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Abstract. The current generation of intelligent tutoring systems (ITS) have success-
fully produced learning gains without the use of natural language technology, but the
goal for the next generation is to add natural language dialogue capabilities. Since it
is already a tremendous effort to add domain and pedagogical knowledge to the cur-
rent generation of ITSs, adding natural language dialogue capabilities can further in-
crease the development time by requiring that language knowledge also be engineered.
Rather than having natural language knowledge become an additional engineering bur-
den, we seek to build tools that will allow us to attack the problem of pedagogical and
language knowledge engineering in tandem. In this paper, we describe the authoring
tool suite we are building to address this problem. We have found that our prototype
tools do facilitate the rapid development of natural language dialogue interfaces for
ITSs. With these tools we were able to build knowledge sources for our dialogue in-
terface to an ITS in only 3 man months. The resulting dialogue system was able to
hold natural language dialogues with students on 50 physics concepts and students
showed significant learning gains over seeing only monologue text hints [8].

1 Introduction

While the current generation of intelligent tutoring systems (ITS) have successfully produced
learning gains [1, 4] without the use of natural language technology, the goal for the next
generation is to add natural language dialogue capabilities. By doing so, ITS users will be
able to type their answers and clarification questions in natural language in addition to using
existing graphical user interfaces to communicate with the ITS.

Although it is already a tremendous effort to add domain and pedagogical knowledge
to the current generation of ITS, adding natural language dialogue capabilities can further
increase the development time by requiring that language knowledge also be engineered.
Rather than having natural language knowledge become an additional engineering burden,
we seek to build tools that will allow us to attack the problem of pedagogical and language
knowledge engineering in tandem. In this paper, we describe the authoring tool suite we are
building to address this problem. We have found that our prototype tools do facilitate the
rapid development of natural language dialogue interfaces for intelligent tutoring systems.
With these tools we were able to build knowledge sources for our dialogue system in only 3
man months. The resulting dialogue system was able to hold natural language dialogues with
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students on 50 physics concepts and students showed significant learning gains over seeing
only monologue text hints [8].

2 Background

Our tool suite was developed in the context of the Atlas project with the goal of assisting
and semi-automating the authoring of all the domain specific knowledge sources required to
apply the Atlas architecture in a specific tutoring system [3].

Currently, the Atlas architecture is being developed and integrated with the Andes physics
tutoring system [11]. Atlas’ task is to interact with students via natural language dialogue and
encourage them to infer or construct target knowledge when Andes indicates they need this
help during problem solving. This particular type of dialogue is called a knowledge construc-
tion dialogue (KCD). For example, Andes might simply tell the student that when an object
moving in a straight line is slowing down, its acceleration is in the opposite direction to its
velocity. Atlas will instead try to draw that knowledge out of the student with a dialogue like
the one shown in Figure 1, where the student derives the target principle from a deeper one.
KCDs are intended to provide deeper knowledge by connecting principles, relating them to
common sense knowledge, and giving the student practice in talking about them.

1. T: Here’s an example that you can use to remind yourself of the direction of a body’s acceleration vector
when it is slowing down. If a ball is rolling to the right and you want to stop it, which way do you have to
push?

2. S: left

3. T: So then which way would the acceleration vector be pointing?

4. S: up

5. T: Since force is mass times acceleration, and mass is a scalar quantity, how would you expect the direction
of the force vector and that of the associated acceleration vector to be related to one another?

6. S: same

7. T: If you push left, what direction is the associated force vector pointing?

8. S: left

9. T: So then which way is the acceleration vector pointing?

10. S: left

11. T: Whenever an object is slowing down, the net force acting on the object is opposite its direction of
motion. Thus, when an object is slowing down, the direction of its acceleration is also opposite its direction
of motion.

Figure 1: Dialogue excerpt from the Atlas-Andes evaluation corpus

Our basic approach for Atlas is to represent knowledge construction dialogues (KCDs)
as networks of pushdown automaton (PDA). States correspond to tutor utterances (usually
questions), arcs correspond to correct student responses, and pushes to incorrect student re-
sponses. Pushes call a subdialogue and pops return from one. Finite state networks are often
used in spoken language dialogue systems (e.g. [7, 12] inter alia), so it makes sense to start
with this basic approach and try to overcome their limitations.

Atlas, as shown in Figure 2, uses a robust parsing approach (CARMEL [10]) to understand
the student’s input and match it to expected inputs and a reactive planner (APE [2]) to manage
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the dialogue by choosing and expressing the states that correspond to the tutor’s responses
to students. However to improve upon the finite state approach, we consider more than the
expected arcs for the current tutor state so that if the student answers questions that we would
have asked later in the current path, it will not ask it again but may just remind the student of
what he had said at the appropriate time.
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Figure 2: Atlas and the KCD Tool Suite

So far, Atlas is focusing on KCDs that teach domain principles for a small portion of
physics and covers 50 principles. The prospect of building knowledge construction dialogues
to cover this many principles was daunting enough to motivate us to expand our plans for
building knowledge acquisition tools.

3 The tool suite overview

As shown in Figure 2, there are four tools that currently comprise the KCD authoring tool
suite: (1) an editor 2) a commenter 3) a plan operator compiler and 4) a semantic rule com-
piler. Each of the tools uses a common KCD grammar which represents the target PDA. The
two main outputs of the current prototype version of the tool suite are operators for the APE
tutorial dialogue planner [2] and a semantic grammar for the CARMEL natural language
understander [9].

The editor provides a graphical user interface that allows the author to enter the dialogue
grammar by entering only the natural language strings that represent expected student dia-
logue contributions and how the tutor would respond to each of the student contributions.
The author must also relate the strings to one another in appropriate ways as will be shown
in Section 5. The editor then translates the author’s inputs into the KCD grammar.

The commenter allows other project members and other instructors to review and com-
ment on the content of the KCDs in order for the domain instructor to get feedback on ex-
planations and questions that are not clear and to get ideas for alternative ways of explaining
the same domain concepts. The commenter interprets the KCD grammar and presents the
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appropriate content strings allowing the reviewer to focus on the domain knowledge instead
of the underlying specification language.

The plan operator compiler translates the KCD grammar into domain specific reactive
planning operators that indicate how to move from one tutor state to another in response to
a classification of the student input. These operators also make use of the tutorial intentions
included in the KCD grammar by recording them in the agenda as they need to be satisfied and
in the dialogue history as they are satisfied. This record keeping allows the reactive planner
to skip around in the network so that all the transition arcs do not need to be explicitly stated
by the KCD author.

The semantic rule compiler extracts the expected student inputs from the KCD grammar,
helps the author cluster and label semantically similar inputs and then generates semantic
grammar rules that will map student inputs into the answer classes used within the plan
operators. When the student types in a response to a tutor question, it gets parsed according
to this semantic grammar and if the input is recognized by the grammar a semantic label is
assigned to it. This semantic label allows answer classes within the PDA to be identified. In
this way, Atlas can recognize expected responses that students may not have expressed with
the same words and syntax as the KCD author.

4 The KCD grammar

<Recipe> ::= <intent><steps>
<steps> ::= [<Recipe>|<goal>]+
<goal> ::= <intent><tutor-contribution>[<possible-answers>]*
<possible-answers> ::= [<part-of-answer>]+
<part-of-answer> ::= <right-part>[<wrong-part>]*
<right-part> ::= <student-contribution> EXPECTED
<wrong-part> ::= <student-contribution>|$anything else$ WRONG <possible-
remediations>
<possible-remediations> ::= [<Recipe>|<goal>]+
<intent> ::= <string describing a tutor intention>
<student-contribution> ::= "<natural language string>"
<tutor-contribution> ::= "<natural language string>"

Figure 3: Specification of the KCD Grammar

Figure 3 shows the specification language for the KCD grammar. Currently, the grammar
defines primitive actions and recipes. A primitive is defined to be a tutoring goal that is
decompositionally a leaf node in a plan structure and an associated natural language string
that realizes that primitive tutoring goal. A primitive may encode a tutor explanation or a
question for eliciting a particular piece of information or both.

Recipes are higher level tutoring goals that are defined as a sequence of any combination
of primitives and recipes [13]. This representational approach is widely used in computational
linguistics since problem-solving dialogues and text are believed to be hierarchical structured
and to reflect the problem-solving structure [5]. Tutorial intentions or goals are associated
with both recipes and primitives. In this way, the author may encode alternative ways of
achieving the same tutorial intention.
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For each primitive tutoring goal, the grammar also includes information on what to expect
from the student so that information on how to respond appropriately to the student can also
be included in the grammar. Possible student responses are categorized as expected correct
answers and a set of expected typical wrong answers. Student responses can be represented as
parts when the answers are complex and it is possible for the student to give a partially correct
answer. The reason expected student responses are broken into parts is to avoid having to list
every possible combination of right and wrong answers. For example, with the tutor question
“So what two factors influence the acceleration of an object moving along a circular path?”
there are two parts to an expected right answer: “the speed of the object and the radius of the
circular path”. These two parts may appear in any order without affecting the correctness of
the answer. Each part is independent of the others in that a student may get one part correct
while missing the other. If the student only knows one factor in the above example or is wrong
about one, then only that part gets remediated while if the student is wrong about both parts
then both can be remediated.

For each answer part, we list a number of expected, typical wrong answers. For example,
the student may have said the size of the object was a factor in the above example. For
completeness, we always include $anything else$ in case part of the answer was left out of
what the student said altogether. Every wrong answer has associated with it a list of tutorial
goals that must be achieved by the tutorial planner in order to remediate that wrong answer.

5 The KCD editor

Figure 4: Snapshot of an editing session

Our primary tool is the knowledge construction dialogue (KCD) editor. Figure 4 is a
snapshot of an editing session at the point of having inserted a new step. As can be seen
here, the editor displays independent windows (4 in this example) depending on the actions
taken within a currently active window. The author is free to move these windows around
on his desktop and can minimize or close these windows as is convenient for him. Because
the author can infinitely descend into remediations, the desktop can become cluttered and
confusing. Until we can find a better presentation metaphor, we opted to allow the author to
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manage the desktop by displaying conceptually similar parts of the KCD grammar in inde-
pendent windows. We also include a textual trace in the top of each window to indicate what
window and action in that window caused the current window to appear unless the window
is a temporary pop-up window. This trace information is provided to aid the author in his
desktop management task.

To explain the editing process in more detail, we will trace through part of the editing
process. The KCD Editor window as seen in the upper left corner of Figure 4 is always
visible and initiates and terminates editing sessions and allows the user to save the results of
a session and reload it later for additional editing.

5.1 Authoring Recipes and Primitives

In the lower left window of Figure 4, the author chose to modify the KCD for deceleration
which causes an overview of the main line of reasoning represented by the recipe to appear
in the upper right window. The recipe shows the sequence of primitives and recipes that help
realize the higher level recipe goal. Selecting a primitive step with the mouse and moving
the cursor along the string allows the author read the entire natural language string if nec-
essary. New steps can be inserted into a recipe with the before and after buttons and old
steps removed with the delete button. The natural language strings associated with primitive
actions, can be modified or entered with the modify button, and maintenance and authoring
of expected student responses can be initiated for steps that are primitives with the answer
button.

The Primitive overview window is similar to the Recipe window but allows the entry or
modification of one goal and the tutor’s natural language string to realize that goal. Mainte-
nance and authoring of expected student responses (as described in the next Section) are also
supported for primitive goals.

Returning to the editing of the deceleration KCD in Figure 4, the author next chose to
insert two new steps after the first tutor-student interaction. Here we see the author entering
in the tutor’s natural language string for the second new step in the lower right window. We
also see that there is a tutor utterance entered for the first new step but no expected student
response.

After the author completes the entry of the tutor’s string for the second new step, he will
next go back and select the first tutor-student interaction and then the answer button in the
upper right window. Doing so allows him to enter the expected student responses for this
tutor string.

5.2 Authoring Anticipated Answers

Selecting the answer button in Figure 4 causes the Expected Answers window, shown in Fig-
ure 5, to appear. This window allows the author to create or modify the parts of an expected
correct student answer to the tutor’s utterance. The natural language strings that represent ex-
pected parts of a student’s answer can be deleted or modified from this window and additional
answer parts can be added with the add &. The add

�
button allows the KCD author to add

in some alternative phrasings for the answer part. The addition of alternative phrasings is not
mandatory at this point in creating KCDs but it is helpful for the semantic grammar compila-
tion process described in Section 8. Semantically different correct answers must be added as
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Figure 5: Expected Answers window

additional answers by returning to the recipe window in Figure 4 and selecting answer again
for the same step in the recipe.

Associated with each correct answer part are sets of expected wrong answers (alternative
answers) and maintenance and authoring of these expected wrong answers can be initiated
from this window with the show alternatives button.

Figure 6: Anticipated Incorrect Answers window

Selecting the show alternatives button in Figure 5 causes the Anticipated Incorrect An-
swers window in Figure 6 to appear. This window allows the author to modify or enter addi-
tional wrong answers that he might wish to try to remediate. Since we are only dealing with
natural language strings at this point, if the remediation or response would be the same for
two very different answers then the KCD grammar author will need to specify both strings
separately but could assign the same remediation to both. A future enhancement will allow
the author to group together wrong answers that he would remediate in the same way.

Currently, the only artificial language string we allow is $anything else$. This is a default
case for when the student answer was not anticipated or is unrecognized by the natural lan-
guage understanding component of the dialogue system. However, it does allow the author to
do a very limited type of grouping of student answers so that he can assign them all the same
remediation.
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5.3 Authoring Remediations

Finally for each anticipated incorrect answer the author can initiate a remediation KCD (a
push to another KCD) from the window in Figure 6. Choosing the response button allows the
author to enter one recipe or primitive to remediate this wrong answer. If no remediation was
previously defined then the response panel window in Figure 7 appears but if one is already
defined then a recipe window or primitive window that summarizes the remediation appears.

Figure 7: Response Panel window

The Response Panel window in Figure 7 allows the KCD author to choose an existing
primitive or recipe for a remediation or to create new ones. If a new recipe or primitive is
needed for remediation then the author selects the new button within the proper bank to bring
up the appropriate blank recipe or primitive summary window (e.g. either a recipe or primitive
must be anticipated beforehand).

6 The KCD commenter

In a limited sense, the KCDs are intended to be better than naturally occurring dialogues.
Just as most text expresses its ideas more clearly than informal oral expositions, the KCD
is intended to express its ideas more clearly than the oral tutorial dialogues that human tu-
tors generate. Thus, we need a way for expert physicists, tutors and educators to critique the
KCDs and suggest improvements. Since the underlying dialogue grammar can be complex, it
is not useful to merely print it out and let experts pencil in comments. Our second tool facili-
tates this by allowing expert physicists and psychologists to navigate around the network and
enter comments on individual states (see Figure 8). It presents a dialogue in the left column,
and allows the user to enter comments in the right column. Since there are many expected
responses per tutorial contribution, the user can select a response from a pull down menu.
This causes the whole dialogue to adjust, opening up new boxes for the user’s comments.
This tool runs in a web browser, so experts can use it remotely.

7 The plan operator compiler

From the KCD grammar we can generate plan operators that are interpreted by a reactive
planning engine [2]. The engine does not simply follow the PDA. Instead, it has rudimentary
(but growing) capabilities for treating the network as a plan for the conversation that it will
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Figure 8: The KCD commenter

adapt as necessary. For instance, in the conversation of Figure 9, suppose the student said
at line 2, “The acceleration makes the velocity vector longer, so the elevator should be go-
ing faster.” The reactive planner should recognize that the student has skipped ahead in the
conversation plan, so it should have Atlas say line 7 instead of line 3.

As mentioned earlier the plan operators use the tutorial intentions in the dialogue grammar
specification to keep track of what needs to be satisfied and what has recently been satisfied.
This is part of what allows the reactive planner to skip around in the network when necessary.
As the above example shows, this allows for increased initiative on the part of the student. In
addition, the plan operator language allows for failure points. These could be due to either a
KCD failing to have the desired effect on a student or a misunderstanding of an explanation
or question. At a failure point, APE can back up and try again to satisfy an intention by trying
a different path. However, we currently have this feature turned off in the operator compiler
because we first must introduce more flexibility in generating the surface form of the tutor’s
responses.

Currently the plan operators map directly to strings but in our next version of the plan op-
erator compiler we plan to map to natural language templates and eventually to propositions.
We are in the process of investigating the possibility of merging the template authoring tool,
TATTOO, which is part of the YAG architecture for dialogue generation [6], with the KCD
editor. Whether we succeed or not at the tool merger, we are independently considering using
YAG for natural language surface form generation.
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1. T: As you know, you can think of an acceleration vector as changing a velocity vector by pulling on its tip.
In this case, the elevators velocity vector points straight down and you drew its acceleration vector pointing
down too. What does your acceleration vector do to the velocity vector?

2. S: It stretches it downward.

3. T: Does that make it longer?

4. S: Yes.

5. T: Which means the elevator is speeding up, right?

6. S: Yeah, but its not really speeding up. Its slowing down.

7. T: Right. So maybe your acceleration vectors direction is wrong. What direction should it be?

8. S: Up.

9. T: Right. So what have you learned about the direction of acceleration when an object is moving in a straight
line and slowing down?

10. S: Its in the opposite direction from the velocity.

11. T: Yes! Thats exactly right. Good job.

Figure 9: A hypothetical dialogue between Atlas and a student

8 The semantic rule compiler

Although the authors only see and edit natural language text, we cannot expect students to
type in exactly the responses that the authors enter. To handle this variability, we translate
the expected student responses into more general semantic representations that factor out
inconsequential syntactic and lexical variations. To extract this general semantic knowledge
from the expected student input strings created during KCD authoring and relate it to the
syntactic and lexical variations, we use the semantic rule compiler. It helps the applications
engineer rapidly develop a domain specific sentence level language understanding component
in a two phase process that requires guidance and feedback from the applications engineer.

During the first stage, the semantic rule compiler presents the engineer with clusters of
input strings from the KCD grammar. The clustering is based on the degree to which strings
share content words. The engineer can pick and choose which strings belong in the cluster,
can add more strings that he composes himself or he can compose a query so that the compiler
can find other relevant input strings in the KCD grammar specification.1 The engineer then
associates conceptual labels with each cluster. For example, the engineer might cluster the
two strings “it changes direction” and “change the direction” and assign it a concept label
of � concept1 � . During the second stage, the semantic rule compiler takes the strings and
conceptual labels as input and induces semantic patterns for determining which expected
input the student’s input best matches. The learned patterns currently take the form of string
templates. For example for the two strings above the semantic rule would be � concept1 �
��� change direction. Finally the compiler associates an answer category to the concept that
the plan operators recognize.

So when the student types a response to a tutor question, CARMEL (our natural language
understanding module) stems each of the words and then parses the stemmed input using
the semantic grammar. The parser skips words as necessary to produce a parse but prefers

1This is similar to Key Word in Context (KWIC) tools.
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the parse with the least amount of skipping. Once a student input string is accepted by the
semantic rules, the appropriate concept label is assigned to the parse as well as the answer
category recognized by the plan operators.

We plan to improve the semantic rule compiler in the future so that it also takes CARMEL’s
syntactic analyses as input and generates constructor functions that will attach to CARMEL’s
lexicon. These semantic constructor functions will map CARMEL’s syntactic representation
to a semantic representation. A further improvement we have planned occurs at the end of the
second stage of the compilation. The future compiler will also generate new strings for the
conceptual labels it was given as input and the engineer can provide feedback to the learning
process in order to improve the patterns it learns. The future version of the semantic rule
compiler is described in detail in [9].

Although the semantic rule compiler is still very simple compared to the future version
we have planned, it took us only three days to create a semantic grammar for CARMEL that
supports 55 KCDs.

9 Conclusions and Current Status

Our main objective in developing our authoring tool suite was to allow instructors and devel-
opers with little or no computational linguistics expertise to rapidly develop dialogue inter-
faces for their areas of instruction. Thus, the authoring interface was designed to insulate the
author from the underlying computational linguistics aspects of dialogue planning and lan-
guage understanding. The author is free to focus fully on the most effective way for teaching
particular concepts, how misconceptions and missing knowledge manifest themselves in stu-
dent answers, and which aspects of student answers are relevant for evaluating their content.

We are willing to distribute the components of the tool suite to others in the community
who would be interested in using it but with the caution that it is still being improved and
many of the components are not yet portable to other computing environments (e.g. we de-
velop our software under the Linux operating system instead of Microsoft Windows). The
tool suite is still a work in progress because we are not yet using the full powers of APE, the
dialogue planner and manager, and CARMEL, the natural language understander.

Approximately four people have used the commenter and it appears that it does not require
special training to use. We have two KCD authors presently using the KCD editor. It takes
about one week of full-time use to become comfortable with the editor; what is more difficult
and time consuming is figuring out what to say in the KCDs. The plan operator compiler
does not require intervention and so does not require special training whereas the semantic
rule compiler does. So far only one project member has used the two compilers.

The prototype tool suite was recently used to develop knowledge sources for implement-
ing directed lines of reasoning targeting 50 physics principles covering all aspects of Newto-
nian mechanics. The entire authoring process, including initial authoring, review by collab-
orating physicists, revision, and compilations of knowledge sources required only three man
months of development time. The result was a running dialogue system that was pilot tested
with both people who have previously studied physics and with students currently enrolled in
freshman physics courses.
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[10] Carolyn P. Rosé. A framework for robust semantic interpretation. In Proceedings of the First Meeting of
the North American Chapter of the Association for Computational Linguistics, 2000.

[11] Kurt VanLehn, Reva Freedman, Pamela Jordan, Chas Murray, C. Oran, Michael Ringenberg, Carolyn
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