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Introduction 

Multiple philosophical interpretations of probability have been proposed : 



- classical (Laplace)


- logical (Keynes, Carnap)


- frequentist (Von Mises, Reichenbach), 
- subjectivist (Ramsey, de Finetti, Savage) 
- propensionnist (Popper)

Two most relevant for educational purposes:

1) Classical interpretation :
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example : 
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P(fair die will land on 5 or 6) = 

63

=


Only applicable when all possible cases are equiprobable.

2) Frequentist interpretation
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example : 
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P(blood type A in the US) 

# Americans having blood type A

= 

# Americans

126.10

0.42

300.10

==


Always applicable.

Hypothesis : Coordinative learning of probability rules using examples from both interpretations would promote robust learning.
Prior research


Encouraging findings (e.g., Ainsworth, 1999; Paas  & Van Merrienboer, 1994): coordinating multiple representations of a knowledge component can enhance students' acquisition and refinement of that knowledge 

But… (Ainsworth, Bibby, and Wood (2002)): multiple representations (pictorial and mathematical) do not seem to help students improve in computational estimation more than the singular representations

However, our study would use representations that vary conceptually, rather than perceptually, which may reduce difficulties in translating between them and improve the potential for learning benefits.
Description of Experiment 1

Course used: Open Learning Initiative (OLI) Statistics
http://www.cmu.edu/oli/courses/enter_statistics.html

Unit 4 Module 6 presents six probability rules:

1.  For any event A, 
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2.  If Ai are all possible outcomes
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3.  For any event A, 
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4.  If A and B are disjoint events, 
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5.  If A and B are independent events, 
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6.  For any events A and B, 
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Each rule can be illustrated by different examples: frequentist or classical.

We will test four conditions. 

(Condition 1 acts as a baseline – being most similar to the existing OLI course – and will allow us, by comparing to condition 2, to test for any effect of simply having more examples of the same type).
	
	IV2 : Number of examples

	
	Same as OLI
	One more than OLI

	IV1: Type of examples used
	Only frequentist
	Condition 1 : OLI statistical course, in which we have:

- added a frequentist example for Rule 1

- replaced the classical example for rule 5 by a frequentist example
	Condition 2 : like condition 1, with an additional frequentist example for each rule

	
	Only classical
	{not included} 
	Condition 3 : like condition 2, with all frequentist examples replaced by classical examples

	
	Both
	{N/A} (there is generally only one example for each rule in OLI)
	Condition 4 : like condition 1 with an additional classical example for each rule


Illustration of the instructions : Rule 2

Rule 2 : 
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FREQUENCY EXAMPLE:

Here are the relative frequencies of blood types O, B and AB in the United States. What is the relative frequency of people with blood type A?

	Blood type
	O
	A
	B
	AB

	Probability
	0.44
	?
	0.10
	0.04


Answer: Since the four blood types O, A, B, and AB exhaust the whole population of the US (a person has one of these 4 blood types for certain), their relative frequencies together must sum to the relative frequency of the whole population, namely 1. Since the probabilities of O, B, and AB together sum to .44+.1+.04=.58, the probability of type A must be the remaining .42 (1-.58=.42)
CLASSICAL EXAMPLE:

Let’s consider a balanced twenty-sided die. What is the probability of obtaining a result between 4 and 10 if we throw the die once?

	Result
	1-3
	4-10
	11-20

	Probability
	0.15
	?
	0.5


Answer : Since the three categories 1-3, 4-10 and 11-20 exhaust the whole set of possibilities (the result of the die will be in one of these categories for certain), and their probabilities are given by the number of possible favorable cases divided by the total number of cases, their probabilities together must sum to the number of all cases divided by itself, namely 1.
Since the probability of 1-3 and 11-20 together sum to 0.15+0.5=0.65, the probability of throwing a result in the 4-10 category must be the remaining 0.35 (1-0.65=0.35)

Remark : This value could also be directly obtained by noticing that there are 7 possible cases for a result in the category 4-10, which implies that the probability is 7/20=0.35.

These examples illustrate our second rule of probability, which tells us that the probability of all outcomes in the sample space together must be 1.
Dependant variables

Assessments will be given at different times :

A. Pretest, before the lesson on probability rules:
isomorphic problems 

eg.: computing P(A and B) where A and B are disjoint events

B. Posttest, after the lesson on probability rules:
1. Isomorphic problems similar to those in the pretest; this will serve as a normal posttest measure (normal vs robust learning)

2. We will test two different kinds of transfer :


- immediate transfer, with problems that require a combination of the different rules 

eg.: computing P(A or [not-B and C]) 


- further transfer, with problems using conditional probabilities (which they have not learned yet)

eg.: computing P(A|B) when P(A and B), P(not-A and B), P(A and not-B) and P(not-A and not-B) are given

3. Students will be taught about conditional probabilities (using neither frequentist nor classical examples), and after this, will be given new problems about conditional probabilities, which will test their acceleration of future learning (embedded in the post-test)
C. At the end of the whole OLI statistics course, the students will again be given problems isomorphic to the rules in order to test their long-term retention.
Remark : we will need to make sure that time logs are recorded for each student, so specific time intervals (e.g., time between ending the pretest and beginning the final posttest) may be used as covariates in analysis.
D. Exploration of metacognitive issue: After presentation of each rule of probability, students will be asked to make a judgment of learning; this will gauge their metacognitive awareness of the effects of multiple representations.
Predicted results

We predict that examples with multiple representations will promote more robust learning of probability rules than either classical or frequentist examples alone.

We also predict students in conditions 2, 3 and 4 will perform better than students in condition 1, which would suggest that more total examples promote robust learning
Open issue : studying the processing of the examples

Ways to assess how students process the examples?


- Eyetracking and think-aloud protocols are ideal, but unfeasible in an in-vivo context; perhaps possible with a small number of volunteer students in a lab environment 

 
- Use of log files to tell how much time students spent on the example pages for each probability rule


- Direction for future study : make the examples interactive, or manipulate embedded practice problems rather than (or in addition to) the static instruction.

Description of Experiment 2

Further explorations with metacognition
Background research
(deWinstanley and Bjork (2004)): students must themselves experience and compare the outcomes of differentially effective encoding processes in order to appreciate more beneficial strategies, and thus be able to put them to good use.
Proposed experiment 

Instruction:

Each student would be presented with:

- single representations for one half of the probability rules

- multiple representations for the other half (counterbalanced for order)

Assessment:

Same DVs as experiment 1, but:

Each student will either be:

· tested on all rules at the end of the lesson (providing an opportunity for students to directly assess their performance based on single vs. multiple representations), OR

· tested on each half of the rules immediately following instruction on that half (denying such an opportunity for self-assessment).
At the end of the lesson, students would be asked which form of representation they thought was more helpful (single or multiple), and which they would like to be given for learning the upcoming lesson.
Remark : The dependent variables for robust learning would also all be retained from the first experiment.
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