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Abstract. Rule-based cognitive models serve many roles in intelligent tutoring 
systems (ITS) development. They help understand student thinking and 
problem solving, help guide many aspects of the design of a tutor, and can 
function as the “smarts” of a system. Cognitive Tutors using rule-based 
cognitive models have been proven to be successful in improving student 
learning in a range of learning domain. The chapter focuses on key practical 
aspects of model development for this type of tutors and describes two models 
in significant detail. First, a simple rule-based model built for fraction addition, 
created with the Cognitive Tutor Authoring Tools, illustrates the importance of 
a model’s flexibility and its cognitive fidelity. It also illustrates the model-
tracing algorithm in greater detail than many previous publications. Second, a 
rule-based model used in the Geometry Cognitive Tutor illustrates how ease of 
engineering is a second important concern shaping a model used in a large-scale 
tutor. Although cognitive fidelity and ease of engineering are sometimes at 
odds, overall the model used in the Geometry Cognitive Tutor meets both 
concerns to a significant degree. On-going work in educational data mining 
may lead to novel techniques for improving the cognitive fidelity of models and 
thereby the effectiveness of tutors. 
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1    Introduction 

Cognitive modeling has long been an integral part of ITS development. Cognitive 
modeling is the activity of producing a detailed and precise description of the 
knowledge involved in student performance in a given task domain, including 
strategies, problem-solving principles, and knowledge of how to apply problem-
solving principles in the context of specific problems. We do not mean to restrict the 
term “cognitive model” only to models that are executable on a computer, although 
executable models are the focus of the current chapter. Rather, any precise and 
detailed description of human knowledge is a cognitive model.  

Cognitive models are useful in many ways in ITS development. They summarize 
the results of analysis of data on student thinking, which often precedes system design 
and implementation. A cognitive model can also serve as a detailed specification of 



the competencies (or skills) targeted by an ITS, and as such, can guide many aspects 
of the design of the ITS. A deep and detailed understanding of the competencies being 
targeted in any instructional design effort is likely to lead to better instruction [18]. 
Further, when a cognitive model is implemented in a language that is executable on a 
computer, it can function as the “smarts” of the ITS driving the tutoring.  

Two types of cognitive models used frequently in ITS are rule-based models [8] 
[22] [25][44] and constraint-based models [34]. Whereas rule-based models capture 
the knowledge involved in generating solutions step-by-step, constraint-based models 
express the requirements that all solutions should satisfy. Both types of models have 
been used in successful real-world ITS. For each type of model, mature and efficient 
authoring tools exist [2][35]. The current chapter focuses on the models used in 
Cognitive Tutors, a widely used type of ITS [8][28][30]. Tutors of this type use a 
rule-based model, essentially a simulation of student thinking that solves problems in 
the same way that students are learning to do. The tutor interprets student 
performance and tracks student learning in terms of the knowledge components 
defined in the cognitive model. Cognitive Tutors have been shown in many scientific 
studies to improve student learning in high-school and middle-school mathematics 
courses, and at the time of this writing, are being used in the US by about 500,000 
students annually. 

A key concern when developing cognitive models is the degree to which a model 
faithfully mimics details of human thinking and problem solving. Cognitive scientists 
have long used rule-based models as a tool to study human thinking and problem 
solving [5][39]. Their models aim to reproduce human thinking and reasoning in 
significant detail. Often, they take great care to ensure that their models observe 
properties and constraints of the human cognitive architecture. Outside of basic 
cognitive science, accurately modeling details of human cognition and problem 
solving is important in tutor development. We find it helpful to distinguish two main 
requirements. First, a model used in a tutor must be flexible in the sense that it covers 
the sometimes wide variety in students’ solution paths within the given task domain, 
as well as the different order of steps within each path. This kind of flexibility ensures 
that the tutor can follow along with students as they solve problems, regardless of 
how they go about solving them. Second, it is important that a model partitions the 
problem-solving knowledge within the given task domain in accordance with 
psychological reality. We use the term cognitive fidelity to denote this kind of 
correspondence with human cognition. As discussed further below, a model with high 
cognitive fidelity leads to a tutor that has a more accurate student model and is better 
able to adapt its instruction to individual students. To achieve flexibility and cognitive 
fidelity, it helps to perform cognitive task analysis as an integral part of model 
development. This term denotes a broad array of methods and techniques that 
cognitive scientists use to understand the knowledge, skills, and strategies involved in 
skilled performance in a given task domain, as well as the preconceptions, prior 
knowledge, and the sometimes surprising strategies with which novices approach a 
task [32]. Although cognitive task analysis and cognitive modeling tend to be (and 
should be) closely intertwined in ITS development [11], the current chapter focuses 
on cognitive modeling only.  

A third main concern in the development of cognitive models is ease of 
engineering. ITS have long been difficult to build. It has been estimated, based on the 



experience in real-world projects, that it takes about 200-300 hours of highly-skilled 
labor to produce one hour of instruction with an ITS [36][45]. Some approaches to 
building ITS, such as example-tracing tutors [1][3] and constraint-based tutors [34], 
improve upon these development times. Rule-based systems, too, have become easier 
to build due to improved authoring tools [2] and remain a popular option [20][41]. 
Nonetheless, building tutors remains a significant undertaking. In creating tutors with 
rule-based cognitive models, a significant amount of development time is devoted to 
creating the model itself. It may come as no surprise that ITS developers carefully 
engineer models so as to reduce development time. Further, being real-world software 
systems, ITS must heed such software engineering considerations as modularity, ease 
of maintenance, and scalability. Thus, the models built for real-world ITS reflect 
engineering concerns, not just flexibility and cognitive fidelity. Sometimes, these 
aspects can go hand in hand, but at other times, they conflict and must be traded off 
against each other, especially when creating large-scale systems. 

We start with a brief description of Cognitive Tutors and the way they use rule-
based models to provide tutoring. We describe two examples of cognitive models 
used in Cognitive Tutors. The first example describes a model for a relatively simple 
cognitive skill, fraction addition, and emphasizes flexibility and cognitive fidelity. 
The second example illustrates how the cognitive model of a real-world tutor, the 
Geometry Cognitive Tutor, is (arguably) a happy marriage between flexibility, 
cognitive fidelity, and ease of engineering. Although we have tried to make the 
chapter self-contained, some knowledge of ITS and some knowledge of production 
rule systems or rule-based programming languages is helpful. Although many 
excellent descriptions of model tracing and Cognitive Tutors exist 
[5][8][25][28][30][40], the current chapter focuses in greater detail than many 
previous articles on the requirements and pragmatics of authoring a model for use in a 
Cognitive Tutor. 

2   Cognitive Tutors 

Before describing examples of rule-based models used in ITS, we briefly describe 
Cognitive Tutors [30]. Like many ITS, Cognitive Tutors provide step-by-step 
guidance as a student learns a complex problem-solving skill through practice [43]. 
They typically provide the following forms of support: (a) a rich problem-solving 
environment that is designed to make “thinking visible,” for example, by prompting 
for intermediate reasoning steps, (b) feedback on the correctness of these steps, not 
just the final solution to a problem; often, multiple solution approaches are possible, 
(c) error-specific feedback messages triggered by commonly occurring errors, (d) 
context-sensitive next-step hints, usually made available at the student’s request, and 
(e) individualized problem selection, based on a detailed assessment of each 
individual student’s problem-solving skill (“cognitive mastery learning” [21]). A 
Cognitive Tutor for geometry problem solving is shown in Figure 1. This tutor, a 
precursor of which was developed in our lab, is part of a full-year geometry course, in 
which students work with the tutor about 40% of the classroom time. 

 



 
Figure 1: A Cognitive Tutor for geometry problem solving 

 
A number of studies have shown that curricula involving Cognitive Tutors lead to 

greater learning by students than the standard commercial math curricula used as 
comparison curricula [25][28]. Cognitive Tutors also have been successful 
commercially. A Pittsburgh-based company called Carnegie Learning, Inc., sells 
middle-school and high-school mathematics curricula of which Cognitive Tutors are 
integrated parts. At the time of this writing, about 500,000 students in the US use 
Cognitive Tutors as part of their regular mathematics instruction.  

Cognitive Tutors are grounded in ACT-R, a comprehensive theory of cognition and 
learning [5][9]. A key tenet of this theory is that procedural knowledge, the kind of 
knowledge that is exercised in skilled task performance, is strengthened primarily 
through practice. ACT-R stipulates further that production rules are a convenient 
formalism for describing the basic components of procedural knowledge. Each 
production rule associates particular actions with the conditions under which these 
actions are appropriate. The actions can be mental actions (e.g., a calculation in the 
head, or a decision which part of the problem to focus on next) or physical actions 
(e.g., writing down an intermediate step in problem solving). Production rules are 
commonly written in IF-THEN format, with the “THEN part” or “right-hand side” 
describing actions and the “IF-part” or “left-hand side” describing conditions under 
which these actions are appropriate.  

Reflecting the roots of this technology in the ACT-R theory, each Cognitive Tutor 
has a rule-based cognitive model as its central component. The models used in 
Cognitive Tutors are simulations of student thinking that can solve problems in the 
multiple ways that students can (or are learning to). The models can also be viewed as 
detailed specifications of the skills targeted in the instruction with the tutor. Cognitive 



Tutors use their cognitive models to provide tutoring by means of an algorithm called 
model tracing [8]. The tutor assesses and interprets students’ solution steps by 
comparing what the student does in any given situation against what the model might 
do in the same situation. The basic idea is straightforward: After each student attempt 
at solving a step in a tutor problem, the tutor runs its model to generate all possible 
next actions that the model can produce. The student action is deemed correct only if 
it is among the multiple actions that the model can take next. If the student action is 
not among the potential next steps, it is deemed incorrect. When a student action is 
deemed correct, the production rules that generate the matching action serve as an 
interpretation of the thinking process by which the student arrived at this step. This 
detailed information enables the system to track, over time, how well an individual 
student masters these skills. A popular method for doing so is a Bayesian algorithm 
called knowledge tracing [19][21], which provides an estimate of the probability that 
the student masters each targeted skill. Some cognitive models contain rules that are 
represent incorrect behavior, enabling the tutor, through the same model-tracing 
process, to recognize commonly occurring errors and provide error-specific feedback. 

 

 
Figure 2: Demo tutor for fraction addition being built with CTAT 

3    A simple example of a cognitive model 

Our first example is a simple rule-based cognitive model for fraction addition. This 
example emphasizes flexibility and cognitive fidelity; engineering concerns are in the 
background with a small model such as this. We also illustrate the model-tracing 
algorithm in the current section. The fraction addition model is not in use in a real-
world tutor, although it is a realistic model for the targeted skill. The model is part of 
a demo tutor that comes with the Cognitive Tutor Authoring Tools (CTAT)[2][3]; see 
Figure 2 for a view of this tutor as it is being authored with CTAT. These tools 



support the development of tutors with rule-based cognitive models in the Jess 
language, a commercial production rule language [23]. They also support the 
development of a different type of tutors, example-tracing tutors [1][3].  

The model captures a simple strategy in which the goal of solving a fraction 
addition problem breaks down into three subgoals: converting the fractions so they 
share a common denominator, adding the converted fractions, and (if necessary) 
reducing the resulting fraction to the lowest possible denominator. The converted 
fractions and the unreduced sum are written out as intermediate steps, as illustrated in 
the window on the left in Figure 2. In order to be useful for tutoring, the model must 
capture all valid ways of solving a problem. For example, when adding 1/6 and 3/8, 
the model is capable of generating all possible options for the common denominator, 
including 24, 48, and 624. The model must be flexible in a different way as well: It 
must (and does) generate the steps required to solve a fraction addition problem in 
any reasonable order, not just in a single fixed order. Where the task naturally 
imposes an order on the steps, on the other hand, the model captures that order (so the 
tutor enforces the order). For example, the model works on the main subgoals 
(converting the fractions, adding, reducing) in sequence, since each subgoal depends 
on the previous. But the tutor should not impose any constraints on the order of steps 
within each of these subgoals. For example, when converting the two fractions, there 
is no reason to require that students enter the two numerators and the two 
denominators in any particular order. Therefore the model is able to generate these 
observable actions (four in total) in any order.  

Now let us look at the model. The main components of a production rule model are 
its working memory and production rules. In general, working memory comprises a 
set of data structures, designed specifically for the given task domain, that represent 
the main entities in a problem and the current state of problem solving. These 
structures are called “facts,” “chunks,” or “working memory elements” depending on 
the production rule language being used. The fraction addition model was 
implemented in Jess so we will use the Jess-specific term “facts.” Each fact has 
“attributes” or “slots” that contain values, which can be other facts, atomic values 
such as numbers or strings, or lists of such values. The working memory 
representation for a given fraction addition problem (see Figure 3) contains a fact with 
key information about the problem itself as well as six additional facts representing 
six fractions: the two given fractions, the converted versions of these fractions, the 
unreduced sum, and the final answer (i.e., the reduced sum). Each fraction fact has 
slots for the numerator and denominator. These slots contain further facts that 
represent the text fields in the tutor interface in which the student enters the numerator 
and denominator of the various fractions (shown on the left in Figure 2), including the 
values that these text fields may contain. The presence of these facts in working 
memory reflects a common practice when building production rule models for 
Cognitive Tutors: working memory typically includes a representation of the 
interface, however rudimentary. The purpose of doing so is illustrated below, when 
we discuss the tutor’s model-tracing algorithm.  
In addition to the types of facts described so far, working memory contains facts 
representing the three types of subgoals mentioned above: to convert a fraction to a 
different denominator, to add two fractions with the same denominator, and to reduce 
a fraction to a lower denominator. These working memory facts can be viewed as 



representing subgoals that the student holds in her head. At the outset of a problem, 
only the given fractions are stored in working memory (as in Figure 3). The subgoals 
are generated by the rules in the course of solving a fraction addition problem.  

 

 
Figure 3: Working memory representation of the fraction addition model 
 
Now let us consider the rules that implement the simple strategy described above, 

that of solving the three subgoals in order. We start with the first subgoal, that of 
converting the two given fractions. As mentioned, the model captures multiple 
possible choices for the common denominator. One such choice (the standard strategy 
often taught in American schools) is to use the least common multiple of the two 
denominators. This solution approach is captured in the following rule (the first line 
indicates the name of the rule; capitalized, italicized font indicates variables that are 
bound to problem-specific values when the rule is used in a given problem): 

 
DETERMINE-LCD 
IF there are no subgoals 
and D1 is the denominator of the first given fraction 
and D2 is the denominator of the second given fraction 
THEN 
Set LCD to the least common denominator of D1 and D2 
Add subgoals to convert the fractions to denominator LCD 
Add a subgoal to add the two converted fractions 
 



Due to space limitations, we do not present the Jess versions of these rules. The 
interested reader could download CTAT from http://ctat.pact.cs.cm.edu, install it, and 
explore the demo model. The DETERMINE-LCD rule models a first thinking step in 
solving a fraction addition problem. The conditions of this rule, that there are two 
given fractions and no subgoals, are met at the beginning of each problem. On its 
right-hand side, the rule sets a number of subgoals, meaning that it creates facts in 
working memory that represent these subgoals. In this way, the model models 
unobservable mental actions, namely, a student’s planning, in their head, of the things 
they need to do in order to solve the problem. The DETERMINE-LCD rule does not 
actually model how to determine the least common multiple of two numbers – instead 
it uses a function call on the right-hand side of the rule. It is assumed that the student 
has learned how to determine the least common denominator prior to learning fraction 
addition, and therefore detailed modeling of that skill is not necessary.  

In addition to the DETERMINE-LCD rule, the model contains three rules that 
capture alternative solution approaches and one rule that captures a common error. A 
rule named DETERMINE-PRODUCT uses the product of the two denominators as 
the common denominator, rather than their least common multiple, but is otherwise 
the same as DETERMINE-LCD. A second rule named DETERMINE-COMMON-
MULTIPLE uses any common multiple. Although this rule is the same “in spirit” as 
the previous two, its implementation is different, due to the fact that it must generate 
any value that is a common multiple of the denominators. Rather than generate a 
random value for the common denominator (which would almost never be the value 
that the student actually used, meaning that such a rule would be useless for model 
tracing), the rule always  “happens” to use the value that the student is actually using, 
provided it is a common multiple of the two denominators. One might say the rule 
guesses right as to what the student is doing. (It is able to do so because the actual 
student value is made available to the model by the tutor architecture. The demo 
model that comes with CTAT (version 2.9 and later) provides further detail.) Third, 
when the denominators of the two fractions are the same, no conversion is necessary. 
A rule called SAME-DENOMINATORS applies in this particular situation. Finally, 
the model captures a rule that models the common error of adding the denominators 
rather than computing a common multiple. This rule, called BUG-DETERMINE-
SUM, is the same as DETERMINE-LCD and DETERMINE-PRODUCT, except that 
it sets the common denominator to the sum of the two denominators. This rule is 
marked as representing incorrect behavior, simply by including the word “BUG” in 
the name of the rule. The model contains two more rules corresponding to the subgoal 
to convert the fractions. These rules take care of converting the numerator and of 
writing out the converted fractions, once a common denominator has been 
determined.  

 
CONVERT-DENOMINATOR 
IF there is a subgoal to convert fraction F so that the denominator is D 
And the denominator for the converted fraction has not been entered yet 
THEN 
Write D as the denominator of the converted fraction 
And make a note that the denominator has been taken care of 
 



CONVERT-NUMERATOR 
IF there is a subgoal to convert fraction F so that the denominator is D 
And the numerator for the converted fraction has not been entered yet 
And the (original) numerator of F is NUM 
And the (original) denominator of F is DENOM 
THEN 
Write NUM * (D / DENOM) as the numerator of the converted fraction 
And make a note that the numerator has been taken care of 
 
The conditions of these two rules require that a common denominator has been 

determined and a “convert-fraction” subgoal has been created. That is, these rules are 
not activated (i.e., do not match working memory) until one of the “DETERMINE-
…” rules described above has been executed. On their right-hand-side, the rules 
model physical actions (“Write …”), namely, the action of entering the value for the 
denominator or numerator into the relevant text field in the tutor interface. These 
actions are modeled as modifications of facts in working memory that correspond to 
the relevant interface component, although that fact is hard to glean this from the 
pseudo code. The reader may want to look at the actual Jess code. In addition to the 
rules described so far, the model contains a number of other rules related to the other 
main subgoals, but we do not have the space to describe them.  

Let us now look at how the model-tracing algorithm uses the model to provide 
tutoring [8][10]. This algorithm is specific to ITS; it is not used in standard production 
rule systems. As discussed below, model tracing is somewhat similar to, but also very 
different from, the standard conflict-resolution method used in production rule 
systems. Simply put, model tracing is the process of figuring out, for any given 
student action in the tutor interface, what sequence of rule activations (if any) 
produces the same action. Therefore, just as standard conflict resolution, model 
tracing is about choosing from among possible rule activations. (A “rule activation” is 
the combination of a production rule and a set of bindings for its variables. Rule 
activations are created when a rule is matched against working memory. Different 
production rule languages use different terminology for this notion. “Rule activation” 
is a Jess term.) For example, at the outset of our example problem 1/6 + 3/8, a student 
might, as her first action, enter “24” as the denominator of the second converted 
fraction. (Note that this denominator is the least common multiple of the two 
denominators 6 and 8.) The fraction addition model can generate this action, starting 
with the initial working memory representation, by executing an activation of rule 
DETERMINE-LCD followed by one of CONVERT-DENOMINATOR, both 
described above. As an alternative first action, an (adventurous) student might enter 
“624” as the numerator of the first converted fraction. The model can also generate 
this action, namely, by executing activations of DETERMINE-COMMON-
MULTIPLE and CONVERT-NUMERATOR. Third, a students might (erroneously) 
enter “14” as the numerator of one of the converted fractions. The model can generate 
this action by executing activations of BUG-DETERMINE-SUM and CONVERT-
DENOMINATOR. Finally, a fourth student might enter “9” as the denominator of the 
first converted fraction. The model cannot generate this action. No sequence of rule 
activations produces this action.  



As mentioned, the purpose of model tracing is to assess student actions and to 
interpret them in terms of underlying knowledge components. The first two of our 
example actions can be “modeled” by rules in the model that represent correct 
behavior. Therefore, they are deemed correct by the model tracer (and tutor). The 
production rules that generate the observable action provide an interpretation of the 
student action in terms of underlying skills. Interestingly, the different actions are 
modeled by different rules; in other words, they are interpreted as involving different 
skills. The third student action is modeled also, but one of the rules that is involved 
represents incorrect behavior. This action is therefore considered to be incorrect. The 
tutor displays an error message associated with the rule. (“It looks like you are adding 
the denominators, but you need a common multiple.”) Since the model cannot 
generate the fourth action, the tutor will mark it to be incorrect.  

 

 
Figure 4: A Conflict Tree displayed by CTAT 

 
To figure out what sequence of rule activations will produce a given action, the 

model-tracing algorithm must explore all solution paths that the model can generate. 
Since it is not possible to know in advance what the result of executing a rule 
activation will be, without actually executing it, the model tracer must in fact execute 
rule activations as part of this exploration process. Thus, the algorithm (as 
implemented in CTAT) does a depth-first search over the space of rule activations, 
expanding each sequence of rule activations up to the point where it results in an 
observable action. The algorithm fires rule activations to examine their consequences 
(i.e., the changes made to working memory). When it backtracks, changes made to 
working memory are undone. The search stops when an action is found that matches 
the student action, or when all sequences of rule activations (up to a certain depth) 
have been tried. The space of rule activations searched by the algorithm can be 
displayed graphically as a “Conflict Tree.” CTAT provides an essential debugging 
tool for this purpose [2], shown in Figure 4. As illustrated in this figure, at the outset 
of our fractions problem 1/6 + 3/8, four different rules can be activated, 
DETERMINE-LCD, DETERMINE-PRODUCT, DETERMINE-COMMON-
MULTIPLE, and BUG-DETERMINE-SUM. Each of these activations can be 



followed by four different rule activations, two each for CONVERT-
DENOMINATOR and CONVERT-NUMERATOR. (The Conflict Tree does not 
contain activations of these rules following BUG-DETERMINE-SUM, because the 
search stops before that part of the search space is reached.) Appropriately, the 
Conflict Tree does not show any activations of the SAME-DENOMINATORS rule; 
this rule’s condition, that the two denominators are the same, is not met. 

Whenever the model tracer, in the process of building/exploring the Conflict Tree, 
encounters a rule activation that generates an observable action, it compares that 
action to the student action being evaluated. To make this comparison possible, the 
student action and the model actions are encoded in a shared language. Specifically, 
they are encoded as selection-action-input triples, the components of which represent, 
respectively, the name of the GUI component (e.g., convertDenom1), the specific 
action on this component (e.g., UpdateTextField), and the value (e.g., “624”). The 
result of each comparison is displayed on the left side of the Conflict Tree tool (see 
Figure 4), in three columns that represent the three components – selection, action, 
and input. The many rows in the Conflict Tree that have “×”s indicate model actions 
that do not match the student’s action, reflecting the fact that the model captures many 
solution paths that this particular student did not actually take. The highlighted row 
shows a match between student action and model action. The match is indicated by 
three check marks (“√”), although the highlighting makes the check marks difficult to 
see. The pop-up window shows the details of the comparison of the student action and 
the model action, information that is often helpful to a model author. 

The requirement that observable actions are described as selection-action-input 
triples brings us back to the common practice, described above, that aspects of the 
tutor interface are represented in working memory. The main purpose of doing so is to 
give the rules access, in a flexible way, to the names of the GUI components, so they 
can reference them on their right-hand side, when encoding observable actions as 
selection-action-input triples. In order for this approach to be effective, the facts in 
working memory that represent interface elements must be linked to the rest of the 
problem representation in a way that makes their “semantic” role in the problem clear. 
The pseudo code for the rules shown above does not fully describe the details; the 
interested reader is referred to the demo model that comes with CTAT. 

At a technical level, one may view the model-tracing algorithm as a new control 
strategy that replaces (or augments) the typical match-select-act control loop of 
standard production systems such as Jess (as used outside of CTAT). Rather than 
letting the model follow its own preferred solution path, as is done in the standard 
conflict resolution strategy used in standard production rule systems, the model-
tracing algorithm “forces” the model to follow the student’s solution path. At the 
same time, the student has to stay within the paths captured in the model, although she 
does need not follow just the model’s preferred path. More specifically, model tracing 
differs in two main ways from the conflict resolution methods found in most 
“standard” production rule systems. First, in the typical match-select-act cycle that 
controls a standard production system, the choice of the next rule activation to be 
fired depends only on properties of the match of the rule’s condition part with 
working memory (e.g., the specificity of the rule’s conditions, the recency of the 
match, or the time of last update of the matched working memory elements). In model 
tracing, on the other hand, the selection is based also on the observable actions that a 



rule activation generates (as part of its action part). A second difference is that the 
model tracer, as it searches for actions the model might generate, searches for (and 
selects for execution) sequences of multiple rule activations, rather than just for single 
rule activations. Put differently, standard production systems do conflict resolution 
over (a set of) single rule activations, whereas the model-tracing algorithm does 
conflict resolution over (a set of) chains of rule activations. 

Returning to one of our main themes, let us review how the requirements of 
flexibility and cognitive fidelity have helped shape the fraction addition model. First, 
consider the ways in which the model is flexible – it generates solutions with different 
common denominators and with different step order. That is, it faithfully mimics the 
expected variability of students’ problem-solving processes in terms of observable 
actions. This flexibility is motivated by pedagogical considerations. It is necessary if 
the tutor is to respond (with positive feedback) to all students’ reasonable solution 
approaches and not to impose arbitrary restrictions on student problem solving that 
make the student’s learning task harder than necessary.  

 Second, the model arguably has strong cognitive fidelity. Key strategies such as 
using the least common multiple of the two given denominators, the product of the 
two denominators, or any other common multiple of the two denominators are 
modeled by separate rules, even though they could have been modeled more easily by 
a single rule. By modeling them as separate rules, the model reflects the conjecture 
that they represent different skills that a student learns separately, as opposed to being 
different surface manifestations of the same underlying student knowledge (e.g., 
special cases of a single unified strategy). These two possibilities lead to markedly 
different predictions about learning and transfer. If skills are learned separately, then 
practice with one does not have an effect on the other. On the other hand, if seemingly 
different skills reflect a common strategy, then practice with one should lead to better 
performance on the other. Since we do not know of a “grand unified denominator 
strategy” that unifies the different approaches, we make the assumption that the 
different strategies indeed reflect separate cognitive skills that are learned separately. 
To the extent that this assumption is correct, the current model (with separate skills) 
can be said to have greater cognitive fidelity than a model that models the strategies 
with a single rule.1 It partitions the knowledge in a way that reflects the psychological 
reality of student thinking and learning, and presumably leads to accurate transfer 
predictions. 

Incidentally, the model does not contain a separate rule for the situation where one 
denominator is a multiple of the other. In this situation, the larger of the two 
denominators could serve as the common denominator, and there is no need to 
compute the product or to try to compute the least common denominator. It is quite 
possible that this strategy is learned separately as well. If so, then a model that 
modeled this strategy with a separate rule would have greater cognitive fidelity than 
the current model. 

                                                             
1 Ideally, the assumptions being made about how students solve fraction addition problems 

would be backed up by data about student thinking gathered through cognitive task analysis, 
or by results of mining student-tutor interaction data. We return to this point in the final 
section of the chapter. 



Why does such detailed attention to cognitive fidelity matter? Cognitive fidelity 
helps in making sure that a student’s successes and errors in problem solving are 
attributed to the appropriate skills or are blamed on the appropriate lack of skills. In 
turn, appropriate attribution of successes and errors helps the tutor maintain an 
accurate student model through knowledge tracing. In turn, a more accurate student 
model may lead to better task selection decisions by the tutor, since (in Cognitive 
Tutors and many other ITS), these decisions are informed by the student model [21]. 
Therefore, greater cognitive fidelity may result in more effective and/or more efficient 
student learning. So far, this prediction has not been tested empirically, although this 
very question is an active area of research. We return to this point in the final section 
of the chapter.  

4   Cognitive modeling for a real-world tutor: The Geometry Cognitive Tutor 

In this section, we present a case study of cognitive modeling for a real-world 
intelligent tutoring system, namely, the model of the first version of the Geometry 
Cognitive Tutor described above, developed in our lab in the mid and late 1990s. This 
tutor is part of a full-year geometry curriculum, which has been shown to improve 
student learning, relative to a comparison curriculum [31]. The current Geometry 
Cognitive Tutor, which derives from the one described in this section, is in use in 
approximately 1,000 schools in the US (as of May 2010). The case study illustrates 
that flexibility and cognitive fidelity, emphasized in the fraction addition example, are 
not the only concerns when creating a model for a large real-world tutor. In a larger 
effort such as the Geometry Cognitive Tutor, engineering concerns inevitably come to 
the forefront, due to resource limitations. Arguably, the model for the Geometry 
Cognitive Tutor represents a happy marriage between flexibility, cognitive fidelity, 
and engineering. Although the description in this chapter ignores many details of the 
model, it highlights the model’s essential structure and the major design decisions that 
helped shape it. 

The model we describe is the third in a line of cognitive models for geometry 
developed for use in Cognitive Tutors. The first one was a model for geometry proof, 
developed by John Anderson and colleagues, and used in the original Geometry Proof 
Tutor which in lab studies was shown to be highly effective in improving student 
learning [5][6][7]. The second was developed by Ken Koedinger and captures the 
knowledge structures that enable experts to plan and generate proof outlines without 
doing the extensive search that characterizes novices’ proof-generation efforts 
[26][27]. The third model in this line (and the one on which we focus in the current 
chapter) was developed and then re-implemented by Ken Koedinger and colleagues, 
including the chapter author [4]. Unlike the fraction addition model, which was 
implemented using the CTAT authoring tools in the Jess production rule language, the 
geometry model was implemented in the Tertle production rule language, which was 
created in our lab and is geared specifically towards model tracing [10]. We focus on 
the Angles unit, one of six units that (at the time) made up the tutor’s curriculum. This 
unit deals with the geometric properties of angles and covers 17 theorems. Other units 
dealt with Area, the Pythagorean Theorem, Similar Triangles, Quadrilaterals, and 



Circles. Units dealing with Right Triangle Trigonometry, Transformations, and 3D 
Geometry were added later. The curriculum was re-structured later, and the current 
tutor has 41 units. The model described here was used in the Angles, Circles, and 
Quadrilaterals units, and comprises approximately 665 rules. As mentioned, this 
model covers only part of the tutor’s curriculum. 

 

 
Figure 5: Examples of geometry problems that the geometry cognitive model is 

designed to solve. Student input is shown in hand-writing font 
 

The tutor focuses on elementary geometry problem solving, not on advanced 
expert strategies and not on proof. This priority was driven by national curricular 
guidelines [37], which at the time emphasized problem solving over proof. More 
specifically, the main instructional objective for the tutor is to help students 
understand and apply a wide range of geometry theorems and formulas in multi-step 
problems of (what experts would consider) low to moderate complexity. Examples of 
such problems, selected from the tutor’s Angles unit, are shown in Figures 5 and 6. 
Within this unit, the two problems shown in Figure 5 are at the lower end of 
complexity and the problem shown in Figure 6 is the single most complex problem. 
As such, it is not representative of the problems that students solve with the tutor, but 
it is included here to illustrate the model’s capabilities. The geometry problems used 
in the tutor typically can be solved in multiple ways, using different theorems. The 
order of the steps may vary as well. For example, the first of the two problems in 
Figure 5 can be solved (as shown in Figure 5) by first finding m∠IGT using the 
Vertical Angles theorem2, and then finding m∠TGH by applying the Linear Pair 
theorem3 . It could also be solved by doing these two steps in the reverse order. Or it 
could be solved by applying Linear Pair to find m∠TGH, and then applying Linear 

                                                             
2 The Vertical Angles theorem states that opposite angles formed at the intersection point of two 

lines are congruent. 
3 The Linear Pair theorem states that adjacent angles formed by two intersecting lines are 

supplementary, meaning that the sum of their measures equals 180º. 



Pair again to find m∠IGT. Likewise, the second problem can be solved as shown in 
Figure 5, by using the Triangle Exterior Angle theorem4 to infer the measure of 
∠SED (an exterior angle of triangle DEW) from the two remote interior angles 
(∠EDW and ∠DWE). Alternatively, the student could solve the problem without 
using this theorem, by applying Triangle Sum5 to find ∠DEW and then Linear Pair to 
find m∠SED. The complex problem shown in Figure 6 also allows for multiple 
solution paths; we have not counted them. In order for the tutor to be “flexible,” its 
cognitive model must (and does) capture all these solution variants.  
 

 
Figure 6: A highly complex tutor problem 

 
In order to use geometry theorems in the types of problems illustrated in Figures 5 

and 6, students must learn to recognize the applicability conditions of these theorems 
as well as to derive quantitative relations from (application of) these theorems. This 
understanding includes the visual meaning of geometric concepts referenced by each 
theorem (e.g., “adjacent angles” or “transversal” or “isosceles triangle”). In particular, 
they must be able to recognize, in diagrams, instances of these concepts, so as to 
recognize when each theorem applies (and does not apply). For example, to 
understand the Triangle Exterior Angle theorem, students must learn concepts such as 
the exterior angle of a triangle, or its remote interior angles, so that they can recognize 
instances of these concepts in actual diagrams and can recognize when this theorem 
applies (e.g., the second problem in Figure 5). When the theorem applies, they must 
infer an appropriate quantitative relation (i.e., that the measure of the exterior angle is 
equal to the sum of the measures of the remote interior angles). The key skills 
targeted in the tutor’s angles unit are the ability to apply the 17 theorems in the 

                                                             
4 The Triangle Exterior Angle theorem states that the measure of an exterior angle of a triangle 

(i.e., an angle between one side of a triangle and the extension of another side of that 
triangle) is equal to the sum of the two remote interior angles of the triangle. 

5 The Triangle Sum theorem states that the sum of the measures of the interior angles of a 
triangle equals 180º. 



manner just described. That is, the tutor interprets student performance and tracks 
student learning largely at the level of applying individual theorems.  

It was decided early on during the design process that the tutor interface would 
prompt the student for each step in the process of solving a geometry problem, as can 
be seen in Figures 1 (which is a later version of the same tutor), 5, and 6. That is, for 
each problem in the tutor, an empty table is given at the outset, with the labels for the 
angle measures visible. The student completes the problem by filling out in the table, 
for each step, a value (typically, the measure of an angle) and a justification for the 
value by citing the name of a theorem. (The value of having students provide 
justifications for their steps was confirmed by subsequent research [4].) Typically, the 
steps need not be done strictly in the order in which they appear in the table. Rather, 
the step order must observe the logical dependencies among the steps, meaning that 
any given step can be completed only when the logically-prior steps have been 
completed. Typically, the order of the quantities in the table observes the logical 
dependencies (and so going in the order of the table usually works), but other orders 
may be possible as well. The purpose of listing the steps in advance, rather than 
letting the student figure out what the steps are was to minimize the cognitive load 
associated with searching for solution paths in diagrams. This kind of search (and the 
concomitant cognitive load) was thought to hinder the acquisition of problem-solving 
knowledge. This design was loosely inspired by work by Sweller, van Merriënboer, 
and Paas [42], who showed that completion problems and goal-free problems lead to 
superior learning during the early stages of skill acquisition, compared to problem 
solving. Prompting for steps significantly reduces the need for students to search the 
diagram in the process of solving a problem. Although experts are adept at searching 
a diagram in a strategic manner, it was thought that strategic diagram need not be in 
the foreground in the Geometry Cognitive Tutor. The kinds of highly complex 
problems in which sophisticated search strategies would pay off were deemed to 
outside of the scope of the instruction.  

These key design decisions had a significant impact on the cognitive model. The 
model captures a problem-solving approach in which the student, in order to generate 
a problem-solving action (i.e., the next step in a given problem), takes the following 
four mental steps:  

1. Focus on the next quantity to solve (e.g., by looking at the table). For 
example, consider a student who works on the first problem in Figure 5, at 
the point after she has filled out the first row the table (m∠LGH equals 
82º as given in the problem statement). Looking at the table, the student 
might decide to focus on m∠TGH as the next quantity to solve; let us call 
this quantity the “desired quantity.” (Note that this quantity is listed in the 
third row of the table. The student skips one of the quantities in the table.) 

2. Identify a quantitative relation between the desired quantity and other 
quantities in the problem, justified by a geometry theorem. Find a way of 
deriving the value of the desired quantity. For example, searching the 
diagram, our student might recognize that ∠LGH and ∠TGH form a 
linear pair and she might derive, by application of the Linear Pair 
theorem, the quantitative relation m∠LGH + m∠TGH = 180°. Applying 
her knowledge of arithmetic (or algebra), our student might determine that 
m∠IGT can be found once m∠LGH is known, 



3. Check if a sufficient number of quantities in the selected quantitative 
relation are known to derive the value of the desired quantity. For 
example, our student might ascertain (by looking at the table) that the 
value of m∠LGH (which we call “pre-requisite quantity”) is known. 

4. Derive the desired quantity’s value from the quantitative relation using 
the values of the other known quantities. For example, our student might 
conclude that m∠ LGH equals 98º and enter this value into the table. 

Let us look at the key components of the model in more detail, starting with the 
organization of working memory. As mentioned, in general, working memory 
contains a representation of a problem’s structure as well as of its evolving solution 
state. The geometry model’s working memory contains two main types of elements. 
(Following the Tertle production rule language, we employ the term “working 
memory elements” rather than “facts.”) First, working memory lists the key quantities 
in the given problem, that is, the quantities whose value is given or whose value the 
student is asked to find. In the tutor unit dealing with angles, the quantities are angle 
measures. In other units, we encounter arc measures, segment measures, 
circumference measures, area measures, etc. In addition to the key quantities, working 
memory contains elements representing quantitative relations among these quantities. 
These working memory elements specify, for each, the type of quantitative relation, 
the quantities involved, and the geometry theorem whose application gives rise to 
(and justifies) the relation. For example, the key quantities in the first problem 
illustrated in Figure 5 are the measures of the three angles LGH, TGH, and IGT. 
There are three quantitative relations relating these quantities:  

• m∠TGH + m∠IGT = 180°, justified by Linear Pair 
• m∠LGH + m∠TGH = 180°, justified by Linear Pair 
• m∠LGH = m∠IGT, justified by Vertical Angles 

Similarly, in the second problem, there are four key quantities and three relations, 
one justified by application of Triangle Sum, one justified by Linear Pair, and one by 
Triangle Exterior Angle. The third problem involves 12 key quantities and 15 
relations between these quantities.  

To model quantitative relations in working memory, we created a hierarchy of 
relation types, a small part of which is shown in Figure 7. This hierarchy reflects both 
quantitative aspects and geometric aspects of geometry problem solving. It is intended 
to capture how, over time, geometry problem-solving knowledge might be organized 
in the student’s mind. At higher levels in this hierarchy, relation types are 
differentiated based on the number of quantities they involve and on how these 
quantities are quantitatively related. At the lowest level, subtypes are differentiated on 
the geometry theorem that justifies the relation. The actual relation instances in 
working memory are instances of the lowest-level subtypes. For example, quantitative 
relations that state that two quantities are equal are modeled as “equal-quantities-
relation.” The subtypes of this relation differ with respect to the geometry theorem 
that justifies the relation, such as the Vertical Angles and Alternate Interior Angles 
theorems. As another example, relations that state that some function of certain 
quantities (usually, their sum) equals another quantity or a constant are modeled as 
“N-argument-function.” The (leaf) subtypes of this type are (again) differentiated 
based on the geometry theorem that gives rise to the relation, such as Triangle 
Exterior Angle or Linear Pair. 



 
Figure 7: Excerpt from the model’s hierarchy of quantitative relation types 
 
The quantitative relations for any given problem are stored at the start of the 

problem and therefore a complete set – for the given problem – must be provided by 
the problem author. It may be clear that these quantitative relations contain 
information about the solution of the problem and not just problem definition 
information. That is, quantitative relations are normally derived in the course of 
solving a geometry problem; they are not given at the outset. Thus, the model can be 
said to pre-store certain solution information, a common technique for engineering 
cognitive models that can make them easier to build, as discussed further below. As a 
final comment about the organization of working memory, we note that it does not 
contain a symbolic representation of the diagram. Given the decision that diagram 
search is not a main instructional objective, such a representation was unnecessary. 
As a result of this decision, the model was simplified considerably, and the initial 
working memory configuration that must be provided for each problem was reduced.  

Turning to the second key component of the geometry cognitive model, the 
production rules, a large set of rules implements the basic four-step problem-solving 
strategy described above, and implements the key skills involved in these steps. 
Roughly speaking, each of the mental steps in the four-step strategy is modeled by 
one or more production rules. The first mental step in generating a problem-solving 
action (i.e., a single step in a tutor problem) is to decide which quantity to focus on 
next (i.e., the desired quantity). This mental step is captured by a single rule that 
models a student’s checking the table in the tutor interface to find a quantity (any 
quantity) whose value has not yet been determined: 

 
IF Q is one of the key quantities in the problem 
And the value of Q has not been determined yet 
THEN  
Set a goal to determine the value of Q (i.e., focus on Q as the desired quantity) 
 
Importantly, this rule generates a match with working memory (i.e., a rule 

activation) for each quantity whose value has not been determined yet, which is 
crucial if the model is to generate all acceptable next actions. As discussed, modeling 



all solution paths is a major precondition for models used for tutoring (by model 
tracing). Although in this first mental step, any key quantity whose value has not been 
determined yet can be chosen, the later mental steps impose additional restrictions. 
That is, not all choices for the desired quantity made in this first step will “survive” 
the later steps. As a final comment about this rule, there are other possible ways, 
besides looking at the table, in which a student might decide on the next desired 
quantity. For example, a student might search the diagram for an angle whose 
measure can be determined next. Such diagrammatic reasoning is not modeled, 
however, as discussed above. 

The second mental step has two parts, namely, (a) to identify a quantitative relation 
that can be applied to find the desired quantity, justified by a geometry theorem, and 
(b) to determine a set of “pre-requisite quantities” from which the value of the desired 
quantity can be derived. For example, assume that the model is working on the first 
problem in Figure 5, at a point where it has determined that m∠LGH = 82°. (This 
value is given in the problem statement.) If in mental step 1, the model selects 
m∠TGH as the desired quantity, then in mental step 2 (the current step), it may infer 
that the desired quantity can be derived from the quantitative relation m∠LGH + 
m∠TGH = 180°, justified by Linear Pair, once m∠LGH and the constant 180° are 
known (i.e., the latter two quantities are the pre-requisite quantities). Presumably, the 
student would recognize the applicability of Linear Pair by searching the diagram. 
The cognitive model does not capture this kind of diagrammatic reasoning, however. 
Instead, it looks for a quantitative relation in working memory that involves the 
desired quantity – as mentioned, all quantitative relations for the given problem are 
pre-stored. Having found a relation from which the desired quantity can be derived, 
the model determines the pre-requisite quantities through quantitative reasoning. To 
model this kind of reasoning, the model contains a separate rule (or rules) for each 
quantitative relation defined at the intermediate levels of the hierarchy. For example, 
application of Linear Pair (as well as application of Angle Addition, Complementary 
Angles, etc.) yields a “two-argument function” (e.g., m∠LGH + m∠TGH = 180°). 
This kind of relation asserts that a function of two quantities, called “input quantities,” 
is equal to a third quantity or constant, called “output quantity.” The relation may be 
applied either forwards or backwards. In our running example, the relation must be 
applied backward to derive the desired quantity:  

 
IF there is a goal to find the value of quantity Q 
And R is a two-argument-function 
And Q is one of the input quantities of R 
And Q1 is the other input quantity of R 
And Q2 is the output quantity of R 
THEN 
Set a goal to apply R backwards with Q1 and Q2 as pre-requisite quantities 
 
This rule and the many other rules like it model the quantitative reasoning involved 

in geometry problem solving. The use of the hierarchy of quantitative relations is a 
significant advantage in defining these rules (which was the main reason for creating 
it in the first place). Because the rules are defined at the intermediate levels of the 
hierarchy, we need far fewer of them than if rules were defined separately for each 



geometry theorem, which are found at the lowest level of the hierarchy. Importantly, 
the set of rules as a whole is capable of identifying all ways of deriving the value of 
the desired quantity from the quantitative relations in working memory, which is 
crucial if the model is to generate a complete set of solution paths.6 

The model also contains rules that “determine” the geometric justification of any 
given quantitative relation. All these rules do is “look up” the geometric justification 
pre-stored with the quantitative relation, which as mentioned is encoded in the 
relation type – recall that the leaf nodes of the hierarchy are differentiated based on 
the geometry theorems. There is one rule exactly like the following for every relation 
type at the bottom of the types hierarchy: 

 
IF there is a goal to apply R 
And R is of type Linear Pair 
THEN 
(do nothing) 
 
It may seem odd to have a rule with no action part, and it may seem odd to derive 

(as this rule does) a geometric justification from a quantitative relation. In normal 
problem solving, of course, each quantitative relation is justified by the application of 
a geometry theorem, not the other way around. It is the pre-storing of information, 
that makes it possible to (conveniently) turn things upside down. Further, the reason 
why we need these rules without an action part is because they signal which theorem 
is being applied. As mentioned, the educational objective of the tutor is for students to 
learn to apply a relatively large set of targeted geometry theorems. In order for the 
tutor to track student learning at the level of individual geometry theorems, the model 
must have a separate rule that represents application of each individual theorem. That 
is exactly what these action-less rules are. 

The third mental step in generating a problem-solving action is to check that the 
values of the pre-requisite quantities have been determined already. Continuing our 
example, having decided that m∠LGH and the constant 180° are pre-requisite 
quantities for deriving the value of the desired quantity m∠TGH, the model ascertains 
that both pre-requisite quantities are known. Constants are always known (by 
definition), and a value for m∠LGH has already been entered into the table. The 
following rule (which is slightly simpler than the actual rule) models a student who 
checks that pre-requisite quantities have been found by looking them up in the table in 
the tutor interface: 7 

 
 
 
                                                             

6 It is of course equally crucial that, for the given problem and the given set of key quantities, 
all quantitative relations have been pre-stored in working memory. 

7 The model does not model “thinking ahead,” meaning, solving a few key quantities in one’s 
head and then entering the last one (and get tutor feedback on it) before entering the 
logically-prior ones (e.g., the pre-requisite quantities). As the tutor was designed to minimize 
cognitive load for the student, it seemed reasonable to try to steer the student toward a “low 
load” strategy in which the student always records logically-prior steps in the table (which 
reduces cognitive load because it obviates the need for remembering the steps).  



IF there is a goal to apply relation R in manner M to find desired quantity Q 
And Q1 and Q2 are pre-requisite quantities 
And Q1 is either a constant, or its value has been determined 
And Q2 is either a constant, or its value has been determined 
THEN 
Set a goal to use the values of Q1 and Q2 to apply relation R in manner M 
 
Incidentally, although this rule imposes a strong constraint on the order in which 

the key quantities in the problem can be found, it does not necessarily lead to a single 
linear order, as discussed above.  

The fourth and final mental step is to determine the desired quantity’s value from 
those of the pre-requisite quantities. The student must apply the quantitative relation 
that has been selected to derive the desired quantity’s value. The model, by contrast, 
relies on having values pre-stored with the quantities, another example of the common 
engineering technique of pre-storing solution information, discussed below. 

 
If Q is the desired quantity 
And its value can be derived from pre-requisite quantities whose value is known 
And V is the pre-stored value for Q 
THEN 
Answer V (i.e., enter V into the table as value for Q) 
Mark Q as done 
 
This description highlights the model’s main components and structure. Many 

details are left out, and the model is much larger than may be evident from the current 
description, but we hope to have illustrated how the model is suitable for tutoring.  

Discussion of the geometry model 

The Geometry Cognitive Tutor is designed to help students learn to apply a wide 
range of geometry theorems in a step-by-step problem-solving approach. The main 
educational objective is for students to come to understand and recognize the 
applicability conditions of the theorems, including the visual meaning of geometric 
concepts referenced by each theorem (e.g., “adjacent angles” or “transversal”). A 
second objective is for students to learn to derive and manipulate the quantitative 
relations that follow from application of these theorems. As discussed, the Geometry 
Cognitive Tutor does not reify diagram search, meaning that it does not make explicit 
or communicate how the student should go about searching a diagram in the course of 
problem solving (e.g., to find the next possible step, or a theorem to apply). The 
tutor’s step-by-step approach to problem solving reduces the need for diagram search, 
as it was thought that the extraneous cognitive load induced by this kind of search 
would get in the way of the tutor’s main instructional objectives, to obtain a solid 
understanding of the theorems targeted in the instruction. 

Although we have glossed over many details, this case study illustrates our main 
themes related to cognitive modeling for ITS. First, the model is fully flexible. Within 
the targeted set of geometry theorems, the model accounts for all different ways of 



solving the targeted problems, which enables the tutor to follow along with students, 
regardless of which solution path they decide to take. In addition, the model is 
flexible in terms of step order: it models any step order that observes the logical 
dependencies between the steps. As for the model’s cognitive fidelity, as mentioned, 
the model partitions the knowledge based on the geometry theorem that is being 
applied. This decision is based largely on theoretical cognitive task analysis. It is a 
very reasonable decision. In order how to do even better, one would need to analyze 
student log data as described in the next section. In one place, the model has less than 
full cognitive fidelity, and this choice reflects engineering concerns (and resource 
limitations). In particular, the tutor does not reify detailed reasoning about how a 
particular geometry theorem applies to the diagram. It abstracts from such reasoning. 
For example, when applying Alternate Interior Angles, students do not communicate 
to the tutor which two lines are parallel, which line or segment is a transversal that 
intersects the two lines, and which angles formed form a pair of alternate interior 
angles. This kind of reasoning falls within the tutor’s educational objectives, and 
presumably students engage in this kind of reasoning when deciding whether the 
theorem applies. The decision not to reify this reasoning followed primarily from a 
desire to keep down the cost of interface development. Not modeling this reasoning 
drastically simplified the model and also made it easier to author problems for the 
tutor, because the initial working memory configuration for each problem did not 
need to contain a representation of the diagram. Later research with the Geometry 
Cognitive Tutor however indicated that students do acquire a deeper understanding of 
geometry when reasoning about how the geometry theorems apply is reified in the 
tutor interface [13][14][15]. This facility required very significant extensions of the 
tutor interface (i.e., an integrated, interactive diagram in which students could click to 
indicate how theorems apply). Therefore, it is fair to say that not reifying this 
reasoning in the original tutor was a reasonable trade-off. 

As discussed, the geometry model illustrates a useful engineering technique that 
makes models easier to build. The model pre-stores certain information that a less 
omniscient being needs to compute while solving a geometry problem. Specifically, it 
pre-stores the quantitative relations for each problem and the values of the key 
quantities. Pre-storing solution aspects need not be detrimental to a model’s 
flexibility. That is, it need not affect a model’s ability to generate an appropriate range 
of solution paths with an appropriately flexible ordering. For example, the fact that 
the geometry model pre-stores quantitative relations does not negatively affect the 
model’s ability to find the appropriate quantitative relations for a given problem step, 
even if (due to pre-storing) the diagrammatic reasoning that students go through in 
order to generate these quantitative relations is not modeled. In principle, pre-storing 
solution aspects should also not be detrimental to a model’s cognitive fidelity. There 
is no principled reason that the rules that retrieve the pre-stored solution aspects could 
not be equally fine-grained as rules that would generate this information. Nonetheless, 
given that the typical purpose of pre-storing is to make model development easier, 
there is a risk that rules that retrieve pre-stored information do not receive sufficient 
careful attention during model development and are not sufficiently informed by 
cognitive task analysis. As a result, they may end up being simpler than they should 
be, failing to capture important distinctions within the student’s psychological reality. 
With that caveat, pre-storing can be a useful engineering technique. As mentioned, 



within the geometry model, pre-storing quantitative relations leads to a very 
significant simplification of the model, since the diagram interpretation processes by 
which these quantitative relations are derived not need to be modeled. Without further 
empirical analysis, it is somewhat difficult to know with certainty that the model’s 
cognitive fidelity is optimal. If the proof of the pudding is in the eating, however, the 
tutor’s effectiveness [31] is an indication that the model is adequate if not better than 
that. The next section discusses techniques for analyzing a model’s cognitive fidelity. 

5    Concluding remarks 

In this final section, we discuss ways of evaluating the cognitive fidelity of a 
cognitive model, and we briefly mention some research that is underway to develop 
automated or semi-automated techniques to help create models with high cognitive 
fidelity. Such techniques are important, because, as discussed, the cognitive fidelity of 
a model used in a model-tracing tutor may influence the efficiency or effectiveness of 
student learning with that tutor. As we have argued, greater cognitive fidelity may 
lead to a more accurate student model and to better task selection decisions, which in 
turn may lead to more effective and/or efficient learning, by avoiding both under-
practice and over-practice of skills. The conjecture that a model with greater fidelity 
pays off in terms of more effective or efficient learning has not been tested yet in a 
rigorous controlled study (e.g., a study evaluating student learning with multiple 
versions of the same tutor that have cognitive models of varying degrees of cognitive 
fidelity), though it seems only a matter of time. 8 

Throughout the chapter, we have emphasized that a model used in a tutor must 
have flexibility and cognitive fidelity. A model’s flexibility is perhaps the less 
problematic requirement, as it deals with observable phenomena. A model must be 
complete and flexible enough to accommodate the alternative solution paths and 
variations in step order that students produce, at least the ones that are pedagogically 
acceptable. To illustrate this flexibility requirement, we discussed how both the 
fraction addition model and the geometry model accommodate a full range of student 
strategies and step order. Lack of flexibility occurs when a model is not correct or 
complete; perhaps students use unanticipated strategies in the tutor interface that the 
model does not capture. Perhaps the model developer has not done sufficient 
cognitive task analysis to be aware of all variability in student behavior, or has 
inadvertently restricted the order in which steps must be carried out. 

In addition to flexibility, a model must have cognitive fidelity. It must partition 
knowledge into components (e.g., production rules) that accurately represent the 
psychological reality, that is, correspond closely to the knowledge components that 
the students are actually learning. For example, in the fraction addition model, we 
conjecture that students learn the different strategies for finding the common 

                                                             
8 A classroom study by Cen et al. with the Geometry Cognitive Tutor tested part of this “causal 

chain:” it demonstrated that a more accurate student model can lead to more efficient 
learning [17]. In this study, the improved accuracy of the student model was due not to 
greater cognitive fidelity, but to tuning the (skill-specific) parameters used by Bayesian 
knowledge-tracing algorithm that updates the student model after student actions. 



denominator separately, instead of learning a single (hypothetical) overarching 
strategy of which these strategies may be different surface level manifestations. This 
conjecture implies that a student may know one strategy but not know the other. It 
implies also that practice with one strategy does not help a student get better in using 
the other strategies (at least not to the same degree). Accordingly, the model contains 
separate rules for these different strategies, even though from an engineering 
perspective, it would have been easier to capture all strategies with a single rule. In 
general, lack of cognitive fidelity means that a model’s rules do not correspond to 
actual student knowledge components. Lack of fidelity may occur when students 
“see” distinctions that the model developer has overlooked. For example, perhaps 
unbeknownst to the model developer, novice students view an isosceles triangle in its 
usual orientation (i.e., a fir tree) as distinct from one that is “upside down” (i.e., as an 
ice cream cone). In algebraic equation solving, they may view the term x as distinct 
from 1x. In fractions addition, students may develop a separate strategy for dealing 
with the case where one denominator is a multiple of the other, which the model 
developer may not have captured. Alternatively, a model may fail to capture 
generalizations that students make. For example, in Excel formula writing, absolute 
cell references (i.e., using the “$” sign in cell references) can be marked in the same 
way for rows and columns [33]. It is conceivable that a modeler would decide to 
model these skills with separate rules, whereas there is empirical evidence that 
students can learn them as one. In addition to a model being too fine-grained or too 
coarse-grained, it could (at least in principle) happen that students’ knowledge 
components are different from a model’s without strictly being either more specific or 
more general, but it is difficult to think of a good example.  

How does a modeler detect ensure that a cognitive model is sufficiently flexible 
and that it has sufficient cognitive fidelity? Careful task analysis in the early stages of 
model development, helps greatly in achieving flexibility. One result of cognitive task 
analysis should be an accurate and comprehensive understanding of the variety of 
ways in which students solve problems, which can then be captured in the model. It is 
helpful also to carefully pilot a tutor before putting it in classrooms. Any lack of 
flexibility remaining after model development is likely to result in a tutor that 
sometimes (incorrectly) rejects valid student input, which may be caught during 
piloting. If not caught during model development and tutor piloting, lack of flexibility 
will surely result in complaints from students and teachers who are using the system, 
and one obviously prefers not to catch it that way! Finally, careful scrutiny of tutor 
log data may help as well. For example, analysis of student errors recorded in the log 
data may help in detecting instances where the tutor incorrectly rejects correct student 
input, although again, one prefers not to find out that way.  

Cognitive fidelity can be harder to achieve and ascertain than flexibility, given that 
it deals with unobservable phenomena rather than observable. Cognitive task analysis 
(such as the think-aloud methodology) may help in identifying different strategies that 
students use. But what is needed in addition is a determination whether seemingly 
different (observable) strategies represent a separate psychological reality or are in 
fact unified in the student’s mind. Although think-aloud data may hold clues with 
regard to the psychological reality of different strategies, in general it is very difficult 
to make a definitive determination based on think-aloud data alone. A somewhat more 
definitive determination of the psychological reality of hypothesized skills can be 



made using a cognitive task analysis technique called “Difficulty Factors Analysis” 
[11]. It also helps to test a model’s cognitive fidelity using tutor log data, either “by 
hand” or through automated methods, currently an active area of research within the 
field of educational data mining [12]. In essence, all methods test whether the transfer 
predictions implied by a model are actually observed in the log data. When a 
cognitive model has high cognitive fidelity, one expects to see a gradual increase over 
time in the performance of students on problem steps that – according to the model – 
exercise one and the same knowledge component. Psychological theories in fact 
predict the shape of the curve (we will use the term “learning curve”) that plots the 
accuracy (or speed) of execution of a given knowledge component on successive 
opportunities [24][38]. A time-honored method for analyzing cognitive models is 
simply to extract learning curves from tutor log data, plot them, and inspect them 
visually. If the curve looks smooth, then all is well. On the other hand, when learning 
curves visibly deviate from the curves that cognitive theories predict, this deviation is 
an indication that the model has limited cognitive fidelity. For example, when a 
knowledge component in the model is overly general, compared to psychological 
reality, the learning curve for this knowledge component will include measuring 
points in which the actual knowledge component (as it exists in the student’s head) is 
not involved. Instead, these measuring points represent use of one or more other 
knowledge components (as they exists in the student’s head). Since students’ mastery 
of these other knowledge components is, in principle, unrelated to that of the plotted 
knowledge component, these points will generally not align with the rest of the curve. 
The curve may look “ragged.” Conversely, when a modeled knowledge component is 
overly specific, compared to the actual knowledge component in the student’s head, 
the learning curve will not include all opportunities for exercising this knowledge 
component, and will not be fully smooth. When deviations are evident, the modeler 
might take a closer look at the tutor log data and the tutor problems to develop 
hypotheses for why it might be lacking. Good tools exist that help with this analysis, 
such as the DataShop developed by the Pittsburgh Science of Learning Center [29].  

A second method for evaluating the cognitive fidelity of a model is by fitting the 
learning curves extracted from log data against the theoretically-predicted function. If 
the fit is good, the model has high cognitive fidelity. This method is particularly 
useful when comparing how well alternative models account for given log data. The 
DataShop tools mentioned above also support “what-if” analyses to easily compare 
the fit of alternative models. Thus they help not only in spotting problems with 
cognitive fidelity, but also in finding models with greater fidelity. Recent and on-
going research aims to automate (parts of) this process of model refinement. This 
work has led to semi-automated methods for revising models based on log data, such 
as Learning Factors Analysis [16]. Much work is underway in educational data 
mining that focuses on learning models entirely from data [12]. We expect that 
automated methods will become a very valuable addition to traditional cognitive task 
analysis. We do not foresee that they will replace traditional cognitive task analysis 
methods entirely, because the kinds of information that these methods produce are 
complementary. Also, cognitive task analysis can be done with small numbers of 
students, whereas data mining typically requires larger data sets. 

To conclude, tutors using rule-based cognitive models have a long and rich history, 
and there is much reason to think that there will be many interesting developments yet 



to come. In particular, research focused on increasing the cognitive fidelity of models 
will help make this kind of tutoring system both easier to develop and (even) more 
effective in supporting student learning. 
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