSA have performed successfully on the content analy-
ate cou_rse) have the skills to perform with the mterfacgis task in domains such as Computer Literacy (Wiemer-
almost identically to_ex_p_ert language technologies graq%astings et al., 1998), they have been demonstrated to
uate students and §|gn|flcqntly better th,an users with rlﬂarform poorly in causal domains such as research meth-
formal exposure to linguistics at all (Rosé, submitted). ods (Malatesta et al., 2002) and physics (Rosé et al.,

i Note that the pred!ce_lte language rep_resen_tatlon Ut2’003) because they base their predictions only on the
lized by Carmel-Tools is in the style of Davidsonian even, s included in a text and not on the functional rela-
based semantics (Hobbs, 1985). For example, in Figushins hetween them. Key phrase spotting approaches
1 notice that the first argument of each predicate is a\,., a5 (Christie, 2003) fall prey to the same problem.
|dent|f|(?at|or! _tok(.an that represents the whole predlcatg\. hybrid rule learning approach to classification involv-
These |dent|f|cat|on tokens can then be bound to argyﬁg both statistical and symbolic features has been shown
ments of other predicates, and in that way be used t0 repy o torm better than LSA and Naive Bayes classifica-
resent relat|0nsh|ps between predlcat_es. For example, tﬁ?n (McCallum and Nigam, 1998) for content analysis
rel -val ue predicate expresses the idea that the predi; yhe physics domain (Roseé et al., 2003). Nevertheless,
cates indicated byd1 andi d2 are equal in value. trained approaches such as this perform poorly on low-
frequency classes and can be too coarse grained to pro-
vide enough information to the system for it to provide
While the knowledge source authoring technology prethe kind of detailed feedback human tutors offer students
sented in this paper is not specific to any particular agLepper et al.,, 1993) unless an extensive hierarchy of
plication area, this work is motivated by a need withinclasses that represent subtle differences in contentds use
a growing community of researchers working on edu¢Popescue et al., 2003). Popescue et al. (2003) present
cational applications of Natural Language Processing tnpressive results at using a symbolic classification ap-
extract detailed information from student language inpuproach involving hand-written rules for performing a de-
to be used for formulating specific feedback directed atiled assessment of student explanations in the Geome-
the details of what the student has uttered. Such applicaty domain. Their approach was able to achieve an agree-
tions include tutorial dialogue systems (Zinn et al., 2002ment of .74 with a human judge on the task of classifying
Popescue et al., 2003) and writing coaches that perfori®0 student utterances into a hierarchy of 198 classes, us-
detailed assessments of writing content (Rosé et al.,;2008g Cohen’s Kappa (Cohen, 1960), in comparison with a
Wiemer-Hastings et al., 1998; Malatesta et al., 2002) dsuman-human agreement score of .88 on the same task.
opposed to just grammar (Lonsdale and Strong-KrausBule based approaches have also shown promise in non-
2003), and provide detailed feedback rather than just leéducational domains. For example, an approach to adapt-
ter grades (Burstein et al., 1998; Foltz et al., 1998). Bang the generic rule based MACE system for informa-
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tion extraction has achieved an F-measure of 82.2% wgérsion of the sentence and positive for the passive ver-
the ACE task (Maynard et al., 2002). Authoring tools forsion. A verb’s direct object is assigned thbj role re-
speeding up and simplifying the task of writing symbolicgardless of where it appears in relation to the verb. Fur-
rules for assessing the content in student essays woultermore, constituents that are shared between more than
make it more practical to take advantage of the benefitme verb, for example a noun phrase that is the object of
of rule based assessment approaches. a verb as well as the subject of a relative clause modi-
fier, will be assigned both roles, in that way “undoing”
3 Carmel-Tools Interpretation Framework the relative clause extraction. In order to do this analy-
sis reliably, the component of the grammar that performs
the deep syntactic analysis of verb argument functional
Sentence:During the fall of the elevator the man and  relationships was generated automatically from a feature
the keys have the same constant downward acceleratiofepresentation for each of 91 of COMLEX’s verb subcat-

that the elevator has. egorization tags (Rosé et al., 2002). Altogether there are
519 syntactic configurations of a verb in relation to its ar-
Predicate Language Representation: guments covered by the 91 subcategorization tags, all of
((rel-time id0 id1 id2 equal) which are covered by the CARMEL grammar.
(body-state id1 elevator freefall) CARMEL provides an interface to allow semantic in-
(and id2 id3 id4) - terpretation to operate in parallel with syntactic interpr
(rel-value id3 id5 id7 equal) tation at parse time in a lexicon driven fashion (Rosé,

(rel-value id4 id6 id6 equal) 2000). Domain specific semantic knowledge is encoded

(acceleration id5 man down constant non-zero) declaratively within a meaning representation specifica-
(acceleration id6 keys down constant non-zero) tion. Semantic constructor functions are compiled au-
(acceleration id7 elevator down constant non-zero))  gmatically from this specification and then linked into

o lexical entries. Based on syntactic head/argument rela-
Gloss: The elevator is in a state of freefall at the same tionships assigned at parse time, the constructor func-

time when there is an equivalence between the elevatoggns enforce semantic selectional restrictions and assem
acceleration and the constant downward nonzero ble meaning representation structures by composing the
acceleration of both the man and the keys meaning representation associated with the constructor
function with the meaning representation of each of its
Figure 2: Example of how deep syntactic analysis faciliarguments. After the parser produces a semantic feature
tates uncovering complex relationships encoded syntacttructure representation of the sentence, predicate map-
cally within a sentence ping rules then match against that representation in or-
der to produce a predicate language representation in the
One of the goals behind the design of Carmel-Tools istyle of Davidsonian event based semantics (Davidson,
to leverage off of the normalization over surface syntacl967; Hobbs, 1985), as mentioned above. The predicate
tic variation that deep syntactic analysis provides. Whil@apping stage is the key to the great flexibility in repre-
our approach is not specific to a particular framework fogentation that Carmel-Tools is able to offer. The mapping
deep syntactic analysis, we have chosen to build updhles perform two functions. First, they match a feature
the publicly available LCEEX robust parser (Roseé et al., Structure pattern to a predicate language representation.
2002), the CARMEL grammar and semantic interpretaNext, they express where in the feature structure to look
tion framework (Rosé, 2000), and the COMLEX lexiconfor the bindings of the uninstantiated variables that are
(Grishman et al., 1994). This same interpretation framepart of the associated predicate language representation.
work has already been used in a number of education@ecause the rules match against feature structure patterns
applications including (Zinn et al., 2002; VanLehn et al.and are thus above the word level, and because the pred-
2002). icate language representations associated with them can
Syntactic feature structures produced by the CARMEIP€ arbitrarily complex, the mapping process is decompo-
grammar normalize those aspects of Syntax that modiﬁjtional in manner but is not constrained to rlgldly follow
the surface realization of a sentence but do not chandfée structure of the text.
its deep functional analysis. These aspects include tenseFigure 2 illustrates the power in the pairing between
negation, mood, modality, and syntactic transformationdeep functional analyses and the predicate language rep-
such as passivization and extraction. Thus, a sentenmsentation. The deep syntactic analysis of the sentence
and it's otherwise equivalent passive counterpart woulthakes it possible to uncover the fact that the expression
be encoded with the same set of functional relationship%onstant downward acceleration” applies to the acceler-
but the passive feature would be negative for the activation of all three entities mentioned in the sentence. The
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coordination in the subject of the sentence makes it poseurces by hand for this framework, the author would be
sible to infer that both the acceleration of the man and aksponsible for building an ontology for the semantic fea-
the keys are individually in an equative relationship withture structure representation produced by the parse, link
the acceleration of the elevator. The identification toing pointers into this hierarchy into entries in the lexicon
ken of theand predicate allows the whole representatiorand writing predicate mapping rules. With Carmel-Tools,
of the matrix clause to be referred to in thel -ti me  the author never has to deal directly with these knowledge
predicate that represents the fact that the equative relssurces. The Carmel-Tools authoring process involves
tionships hold at the same time as the elevator is in a stadesigning a Predicate Language Definition, augmenting
of freefall. But individual predicates, each representinghe base lexical resources by either loading raw human
a part of the meaning of the whole sentence, can also lhaoring corpora or entering example texts by hand, and
referred to individually if desired using their own identi- annotating example texts with their corresponding rep-
fication tokens. resentation in the defined Predicate Language Defini-
tion. From this authored knowledge, CARMEL’s seman-
4 Carmel-Tools Authoring Process tic knowledge sources can be generated and compiled.
The author can then test the compiled knowledge sources
%4nd then continue the authoring process by updating the
Predicate Language Definition, loading additional cor-

The purpose of Carmel-Tools is to insulate the authg
from the details of the underlying domain specific knowl-
edge sources. If an author were building knowledge
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pora, annotating additional examples, or modifying al4.1 Defining the Predicate Language Definition

ready annotated examples. The author may begin the authoring process by designing

the propositional language that will be the output repre-
sentation from CARMEL using the authored knowledge

The Carmel-Tools authoring process was designed &PUrCes. This is done on the Predicf’:\te Language Defini-
eliminate the most time-consuming parts of the authofion page of the Carmel-Tools GUI interface, displayed
ing process. In particular, its GUI interface guides aul? Figure 3. The author is completely free to develop a
thors in such a way as to prevent them from introducinfEPresentation language that is as simple or complex as
inconsistencies between knowledge sources. For exafi-réquired by the type of reasoning, if any, that will be
ple, a GUI interface for entering propositional representz2Pplied to the output representations by the tutoring sys-
tions for example texts insures that the entered represdfM as it formulates its response to the student's natural
tation is consistent with the author’s Predicate Languagd@nguage input.

Definition. Compiled knowledge sources contain point- The interface includes facilities for defining a list of
ers back to the annotated examples that are responsipf&dicates and Tokens to be used in constructing proposi-
for their creation. Thus, it is also able to provide troydional analyses. Each predicate is associated with a basic
bleshooting facilities to help authors track down potenPredicate type, which is a associated with a list of argu-
tial sources for incorrect analyses generated from confo€nts. Each basic predicate type argument is itself asso-
piled knowledge sources. When changes are made to thigted with a type that defines the range of atomic values,
Predicate Language Definition, Carmel-Tools is able tyhich may be tokens or identifier tokens referring to in-
test whether each proposed change would cause confli§tntiated predicates, that can be bound to it. Thus, to-
with any annotated example texts. An example of suckens also have types. Each token has one or more basic
a change would be deleting an argument from a predioken types. Besides basic predicate types and basic to-
cate type where some example has as part of its anaken types, we also allow the definition of abstract types
sis an instantiation of a predicate with that type wheréat can subsume other types.

that argument is bound. If so, it lists these example text
for the author and requires the author to modify the an-
notated examples first in such a way that the proposed
change will not cause a conflict, in this case that wouldVhen the predicate language definition is defined, the
mean uninstantiating the variable that the author desireext step is to generate the domain specific lexical re-
to remove. In cases where changes would not cause asgurces and annotate example sentences with their corre-
conflict, such as adding an argument to a predicate typgsponding representation within this defined predicate lan-
renaming a predicate, token, or type, or removing an aguage. The author begins this process on the Example
gument that is not bound in any instantiated propositioriylap Page, displayed in Figure 4.

these changes are made everywhere in the database autd@zarmel-Tools provides facilities for loading a raw hu-
matically. man tutoring corpus file. Carmel-Tools then makes a list

.2 Generating Lexical Resources and Annotating
Example Sentences



of each unique morpheme it finds in the file and then augesentation, which is a more general mapping.

ments both its base lexicon (using entries from COM- Templates can be made more general by entering para-
LEX), in order to include all morphemes found in thephrases for portions of template patterns. Internally what
transcript file that were not already included in the basthis accomplishes is that all paraphrases listed can be in-
lexicon, and the spelling corrector’s word list, so that iterpreted by CARMEL as having the same meaning so
includes all morphological forms of the new lexical en-that they can be treated as interchangeable in the context
tries. It also segments the file into a list of student serwf this template. A paraphrase can be entered either as a
tence strings, which are then loaded into a Corpus Expecific string or as a Defined Type, including any type
amples list, which appears on the right hand side of theéefined in the Predicate Language Definition. What this
interface. Searching and sorting facilities are provided tmeans is that the selected span of text can be replaced by
make it easy for authors to find sentences that have cetny span of text that can be interpreted in such a way that
tain things in common in order to organize the list of senits predicate representation’s type is subsumed by the in-
tences extracted from the raw corpus file in a convenieulicated type. This allows a high level of generalization in
way. For example, &ort By Similarity button templates.

causes Carmel-Tools to sort the list of sentences accord-

ing to their respective similarity to a given text string ac4.3 Compiling Knowledge Sources

cording to an LSA match betyveen the example string anlgach template that is created during the authoring pro-
each corpus sentencet The mterfage also |n(_:ludes the s corresponds to one or more elements of each of
ken List gnd the Predicate List, with a_\II deflned_ token§he required domain specific knowledge sources, namely
and predicates that are part of the defined predicate [afjj ontology, the lexicon with semantic pointers, and the
guage. When t_he aut.hor_cllc_ks on a predlgate or tOl@[ﬁredicate mapping rules. Using the automatically gener-
the Examples list beside it will display the I!st of anNO-5te knowledge sources, most of the “work” for mapping
tated _e>§amples that have bet_an annotated with an analyﬁ'ﬁovel text onto its predicate language representation is
containing that token or predicate. done either by the deep syntactic analysis, where a lot of
Figure 5 displays how individual texts are annotatedsurface syntactic variation is factored out, and during the
The Analysis box displays the propositional representgredicate mapping phase, where feature structure patterns
tion of the example text. This analysis is constructedre mapped onto their corresponding predicate language
using theAdd Token, Del et e, Add Predi cate, representations. The primary purpose of the sentence
andModi fy Predi cat e buttons, as well as their sub- level ontology that is used to generate a semantic fea-
windows, which are not shown. Once the analysis is erure structure at parse time is primarily for the purpose of
tered, the author may indicate the compositional breakimiting the ambiguity produced by the parser. Very little
down of the example text by associating spans of texjeneralization is obtained by the semantic feature struc-
with parts of the analysis by means of tBpt i onal tures created by the automatically generated knowledge
Mat ch and Mandat ory Mat ch buttons. For exam- sources over that provided by the deep syntactic analysis
ple, the noun phrase “the man” corresponds torthe  alone. By default, the automatically generated ontology
token, which is bound in two places. Each time a matchontains a semantic concept corresponding to each word
takes place, the Carmel-Tools internal data structures crappearing in at least one annotated example. A semantic
ate one or more templates that show how pieces of sypeinter to that concept is then inserted into all lexical en-
tactic analyses corresponding to spans of text are matcheuks for the associated word that were used in one of the
up with their corresponding propositional representatiorannotated examples. An exception occurs where para-
From this match Carmel-Tools infers both that “the manphrases are entered into feature structure represergation
is a way of expressing the meaning of timen token in  In this case, a semantic pointer is entered not only into the
text and that the subject of the vérbl d can be boundto entry for the word from the sentence, but also the words
the?body1 argument of thddecomne predicate. By de- from the paraphrase list, allowing all of the words in the
composing example texts in this way, Carmel-Tools conparaphrase list to be treated as equivalent at parse time.
structs templates that are general and can be reusedTine process is a bit more involved in the case of verbs.
multiple annotated examples. Itis these created templatlsthis case it is necessary to infer based on the parses of
that form the basis for all compiled semantic knowledgéhe examples where the verb appears which set of sub-
sources. The list of templates that indicates the hierarchtategorization tags are consistent, thus limiting the set
cal breakdown of this example text are displayed in thef verb entries for each verb that will be associated with
Templates list on the right hand side of Figure 5. Not@ semantic pointer, and thus which entries can be used
that while the author matches spans to text to portioret parse time in semantic interpretation mode. Carmel-
of the meaning representation, the tool stores mappindsols makes this choice by considering both which argu-
betweerfeature structuresind portions of meaning rep- ments are present with that verb in the complete database



of annotated examples as well as how the examples wepected performance. We assigned each sentence a score
broken down at the matching stage. All non-extractedf None, Bad, Partial, or Acceptable. A grade of None
arguments are considered mandatory. All extracted argindicates that no interpretation was built by the gram-
ments are considered optional. Each COMLEX subcahar. Bad indicates that parses were generated, but they
tag is associated with a set of licensed arguments. Thusntained errorfull functional relationships between-con
subcat tags are considered consistent if the set of licensstituents. Partial indicates that no parse was generated
arguments contains at least all mandatory arguments atitht covered the entire sentence, but the portions that were
doesn't license any arguments that are not either mandeempletely correct for at least one interpretation of the
tory or optional. Predicate mapping rules are generatesbntence. Acceptable indicates that a complete parse was
for each template by first converting the correspondinfuilt that contained no incorrect functional relationghip
syntactic feature structure into the semantic representdi-any word of the sentence was not covered, it was one
tion defined by the automatically generated ontology anthat would not change the meaning of the sentence. For
lexicon with semantic pointers. Predicate mapping rulesxample, “he had the same velocity as you had” is the
are then created that map the resulting semantic featulsame as “he had the same velocity as you”, so if “did”
structure into the associated predicate language represaras not part of the final parse but other than that, the

tation. parse was fine, it was counted as Acceptable. Overall the
) coverage of the grammar was very good. 166 sentences
5 Evaluation were graded Acceptable, which is about 83% of the cor-

An initial evaluation was run for the physics domain. WePUs: 8 received a grade of Partial, 26 Bad, and 1 None.
used for our evaluation a corpus of essays written by stu- We then applied the same set of grades to the quality
dents in response to 5 simple qualitative physics quegf the predicate language output. In this case, a grade
tions such as “If a man is standing in an elevator holdof Acceptable meant that all aspects of intended mean-
ing his keys in front of his face, and if the cable hold-ing were accounted for, and no misleading information
ing the elevator snaps and the man then lets go of th#as encoded. Partial indicated that some non-trivial part
keys, what will be the relationship between the positio®f the intended meaning was communicated. Any in-
of the keys and that of the man as the elevator falls to tHerpretation containing any misleading information was
ground? Explain why.” A predicate language definitiorcounted as Bad. If no predicate language representa-
was designed consisting of 40 predicates, 31 predication was returned, the sentence was graded as None. As
types, 160 tokens, 37 token types, and 15 abstract typ&xpected, grades for semantic interpretation were not as
The language was meant to be able to represent phydigh as for syntactic analysis. In particular, 107 were as-
ical objects mentioned in our set of physics problemssigned a grade of Acceptable, 45 were assigned a grade
body states (e.g., freefall, contact, non-contact), quantof Partial, 36 were assigned a grade of Bad, and 14 re-
ties that can be measured (e.g., force, velocity, accelegeived a nil interpretation. Our evaluation demonstrates
ation, speed, etc.), features of these quantities (e.g., dihat knowledge generated from annotated examples can
rection, magnitude, etc.), comparisons between quantie used to interpret novel sentences, however, there are
ties (equivalence, non-equivalence, relative size, ivglat Still gaps in the coverage of the automatically generated
time, relative location), physics laws, and dependency rénowledge sources that need to be filled in with new an-
lations. An initial set of 250 example sentences was themotated examples. Furthermore, the small but noticeable
annotated, including sentences from each of a set of @rcentage of bad interpretations indicates that some pre-
physics problems. viously annotated examples need to be modified in order
Next a set of 202 novel test sentences, each betweeriaiprevent these bad interpretations from being generated.
and 64 words long, was extracted from the corpus. Since
comparisons, such as between the accelerations of objects
in freefall together, are important for the reasoning in al
of the questions used for corpus collection, we focused
the coverage evaluation specifically on sentences pertaifi- this paper we have introduced Carmel-Tools, a tool
ing to comparisons, such as in Figures 1 and 2. The gost for quick authoring of semantic knowledge sources.
of the evaluation was to test the extent to which knowlOur evaluation demonstrates that the semantic knowledge

edge generated from annotated examples generalizess@irces inferred from examples annotated using Carmel-

novel examples. Tools generalize to novel sentences. We are continuing
Since obtaining the correct predicate language repréd Work to enhance the ability of Carmel-Tools to learn

sentation requires obtaining a correct syntactic parse, vi@neralizable knowledge from examples as well as to im-

first evaluated CARMEL's syntactic coverage over th@rove the user friendliness of the interface.

corpus of test sentences to obtain an upper bound for ex-

Current Directions
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