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Problem Statement

• Human Built KC Models Require Effort

• PCA Built KC Models are Hard to Interpret

• I wanted Interpretable KC Models more 
Efficiently



Learn Lab  -  Summer 2012 Michael Wixon and Daniel Seaton

Data Specific Solution

  Algebra Dataset  example: ‐4y + 8 = (3/x) … not too general  
•  Convert to simplified form: : ‐nv + n = (n/v)
•  Look for Unigrams, Bigrams & Trigrams eg: ‐, ‐n, ‐nv
•  Create Binary Matrix of which problems include which 
unigrams, bigrams, & trigrams

•  Run Cluster Analysis on that Binary Matrix
•  Use Clusters as KC Model
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Qualified Success
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Philosophy and Future Work

• Synthesis: Apply LFA to Use Best of Each KC 
Model

• Extension: 

- Target areas where human judgment doesn’t 
perform well

- Apply automated methods to fill those gaps

• Proposed Future Work

- Find KCs which perform “badly”

- Apply PCA to that subset



Learn Lab  -  Summer 2012 Michael Wixon and Daniel Seaton

Acknowledgements

• Thanks to Ken Koedinger who suggested the 
idea of generaRng KC models from clustered 
ngrams

• Thanks to mentors Nan Li and Zach Pardos 
whose help made this project possible

• Thanks to CMU’s LearnLab and DataShop 
for providing tools to facilitate these 
analyses and a vibrant learning environment



Learn Lab  -  Summer 2012 Michael Wixon and Daniel Seaton

Exploring Physics KCs for the Andes tutor
• Andes is an intelligent tutor system designed to help students with physics 

homework:  USNA Physics - Fall 2008, Fall 2009

• Hands on tutor that 
takes students 
through all problem 
solving steps

• Majority of the Andes 
data sets have not 
been analyzed, and 
models depend on 
tasks

• Attempted to add 
physics information 
extracted from step 
and problem names
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Exploring Physics KCs for the Andes tutor
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Exploring the Additive Factor Model (AFM)

• Interested in finding ways to incorporate time-based features into 
predictions of learning

• AFM is in a class of logistic regression techniques widely used in 
educational prediction (was great to get some valuable experience!)

• Adjusted AFM in the R language to include time-based features, and 
explored the outcomes of the prediction

 

mapped to a set of instructional tasks (usually steps in problems) 

they form a KC Model. A KC model is a specific kind of student 

model. DataShop provides an easy interface for exporting, 

modifying, and importing KC models, allowing researchers to 
evaluate and compare alternative KC models. 

1.2 Student Model Improvement 

A number of automated and hand search methods of exploring the 

cognitive model space have been proposed [1; 4; 10; 11; 13; 14]. 

These approaches create alternative models that are scored against 

existing models using one of several metrics for model prediction 

of student performance and how it changes over time. These 

include Akaike information criterion (AIC), Bayesian information 

criterion (BIC), and cross validation [12]. A statistical model is 

needed to make predictions about changes in student performance 

and DataShop uses an extension of item response theory that 

incorporates a growth or learning term [cf., 3; 14]. We refer to this 

model as the “Additive Factors Model” (AFM) [1; 13] and it is 

shown in Figure 1. In this statistical model, the discrete portion of 

the student model is represented by qjk, the so-called “Q matrix” 

[16], which maps hypothesized difficulty or learning factors (the 

knowledge components or skills) to steps in problems. These 

factors are hypothesized causes for difficulty (!k) or for learning 

improvement as students practice ("k). AFM gives a probability 

that a student i will get a problem step j correct based on the 

student’s baseline proficiency (#i), the baseline difficulty (!k) of 

the required KCs (qjk), and the improvement ("k) in those KCs as 

the student gets practice opportunities (Tik). 

!

Figure 1. In the Additive Factors Model (AFM), the probability 

student i gets step j correct (pij) is proportional to the overall 

proficiency of student i (#i) plus for each factor or knowledge 

component k present for this step j (indicated by qjk), add the base 

difficulty of that factor (!k) and the product of the number of 

practice opportunities this student (i) has had to learn this factor 
(Tik) and the amount gained for each opportunity ("k). 

Previous efforts to evaluate cognitive models have used BIC as 

the evaluation criteria [1]. BIC reduces the chances of over-fitting 

the data by penalizing for increasing the number of parameters in 

the model. It is much faster to compute than cross validation and 

reasonably predicts the results of cross validation. When time is 

not an issue, cross validation is preferred. There is currently no 

consensus on how to perform the folding process in cross 

validation for student model comparison and we discuss three 
alternatives below (which are in use in DataShop). 

2. THE CREATION AND EVALUATION 

OF STUDENT MODELS IN DATASHOP 
Before discussing automated generation of student models, we 

first describe how DataShop supports researchers in creating and 

evaluating alternative knowledge component-based student 

models (represented as Q matrices). The log data collected in 

DataShop is composed of student attempts on problem steps in a 

given set of instruction. Each of these problem steps can be tied to 

one or more skills or knowledge components. This linking of 

problem steps to knowledge components is called a KC model in 

DataShop and represents a student model for that set of 

instruction. Researchers can export KC models from DataShop, 

modify them using Excel or another editor, and then import a new 
model into DataShop for comparison. 

KC models in DataShop are fit to data using the AFM equation in 

Figure 1, and metrics for AIC, BIC, and three versions of cross 
validation are provided to evaluate and compare different models. 

We illustrate the modification of a KC model to produce an 

improved model with implications for tutor redesign. The 

example data comes from a data set called Geometry9697 and can 

be found in the DataShop repository under Public Datasets. Figure 

2 shows a screen shot of (a more recent version of) the tutor used 
in generating the data. 

In this example, the best hand-generated model divides the 

ALT:COMPOSE-BY-ADDITION KC of the original in-use 

model into three KCs: Subtract, compose-by-addition, and 

decompose. The original ALT:COMPOSE-BY-ADDITION KC 

labels steps where the student must find the area of an irregular 

shape that may be the sum or difference of two regular shapes 

(e.g., what’s left when a circle is cut from a square). This KC was 

targeted for improvement because, as shown in the top of Figure 

3, it was found to have a non-smooth learning curve (a large 

difference between actual and predicted values) and although it is 

relatively difficult (26% error rate), the learning curve does not 

indicate any learning (the error rate does not go down with 

opportunities) and, correspondingly, the AFM slope estimate ("j) 

is zero. As described in [15], these features of a learning curve 

(not smooth, not low, and not declining) are indicators of a poorly 

defined KC. A KC may be improved by investigating the problem 

steps it labels, usually focusing on those where the error rate is 

much higher (or lower) than normal as in opportunities 12, 15-18, 

etc., shown in the curve at the top of Figure 3. The analyst seeks a 

feature of these problem steps that may change the difficulty of 

performing or learning that step (i.e., a difficulty or learning 

factor) that is not shared by the other problem steps. In this case, 

almost all of the hardest problem steps required students to 

identify the two regular shapes that make up a target irregular 

shape (i.e., to visually “decompose” and set subgoals to find the 

area of these regular shapes first). These problem steps were 

relabeled with a KC called decompose. In other problems, the 

ALT:COMPOSE-BY-ADDITION steps came after an explicit 

scaffold given to students to find the area of the regular shapes 

(e.g., a prompt to find the square and circle areas before finding 

the leftover). These remaining problem steps were relabeled 

compose-by-addition. We say that ALT:COMPOSE-BY-

ADDITION was “split” by the decompose factor to produce a 

new “decompose” KC and a modified “compose-by-addition” KC 
with fewer steps associated with it. 

By inspecting a subset of particularly easy problem steps, another 

factor was identified (repeated steps in the same problem) and 

these steps were labeled Subtract. That is, ALT:COMPOSE-BY- 

ADDITION was further split into a third set of steps. In sum, the 

new KC model splits the ALT:COMPOSE-BY-ADDITION KC 

in the Original model (which labels 20 steps) into three different 

KCs: compose-by-addition (6 steps), decompose (8 steps), and 
Subtract (6 steps). 

The bottom of Figure 3 shows, for all three new KCs, the resulting 

learning curves and the parameter estimates for the difficulty 

intercepts (in both logit terms, !k, and converted to a probability) 

and for the KC learning slopes ("k). Inspecting the empirical 

learning curves (red lines), all three look smoother than the 
original ALT:COMPOSE-BY-ADDITION, thus meeting the 

Koeding, McLaughlin, & Stamper (2012)
Cen, Koedinger, & Junker (2006)
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Exploring the Additive Factor Model (AFM)

• Geometry96-97 DataShop data set

• Included duration feature (time in sec)

• Also investigated ways of discretizing time

• Time in this context does not make large differences.  Will continue 
to investigate, including how best to incorporate various time 
measures into such models.

Model AIC

AFM 5084.1

AFM + time 5082.0

AFM + KC:time 5083.8
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• Future work:

- Prepare online course data from MIT for DataShop

- Continue exploring AFM and logistic regression models

• Thanks to Ken Koedinger and Nan Li for access to AFM model 
exploration code in R!!!

MIT
David E. Pritchard
Saif Rayyan
Yoav Bergner

Learn Lab Workshop
Ken Koedinger
John Stamper
ALL STAFF!!!
Nan Li
Zach Pardos

WPI
Janice Gobert
Ryan Baker
Michael Sao Pedro

Thanks! and Future Work
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Exploring the Additive Factor Model (AFM)

• Interested in finding ways to incorporate time-based features into 
predictions of learning

• Adjusted AFM in the R language to include time-based features, and 
explored the outcomes of the prediction

 

mapped to a set of instructional tasks (usually steps in problems) 

they form a KC Model. A KC model is a specific kind of student 

model. DataShop provides an easy interface for exporting, 

modifying, and importing KC models, allowing researchers to 
evaluate and compare alternative KC models. 

1.2 Student Model Improvement 

A number of automated and hand search methods of exploring the 

cognitive model space have been proposed [1; 4; 10; 11; 13; 14]. 

These approaches create alternative models that are scored against 

existing models using one of several metrics for model prediction 

of student performance and how it changes over time. These 

include Akaike information criterion (AIC), Bayesian information 

criterion (BIC), and cross validation [12]. A statistical model is 

needed to make predictions about changes in student performance 

and DataShop uses an extension of item response theory that 

incorporates a growth or learning term [cf., 3; 14]. We refer to this 

model as the “Additive Factors Model” (AFM) [1; 13] and it is 

shown in Figure 1. In this statistical model, the discrete portion of 

the student model is represented by qjk, the so-called “Q matrix” 

[16], which maps hypothesized difficulty or learning factors (the 

knowledge components or skills) to steps in problems. These 

factors are hypothesized causes for difficulty (!k) or for learning 

improvement as students practice ("k). AFM gives a probability 

that a student i will get a problem step j correct based on the 

student’s baseline proficiency (#i), the baseline difficulty (!k) of 

the required KCs (qjk), and the improvement ("k) in those KCs as 

the student gets practice opportunities (Tik). 
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Figure 1. In the Additive Factors Model (AFM), the probability 

student i gets step j correct (pij) is proportional to the overall 

proficiency of student i (#i) plus for each factor or knowledge 

component k present for this step j (indicated by qjk), add the base 

difficulty of that factor (!k) and the product of the number of 

practice opportunities this student (i) has had to learn this factor 
(Tik) and the amount gained for each opportunity ("k). 

Previous efforts to evaluate cognitive models have used BIC as 

the evaluation criteria [1]. BIC reduces the chances of over-fitting 

the data by penalizing for increasing the number of parameters in 

the model. It is much faster to compute than cross validation and 

reasonably predicts the results of cross validation. When time is 

not an issue, cross validation is preferred. There is currently no 

consensus on how to perform the folding process in cross 

validation for student model comparison and we discuss three 
alternatives below (which are in use in DataShop). 

2. THE CREATION AND EVALUATION 

OF STUDENT MODELS IN DATASHOP 
Before discussing automated generation of student models, we 

first describe how DataShop supports researchers in creating and 

evaluating alternative knowledge component-based student 

models (represented as Q matrices). The log data collected in 

DataShop is composed of student attempts on problem steps in a 

given set of instruction. Each of these problem steps can be tied to 

one or more skills or knowledge components. This linking of 

problem steps to knowledge components is called a KC model in 

DataShop and represents a student model for that set of 

instruction. Researchers can export KC models from DataShop, 

modify them using Excel or another editor, and then import a new 
model into DataShop for comparison. 

KC models in DataShop are fit to data using the AFM equation in 

Figure 1, and metrics for AIC, BIC, and three versions of cross 
validation are provided to evaluate and compare different models. 

We illustrate the modification of a KC model to produce an 

improved model with implications for tutor redesign. The 

example data comes from a data set called Geometry9697 and can 

be found in the DataShop repository under Public Datasets. Figure 

2 shows a screen shot of (a more recent version of) the tutor used 
in generating the data. 

In this example, the best hand-generated model divides the 

ALT:COMPOSE-BY-ADDITION KC of the original in-use 

model into three KCs: Subtract, compose-by-addition, and 

decompose. The original ALT:COMPOSE-BY-ADDITION KC 

labels steps where the student must find the area of an irregular 

shape that may be the sum or difference of two regular shapes 

(e.g., what’s left when a circle is cut from a square). This KC was 

targeted for improvement because, as shown in the top of Figure 

3, it was found to have a non-smooth learning curve (a large 

difference between actual and predicted values) and although it is 

relatively difficult (26% error rate), the learning curve does not 

indicate any learning (the error rate does not go down with 

opportunities) and, correspondingly, the AFM slope estimate ("j) 

is zero. As described in [15], these features of a learning curve 

(not smooth, not low, and not declining) are indicators of a poorly 

defined KC. A KC may be improved by investigating the problem 

steps it labels, usually focusing on those where the error rate is 

much higher (or lower) than normal as in opportunities 12, 15-18, 

etc., shown in the curve at the top of Figure 3. The analyst seeks a 

feature of these problem steps that may change the difficulty of 

performing or learning that step (i.e., a difficulty or learning 

factor) that is not shared by the other problem steps. In this case, 

almost all of the hardest problem steps required students to 

identify the two regular shapes that make up a target irregular 

shape (i.e., to visually “decompose” and set subgoals to find the 

area of these regular shapes first). These problem steps were 

relabeled with a KC called decompose. In other problems, the 

ALT:COMPOSE-BY-ADDITION steps came after an explicit 

scaffold given to students to find the area of the regular shapes 

(e.g., a prompt to find the square and circle areas before finding 

the leftover). These remaining problem steps were relabeled 

compose-by-addition. We say that ALT:COMPOSE-BY-

ADDITION was “split” by the decompose factor to produce a 

new “decompose” KC and a modified “compose-by-addition” KC 
with fewer steps associated with it. 

By inspecting a subset of particularly easy problem steps, another 

factor was identified (repeated steps in the same problem) and 

these steps were labeled Subtract. That is, ALT:COMPOSE-BY- 

ADDITION was further split into a third set of steps. In sum, the 

new KC model splits the ALT:COMPOSE-BY-ADDITION KC 

in the Original model (which labels 20 steps) into three different 

KCs: compose-by-addition (6 steps), decompose (8 steps), and 
Subtract (6 steps). 

The bottom of Figure 3 shows, for all three new KCs, the resulting 

learning curves and the parameter estimates for the difficulty 

intercepts (in both logit terms, !k, and converted to a probability) 

and for the KC learning slopes ("k). Inspecting the empirical 

learning curves (red lines), all three look smoother than the 
original ALT:COMPOSE-BY-ADDITION, thus meeting the 

Given:
pij = probability student i gets step j correct
Qkj = knowledge component k needed for step j
Tik = opportunities student i has had to practice k
Estimated:
θi = proficiency of student i
βk = difficulty of KC k
γk = gain for each practice opportunity on KC k Koeding, McLaughlin, & Stamper (2012)

Cen, Koedinger, & Junker (2006)
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