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Abstract: For cross-pollination between ITS authoring tools, it may be use-
ful to know the prevalence of tutoring behaviors crafted with these tools. As a 
case study, we analyze the problem units of Mathtutor, a web-based intelligent 
tutor for middle-school mathematics built, as an example-tracing tutor, with the 
Cognitive Tutor Authoring Tools (CTAT). We focus on tutoring behaviors that 
are relevant to a wide range of tutoring systems, not just example-tracing tutors, 
including behaviors not found in VanLehn’s (2006) taxonomy of tutor behav-
iors. Our analysis reveals that several tutor behaviors not typically highlighted 
in the ITS literature were used extensively, sometimes in unanticipated ways. 
Others were less prevalent than expected. This novel insight into the prevalence 
of tutor behaviors may provide practical guidance to ITS authoring tool devel-
opers. At a theoretical level, it extends VanLehn’s taxonomy of tutor behavior, 
potentially expanding how the field conceptualizes ITS behavior.  
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1 Introduction 

Versatile, robust, easy-to-use, and easy-to-learn tools for authoring ITSs are an im-
portant development [1][2][3] and may be key to making ITS widespread. In develop-
ing an ITS authoring tool, a key question is: What tutor behaviors should the tool 
support? VanLehn’s classic taxonomy of tutor behaviors [4] provides one possible 
answer. This taxonomy was induced by theoretically analyzing six ITSs. On the other 
hand, ITS authoring tools may provide a unique practical perspective that may not be 
fully captured in this taxonomy. This may be so especially if the tool has had a long 
life and seen widespread use; it may gradually have acquired features aimed at sup-
porting a wide range of tutoring behaviors. If many tutors or tutor units have been 
built with the tool, we can measure the frequency of key tutor behaviors in these tu-
tors. We present a case study, focusing on the Cognitive Tutor Authoring Tools 
(CTAT) [1], which support an ITS technology called example-tracing tutors. Over the 
years, many tutors have been built with CTAT and these tools have been honed and 
extended based on the needs of these projects. It is thus an interesting question which 
tutor behaviors are prevalent in CTAT-built tutors. We focus on one such tutor, Math-
tutor, [5], one of a number of web-based ITS for middle-school mathematics (cf. AS-
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SISTments [3] and Wayang Outpost [6]). A distinguishing characteristic may be that 
Mathtutor supports more complex problem-solving scenarios.  

Our investigation focuses on a set of tutor behaviors commonly found in many 
ITSs and not specific to example-tracing tutors. It includes some behaviors not found 
in VanLehn’s taxonomy [4].  Some of these behaviors were described in our prior 
publications [1], but we have not previously undertaken a systematic analysis of their 
use or frequency, nor are we aware of any other projects reported in the ITS literature 
that did so. Baker et al. created a taxonomy of tutor features to investigate students’ 
gaming behaviors [7], but this taxonomy was too fine-grained for current purposes, 
nor did it focus on tutor behavior exclusively. 

The work contributes to the ITS literature both at a practical and theoretical level. 
At a practical level, insight into the prevalence of tutoring behaviors may provide 
guidance for developers of ITS authoring tools. At a theoretical level, our analysis 
enriches theoretical accounts of tutor behavior by extending VanLehn’s (2006) taxon-
omy of ITS behaviors. 

2 Overview of Mathtutor and CTAT 

Mathtutor [5] covers five content strands for mathematics in grades 6 through 8: (1) 
numbers and operations, (2) algebra, (3) data analysis, (4) geometry and (5) ratios and 
proportional reasoning. It is a re-implementation, as an example-tracing tutor, of a set 
of Cognitive Tutors for middle-school mathematics created prior to CTAT’s incep-
tion. Mathtutor offers 65 units, each comprising between 8 and 30 problems for stu-
dents to solve. So far, Mathtutor has been used by 2,215 students, who completed a 
total of 31,918 problems in 1,258 hours of work. Mathtutor was built by a team of 
authors that included professional staff, many student interns, and teachers. A goal 
was to reproduce the tutor behaviors of the original Cognitive Tutors, adhering to a 
model of tutoring that is encoded in eight Cognitive Tutor principles [8]. This model 
prescribes making thinking visible by breaking problems into steps and providing 
step-level guidance such as next-step hints and feedback.  

Example-tracing tutors can be built with CTAT through a combination of end-user 
programming techniques such as drag-and-drop interface building, programming by 
demonstration, Excel-like formula writing, and template-based problem generation 
[1]. An author first decides for which problems to provide tutoring and conducts cog-
nitive task analysis to identify solution steps, common major and minor strategy var-
iations, and common errors (although given that Mathtutor is a reimplementation of 
existing tutor units, this information was instead gleaned from the existing units). She 
then creates a user interface for each of the targeted problem types, which lays out the 
steps of the problems. Using CTAT’s Behavior Recorder, the author creates a “behav-
ior graph” that defines acceptable solution strategies. An author can generalize a be-
havior graph in a number of ways, so that it can stand for a wider range of problem-
solving behavior than literally just what is recorded in the graph. The author also 
writes hints and feedback messages. At student run time, the tutor uses the graph to 
interpret student problem-solving behavior and to provide hints and feedback.  
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3 Analysis of tutoring behaviors supported in Mathtutor 

Our analysis focuses on the following inner-loop (i.e., within-problem, step-level) 
tutor behaviors: error-specific feedback, multiple solution paths; dynamic interfaces; 
accepting complex input, notational variants, and minor step dependencies; input 
substitution; partial ordering of steps; and optional and repeatable steps. Of these, 
only error-specific feedback is included in VanLehn’s taxonomy [4]. We analyzed the 
897 behavior graphs that make up the 65 Mathtutor units. We ran awk scripts over the 
behavior graphs, generating a table with information about 33,950 behavior graph 
links. We then used Excel PivotTables to compute the statistics reported below.  

3.1 Error feedback messages 

First, we investigated the prevalence of error-specific feedback messages. These 
messages react to specific student errors and explain for example why the error is an 
error. We found that error-specific feedback messages are present in 38 out of 65 
Mathtutor units (58% of units). Across all tutor units, 21% of links represent errors 
(as opposed to correct problem-solving steps). Thus, although error-specific feedback 
messages are used frequently, it is clear that the Mathtutor authors made no attempt to 
systematically cover the majority of errors. If they had, there would be many more 
error links than correct action links. In Mathtutor, students can rely on on-demand 
hints, rather than error-specific feedback, if they do not understand how to solve a 
step. Nonetheless, the high prevalence of error-specific feedback suggests that ITS 
authoring tools should support them.  

3.2 Multiple solution paths 

Next, we investigated to what degree, in the Mathtutor units, the tutor is capable of 
following students with respect to multiple strategies within a single problem [13]. 
Surprisingly, the ability to support multiple strategies within a given problem is not 
mentioned in many theoretical accounts of intelligent tutors (e.g., [4]), possibly be-
cause it is assumed to be present. Not all ITSs however appear to support multiple 
strategies or solution paths within a problem, so this ability should not be taken for 
granted. Example-tracing tutors offer two main ways of authoring tutors that can ac-
cept multiple solution strategies within a problem. First, an author can create multiple 
paths in a behavior graph. For example, in a Mathtutor unit dealing with proportional 
reasoning, the tutor recognizes two major strategies, Equivalent Fractions and Cross 
Multiplication. These major strategy variations are captured as two separate branches 
in the behavior graph. Second, as discussed below, an author can use formulas, regu-
lar expressions, or numeric ranges to capture minor strategy variations, 

Approximately 30% of Mathtutor units have behavior graphs with multiple solu-
tion paths. This percentage was lower than expected, especially when one considers 
that multiple paths were often used to capture notational variants rather than genuine-
ly different strategies. It may be that from a pedagogical perspective, accommodating 
multiple strategies within a single problem is not always high priority or even desira-



ble. It is often difficult for students to practice a single strategy to mastery, let alone 
multiple. Also, even when the goal is for students to learn multiple strategies, the tutor 
may still need to offer single-strategy problems, to make sure all strategies are prac-
ticed. Nonetheless, we recommend that ITS and ITS authoring tools be able to ac-
commodate multiple solution strategies [9].  

3.3 Dynamically adjusting the tutor interface to the state of problem solving 

Next, we consider dynamic interfaces, that is, interfaces that change at specific 
points in the problem-solving process. Using CTAT, authors can create dynamic in-
terfaces without programming, by adding links in the behavior graph that capture 
“tutor-performed actions” (TPAs) [1]. Dynamic interfaces are used in 35% of Math-
tutor’s units, for a variety purposes. Often they are used to manage limited screen real 
estate, when there is not enough space to accommodate all required interface compo-
nents simultaneously. Another common use of dynamic interfaces is to reveal the 
steps in tutor problems gradually, as the student progresses through the problem, ra-
ther than displaying all the steps from the start, to enforce on orderly problem-solving 
process.  

3.4 Variable steps, including dependencies among steps 

A third category of behaviors comprises variable (or non-literal) steps, which an 
author can create by attaching formulas, regular expressions, and other matchers to 
behavior graph links. Formulas were used far more extensively than we anticipated, 
namely, in 54 out of 65 units (83% of the units). Their most common use in Mathtutor 
is to capture notational variants of student input. For instance, on steps where students 
enter an arithmetic expression, a formula is needed to deal with the range of equiva-
lent expressions that students enter. In other tutor units, formulas were used to accept 
notational variations such as “40” and “40%.” Formulas were also used to express 
dependencies among steps. For example, in a unit dealing with proportional reason-
ing, students compared two proportions  (e.g., what is a better deal, buying 12 tickets 
for $18 or 20 of the same tickets for $25?) by first choosing a suitable “comparison 
number” (e.g., a number of tickets, such as 4) and then scaling the proportions to this 
comparison number. Formulas were used to capture the multiple options for the com-
parison number and also to capture how later steps depend on that number.  

3.5 Input substitution 

Input substitution refers to the behavior in which the tutor replaces student input by a 
different expression of that input, when the input is accepted as correct. A common 
use is to replace text typed by the student by a spelling-corrected version, or to re-
place an arithmetic expression by the value to which it evaluates. The latter form of 
input substitution makes the cell function as a simple calculator, for example in units 
in which the student masters arithmetic and the instructional objectives focus on other 
aspects of mathematics. Input substitution is used in 21 of the 65 Mathtutor units 
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(32% of units). In addition to evaluating arithmetic expression, input substitution was 
used for formatting student input (e.g., avoiding many decimals, making sure a per-
cent sign is included, and money notation). The prevalence of input substitution in 
Mathtutor suggests that this functionality is important in a real-world ITS.  

3.6 Partial ordering of steps 

In creating a tutor, it is often desirable to constrain the order in which students carry 
out problem steps, although without restricting students to a single ordering of steps. 
In some mathematical procedures, the order of steps matters (e.g., order of operations, 
or processing columns right-to-left in multi-column addition). At other times, the 
order of steps does not matter mathematically, but it matters for creating an effective 
tutor, for example because it can be difficult to give good hints for a step when prior 
steps to which the hint refers have not been completed. In CTAT, an author can set 
whether overall the tutor should treat a problem as ordered or unordered. In addition, 
an author can define groups of links and designate them as ordered or unordered. The 
tutor only accepts steps that conform to the author-specified ordering constraints. Of 
the 65 Mathtutor units, the authors defined ordered or unordered groups in 40 units. 
Thus, it is clear that authors often want to define a partial ordering of problem steps.  

3.7 Optional and repeatable steps 

In tutored problem solving it is often desirable to make steps optional, meaning 
that they are not required for completing the problem. Similarly, it is useful to make 
steps repeatable, meaning that they can be, or have to be, done multiple times within a 
given tutor problem.  In CTAT, authors can create optional and repeatable steps by 
specifying a lower and upper bound on the number of times a link in a behavior graph 
can be “traversed” as the student solves the given problem. Optional links are used in 
15 units, or 23% of Mathtutor units, repeatable links in only 3 of the 65 units. Optional 
links are used primarily to provide optional scaffolding within a problem (i.e., extra 
steps with tutor guidance that may be helpful but not necessary for all students). 
Sometimes, optional links were used for actions that are mathematically correct but 
not strictly necessary, such as entering leading or trailing zeros for decimal numbers.  

4 Conclusion 

To the best of our knowledge, this paper is the first that reports on the frequency of 
tutor behaviors in an ITS. We focus on a set of common inner-loop behaviors includ-
ing some that are not included in VanLehn’s taxonomy [4] and that are rarely if ever 
mentioned in theoretical accounts of ITSs. A striking finding is the frequent use of 
formulas (over 80% of Mathtutor units use them) to capture input variations and (less 
frequently) dependencies among steps. We also found that dynamic interfaces are 
used frequently, that great attention is paid in Mathtutor to being able to accept nota-
tional variations in input and to replace student input with a different expression of it 



(input substitution). On the other hand, flexibility in following students with respect 
to multiple problem solution paths was more rare than expected, even if it is still a 
highly desirable tutor behavior that ITS authoring tools should support.  

The tutor behaviors discussed in this paper are not specific to example-tracing tu-
tors; they are likely to cut across many types of tutors. At the same time, it seems 
likely that the reported prevalence of these behaviors is somewhat specific to mathe-
matics at the middle-school level. Further, the particular frequencies may be some-
what specific to the tutoring paradigm used, based on Cognitive Tutor principles. It is 
an interesting question how much variability there is among authors in terms of what 
tutoring behaviors are used. We do not, however, have data to answer that question. 

A limitation of the work is that it involves only a single tutoring system and only a 
single authoring tool, albeit a comprehensive tutoring system that has seen substantial 
classroom use, and an authoring tool whose range of tutoring behaviors may be wide 
and shaped substantially by demands from the field. It will be useful to repeat this 
type of analysis across many tools and tutor-building projects.  

Practically, the work might provide guidance to developers of ITS authoring tools. 
At a theoretical level, the work elaborates the range of inner loop functionality identi-
fied by VanLehn [4], advancing our field’s conceptualization of tutor behaviors.  
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