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Classroom Discourse, Mathematical Rigor, and Student Reasoning: Analyzing the 

Dimensions of Powerful Mathematics Instruction and Learning  
 

1.0 Overview  
Low mathematics achievement in middle school—especially among poor and minority 
students—continues to be a national concern (National Assessment of Educational Progress, 
2005; National Council of Teachers of Mathematics, 2000). Yet, even in the face of 
disappointing learning performances, state and national expectations for mathematics learning 
remain high. Despite often contentious “math wars” discussions, there is a broad consensus that 
students should master mathematics in a form that includes both skillful manipulation of symbols 
and procedures, and understanding of what these symbolic manipulations and procedures mean 
(Ball & Bass, 2000; Cobb, 2001; Gamoran, et al., 2003; Lampert, 1990; Porter, 2002; Secada et 
al., 1995;Wu, 1999). 
 Recognition of the need to integrate students’ conceptual understanding, procedural 
competence and communicative abilities is supported by 30 years of cognitive science research. 
This research shows that accurate knowledge is foundational for learning with understanding. At 
the same time, it is clear that long-term retention of factual material is best secured when learners 
come to understand the logic and organization underlying the facts. Furthermore, the research 
shows that learning is most robust when learners become actively engaged in reasoning about the 
knowledge they are acquiring (Bransford et al., 2000; Resnick & Hall, 1998). 

During the last two decades, a diverse group of researchers and educators have developed 
and implemented approaches to instruction that reflect this consensus. These integrated 
instructional approaches generally combine three dimensions of teaching: intensive use of 
classroom discussion, mathematical depth and rigor in the curriculum and in its implementation, 
and attention to student reasoning. Many studies have yielded promising outcomes, including 
significant improvements in student learning among low income and minority students.  
 
1.1 Research on Instruction that Integrates Classroom Discourse, Mathematical Rigor, and 
Student Reasoning    
Fifteen years ago, two of the present investigators (Resnick et al., 1992) demonstrated the 
potential of classroom discourse in primary grade mathematics instruction. Primary grade 
students were taught by a whole-class instruction method in which a problem was posed to the 
class and the teacher then led a structured discussion in which students explained why several 
different routes to solution were mathematically correct, and then conjectured and tested what 
would happen if, for example, quantities were changed or different geometric shapes were 
involved. Several cohorts of Bill’s students, almost all lower income minority children, showed 
dramatic increases in computational skill and significant increases in comprehension and 
problem solving on standardized tests (Bill, et al., 1991).   

Two other investigators in our group (Chapin & O’Connor, 2004), used two conceptually 
oriented curricula (Investigations and the Connected Mathematics Project) in a low-income 
urban school district to teach a mathematically demanding program to ethnolinguistic minority 
students. The goal was to identify and develop unrecognized talent and potential for “giftedness 
in mathematics.” Like Bill’s, the teaching in Chapin and O’Connor’s “Project Challenge” classes 
called on students to engage in substantial teacher-guided discussion of the mathematics 
involved in the problems they worked on. Project Challenge teachers were supported to use a 
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variety of academically productive “talk moves” and “talk formats,” designed to press students to 
explicate their reasoning and build on one another’s thinking. After two years in the program, the 
proportion of students rated as showing a "high probability of giftedness in mathematics" on the 
Test of Mathematical Abilities (TOMA) (Brown, Cronin & McEntire, 1994) rose from 4% to 
41%. Results on the California Achievement Test (CAT) showed that Project Challenge students 
performed at high levels in both computation, and mathematical understanding and problem 
solving After three years in the project, 82% of each Project Challenge class on average scored 
“Advanced” or “Proficient” on the Massachusetts state assessment. The state average is 38%. 
Finally, in a post hoc, quasi-controlled comparison of students who had been eligible for Project 
Challenge (and matched with Project Challenge students), but not selected, the differences 
between Project Challenge students and their matched controls was significant and effect sizes 
were large (1.8). Building on this work, in an NSF ROLE grant, they were able to experimentally 
intensify the classroom discourse dimension and demonstrate links between particular kinds of 
teacher and student talk and student learning. Both studies showed effect sizes ranging from .8 to 
1.3 

There are a number of other such “success stories” in the literature on instructional 
change and school reform, where similar kinds of discourse-intensive instruction in difficult 
“traditional” high-demand subject matter have produced unexpected results. (See, among others, 
Lee, 2001, in literature; Ball & Lampert, 1998, Boaler, 2003, Boaler & Greeno, 2000, Chapin, et 
al., 2003, and Empson et al., 2006, in mathematics; Minstrell, 1989, in physics; Rosebery et al., 
2005, Warren & Rosebery, 1996, in elementary science). Scholars in several European countries 
have reported similar results (e.g., Dooren, et al., 2005;  Fischbein, Jehiam & Cohen, 1995; 
Merenluoto & Lehtinen, 2002; Tsamir, 2003; Van Vergnaud, 1989; Vosniadou, Baltas & 
Vamvakoussi, in press).  

Opportunities for students to reflect and communicate about their mathematical work 
have been identified as essential for learning mathematics with understanding (Hiebert, et al., 
1997), and effectively implementing high-level tasks. During a discussion, students can see how 
others approach a task and can gain insight into solution strategies and reasoning processes that 
they may not have considered. By engaging in whole-class, teacher-guided reflective discourse, 
students can explain their reasoning, make mathematical generalizations and connections 
between concepts, strategies or representations, and benefit from the collective mathematical 
work of the class for a given lesson or task (Cobb, et al., 1997; Lampert, 2001). 

The effectiveness of discourse-intensive instruction depends significantly on the quality 
of the mathematical tasks used in instruction. A growing body of research indicates that tasks 
with high-level cognitive demands are important in improving students’ performance on state 
and national tests of mathematical achievement (e.g., Fuson et al., 2000; Riordan & Noyce, 
2001; Schoen et al., 1999), in improving students’ understanding of important mathematical 
concepts (e.g., Ben-Chaim, et al., 1998; Huntley, et al., 2000; Reys et al., 2003; Thompson & 
Senk, 2001), and in improving students abilities to reason, communicate, problem-solve, and 
make mathematical connections (e.g., Blote et al., 2001; Ridgeway, et al., 2003; Schoenfeld, 
2002; Torbeyns, Verschaffel & Ghesquiere, 2005; Torbeyns, J., Arnaud, L., Lemaire, P., & 
Verschaffel, L., 2004).   

Mathematical tasks with high-level cognitive demands are characterized by multiple 
entry points and solution strategies, thereby allowing different students to approach the task in 
different ways, before being guided by the teacher into mathematically explicit formulations. 
High-level tasks can also feature multiple representations and opportunities to form connections 
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between different mathematical ideas or representations (Hiebert et al., 1997; Stein, Grover & 
Henningsen, 1996; Stein & Lane, 1996). Tasks that are classified as having low levels of 
cognitive demand involve either memorization or the application of procedures with no 
connection to meaning or mathematical understanding (Doyle, 1983; Stein et al., 2000).   

While the quality of tasks plays a significant role in learning, simply providing students 
with high-level tasks is insufficient for effective instruction. Research indicates that the level of 
cognitive demand of a task is often altered over the course of an instructional episode 
(Henningsen & Stein, 1997; Stein, Remillard & Smith, 2007). Teachers and students accustomed 
to traditional American styles of almost purely procedural teaching can be uncomfortable with 
the open discussion and intellectual struggle that often accompany high-level tasks (Clarke, 
1997). Stein and Lane (1996) found, however, that the greatest student learning gains occurred in 
classrooms where students were consistently exposed to high-level tasks and in which the high-
level cognitive demands were sustained throughout the lesson. These results appear consistent 
with findings from the TIMSS 1999 Video Study (Hiebert, et al., 2003), in which higher-
performing countries were found to implement high-level tasks in ways that maintained the high-
level cognitive demands. A set of factors that contribute to the decline of cognitive demands 
during classroom task implementation have been identified (Henningsen & Stein, 1997; 
Romanagno, 1994; Stein & Lane, 1996;). These factors are particularly strong in U.S. 
classrooms, according to the TIMSS 1999 Video Study, which showed less than 1% of 
classroom time in the U.S. is spent on high-level mathematical work. Similarly, in large-scale 
evaluative research in the U.S., Weiss and Pasley (2004), rated only 15% of the lessons as 
effectively supporting students’ opportunities for learning mathematics. 
 There is evidence in a number of the studies cited that the mathematical demand of tasks 
often degrades during discussion and student learning suffers.  Teachers may try to “help” 
students in ways that diminish the cognitive demand of the task (e.g., telling students which step 
to do next rather than helping them figure out what comes next and why).  To keep the 
conversation moving and socially comfortable, discussions often devolve into teacher-led 
recitations, where teachers ask a question, a student answers and the teacher evaluates the 
answer, and then moves on to the next student, often referred to as the Initiation-Response-
Evaluation, or IRE, sequence (Cazden, 2001).  

   
1.2 Dimensions of Powerful Instruction  

1.2.1 Classroom Discourse (CD). This dimension refers to the character of classroom 
interaction. As cognitive science has increasingly demonstrated the essential interplay between 
skilled performance and understanding in virtually all domains of knowledge, another line of 
research— blending linguistics and psychology—has emphasized the role of certain kinds of 
structured talk for learning with understanding (Anderson et al., 1997; Ball et al., 2003; Cazden, 
2001; Chapin et al., 2003; Forman et al., 1998; Goldenberg, 1992/3; Heath, 1983; Lampert & 
Ball, 1998; Lee, 2001; Lemke, 1990; Mercer, 2002; Michaels & Sohmer, 2001; O’Connor, 2001; 
O’Connor & Michaels, 1996; Pontecorvo,1993; Resnick et al., 1993; Voss & Van Dyke, 2001; 
Warren & Rosebery, 1996; Wells, 2001; Wertsch, 1991; Yackel & Cobb, 1996.).  

A number of researchers and educators have focused on the importance of language for 
minority students—as both a resource and as an obstacle in academic achievement generally 
(Adger et al., 2002; August & Hakuta, 1998; Ballenger, 1999; Baugh, 1999; Lee, 2001; Cazden, 
2001; Delpit & Dowdy, 2002; Heath, 1983; Moll et al., 1992;Walqui & Koelsch, 2006) and more 
specifically in mathematics learning (Cocking & Mestre, 1988; Moschkovich, 2000; Moses & 
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Cobb, 2001). The classroom talk that is described in these interventions is markedly different 
from the standard recitation format of the traditional classroom.  
 The difficulty that teachers have in maintaining mathematical rigor and reasoning in their 
class discussions has led us to develop a system for training teachers in what we have come to 
call Accountable Talk strategies (Michaels, O’Connor, Hall & Resnick, 2002). Accountable Talk 
has three dimensions: Accountability to the community, Accountability to knowledge and 
Accountability to accepted standards of reasoning. The concept of Accountable Talk thus 
highlights the need to combine appropriate classroom discourse, mathematical rigor and student 
reasoning to achieve powerful mathematics instruction and learning.   

The Accountable Talk form of classroom interaction is one in which the teacher poses a 
question that calls for a relatively elaborated response (in mathematics, both a solution and a 
reason for the solution) and then presses the class as a group to develop explanations for the 
solution. The process includes extended exchanges between teacher and student and among 
students, and includes a variety of talk moves, such as asking other students to explain what the 
first respondent has said, challenging students--sometimes via posing of counter examples, or 
“revoicing” a student’s contribution (“So let me see if I’ve got your idea right. Are you 
saying…?”), which makes the student’s idea, reformulated by the teacher, available to the entire 
group. A number of studies suggest that this kind of classroom discourse leads to deeper 
engagement in the content under discussion and surprisingly elaborated, subject-matter specific 
reasoning by students who might not normally be considered able students (e.g., Chapin & 
O'Connor, 2004; Cobb et al., 1996, 1997; Lampert, 2001; Lampert & Ball, 1998; Michaels, 
2005; O'Connor, 1999, 2001; O’Connor & Michaels, 1996; Resnick & Nelson-LeGall, 1997; 
Rosebery, et al., 1992; Wells, 2001).   

The six most important talk moves and an example of each move in its prototypical form 
follows: Talk Move (1) Revoicing: “So let me see if I’ve got your thinking right. You’re saying 
XXX?” (with time for students to accept or reject the teacher’s formulation); (2) Asking students 
to restate someone else’s reasoning: “Can you repeat what he just said in your own words?”; (3) 
Asking students to apply their own reasoning to someone else’s reasoning:  
“Do you agree or disagree and why?”; (4) Prompting students for further participation: “Would 
someone like to add on?”; (5) Asking students to explicate their reasoning: “Why do you think 
that?” or “How did you arrive at that answer?” or “Say more about that”; (6) Challenge or 
Counter Example: “Is this always true?” or “Can you think of any examples that would not 
work?” 

In addition to a set of productive talk moves, teachers who use Accountable Talk engage 
students in a number of recurring talk formats, with stable norms for participation and turn-
taking. Among these are: partner talk, whole group discussion, and small-group work. These talk 
moves and talk formats are extensively described in our Accountable Talk training CDs -- 
Michaels, et al., 2002, which will be one of the tools used in preparing teachers to lead structured 
mathematics discussion in our presently proposed study. 

1.2.2 Mathematical Rigor (MR). Another dimension of powerful mathematics teaching is 
its greater rigor, density and focus on mathematics itself. This is a strong focus among 
mathematicians concerned with mathematics teaching (e.g. Parker & Baldridge, 2004; Wu, 
1999) and others who believe that the mathematics itself is weak and/or thin in most American 
classrooms and that this is the major cause of low student achievement. Studies of teacher quality 
have shown that teachers who know more mathematics (typically as measured by holding an 
undergraduate degree in mathematics or certification in mathematics) generally have students 
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who achieve at higher levels in mathematics (Darling-Hammond, 2000; Ferguson & Ladd, 1996; 
Hanushek, 1996; Rivkin, Hanushek & Kain, 2005), but these associations may result as much 
from current practices of assigning better prepared teachers to schools, or students within 
schools, who are of higher SES and are more tuned-in to school practices and demands.  
 The immediate task facing most schools and districts, especially in middle schools, is 
upgrading the mathematical rigor in classrooms of teachers already in place. This will require 
focusing instruction explicitly on the conceptual underpinnings of mathematics. Students who 
receive such instruction have been shown time and again to outperform those who do not 
(Brownell & Moser, 1949; Fuson and Briars, 1990;  Hiebert & Grouws, 2007;  Verschaffel, 
Greer & De Corte, 2007).  The development of mathematical connections among ideas, facts and 
procedures leads to increased conceptual learning by students and also facilitates the 
development of important mathematical skills. Work by Rittle-Johnson and colleagues (2001) 
suggests that procedural and conceptual knowledge develops iteratively. The relationships 
between conceptual and procedural knowledge is bidirectional, and improved understanding of 
either type of knowledge can lead to improved understanding of the other type. 

The Accountable Talk moves described above do not automatically carry mathematical 
rigor with them, even when used in conjunction with an appropriate high-cognitive-demand 
mathematics task. Teachers who do not have deep understanding of the mathematics embedded 
in the task problems, or whose mathematics knowledge does not extend beyond the specifics of 
what is in the textbook and teacher guidance materials, may accept student explanations and 
justifications that are incomplete or even incorrect. They may not see connections among 
concepts and procedures and revoice in ways that miss important opportunities to clarify and link 
mathematical ideas. And though they may “sprinkle” their queries to students with challenges 
and other forms of pressing for information, their challenges may not be crisply formulated in 
terms of the mathematics involved.  

We might expect exactly this kind of instruction from many of the teachers currently 
teaching mathematics to students in urban school districts if the professional development they 
received focused only on strategies for managing classroom discourse. Many of today’s middle 
school teachers do not have a strong preparation in mathematics. Only 41% of 8

th

 grade students 
in 1999 received instruction from a teacher with formal training in mathematics including an 
undergraduate or graduate degree (National Center for Education Statistics, 2001). Middle 
school students continue to be taught mathematics by “out-of-field” teachers (Ingersoll, 2002), 
especially in urban schools. Many teachers struggle with the mathematics they are asked to teach 
and themselves lack the conceptual underpinnings as well as the procedural fluency that students 
are expected to master in grades 4–8 (Ball, 1990; Graeber, Tirosh & Glover, 1989; Ma, 1999; 
Post et al., 1992; Simon, 1993; Sowder et al., 1998; Stacey et al., 2001; Tsao, 2005). They may 
have a superficial grasp that enables them to follow the explicit steps outlined in a textbook, but 
this does not enable them to engage comfortably in classroom discourse in which students may 
formulate responses—especially initially—in unconventional ways, and they may be unable to 
steer the classroom conversation toward powerful mathematical formulations and 
generalizations, let alone discuss procedures clearly and accurately. Yet students’ learning gains 
depend on just this kind of ability to sustain high levels of talk about the mathematical content.  
Ball and Bass (2003) found that teachers who were unable to choose helpful examples and 
interpret students’ explanations confused their students and often were confused by their 
students. Hence, when teachers do not know the mathematics, their ability to identify the 
conceptual and pedagogical adequacy of students’ explanations is limited. Furthermore, recent 
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research by Hill, Rowan, and Ball (2005) found that teachers’ knowledge of mathematics for 
teaching was related to student achievement. All of these findings make it clear that to 
effectively enact Accountable Talk practices, teachers must have a deeper understanding of the 
mathematics they are teaching, and, therefore, it will be necessary to specifically teach 
mathematics to teachers.  

1.2.3 Student Reasoning (SR). Greater focus by teachers on mathematical depth and 
breadth may mean that student reasoning is largely overlooked by teachers, except when it 
closely matches the formally correct version of mathematical expression that the teacher is 
aiming to convey. Yet reports of virtually all of the integrated, discussion-based teaching we 
have described above stress that teachers continuously listen for and adapt to students’ 
conceptions. Indeed, some scholars have argued that the most important focus for powerful 
mathematics teaching is student thinking about mathematics.    

One important research program, the Cognitively Guided Instruction (CGI) project 
(Carpenter et al., 1999), worked on the assumption that, if teachers knew how children thought 
about basic mathematical operations, and if they actively looked for evidence of developmental 
sequences of understanding among their own students, they would be able to themselves develop 
a form of instruction that would be highly adaptive to student’s thinking.  A similar approach 
was used by the Integrated Mathematics Assessment (IMA) Program (Saxe, Gearhart & Nasir, 
2001). Focusing on early mathematics instruction, these projects had an extensive body of 
research on children’s mathematics thinking to draw on (e.g., Carpenter, Moser & Romberg, 
1982; Leinhardt et al., 1992; Nunes, 1993), largely on topics such as addition, subtraction, 
multiplication and simple division of integers, that were intuitively available to children growing 
up in cultures that used counting and money systems based on decimals (Resnick, 1992).  The 
developers of programs such as CGI and IMA provided extensive knowledge to teachers about 
this research, but did not directly provide teaching tasks, leaving it to teachers to devise the 
instruction. For the primary grades, where these intuitive bases for correct mathematics were 
prevalent, this worked very well, producing well-documented rises in student mathematics 
achievement in many classrooms.  

It is not clear that this radical approach—educating teachers in intuitive mathematical 
thinking, but leaving the invention of specific tasks and pedagogical strategies to them—can be 
as successful for the whole of mathematics.  Indeed the CGI group’s efforts to extend the 
approach to higher levels in the curriculum produced much more limited learning gains than in 
the primary grades.  This could be partly because, at the time CGI was operating, there was little 
research on students’ development of math concepts beyond the most basic stages of number and 
arithmetic.  There is more such research now. However, some of the newer research has also 
shown that student intuitions are as likely to produce mathematical misunderstandings as correct 
foundations for mathematics (e.g., Fischbein, Jehiam & Cohen, 1995; Merenluoto & Lehtinen, 
2002; Tsamir, 2003; VanDooren et al., 2005; Vergnaud, 1989; Vosniadou & Verschaffel, 2004).   

Nevertheless, most scholars agree that a very important aspect of teaching complex 
mathematics and scientific concepts is a continuous monitoring of student thinking by the 
teachers, and a conscious adaptation of instruction to students’ understanding (Clark & Peterson, 
1986; Shepard, 2001). Some (e.g., Hunt & Minstrell, 1994) have developed detailed diagnostic 
tools that can be used in the course of teaching, to make “on-line” diagnoses and respond 
immediately in the course of a classroom discussion to developing student understanding, 
including misconceptions (Shepard et al., 2005; Wiliam, 2007). This type of “formative 
assessment” can eventually lead to more robust learning, as students’ misguided ideas are caught 
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early on. In classrooms where thoughts are not made apparent, teachers cannot fully tap the 
depth of their students’ understanding, or misunderstanding, until the end of a unit, or worse, 
until accountability measures are high-stakes testing situations. Many scholars have contributed 
information about how students’ understanding of specific content develops (e.g., Battista, 2007; 
Carpenter, et al., 1989; Cobb, et al., 1991; Fuson et al., 1997; Hiebert & Wearne, 1993; Kieran, 
2007; Lamon, 2007; Murray, Olivier & Human, 1994; Simon & Schifter, 1991), and what 
decisions teachers might make to facilitate student learning of that content for understanding. 
Hiebert, Carpenter, and colleagues (1997) developed a framework for analyzing features of 
classrooms that support students’ understanding. Using this framework as a guide, teachers can 
examine lessons from their curriculum in terms of what they think is important to teach when 
stressing understanding, what they do when they teach for understanding and how they use a 
variety of pedagogical tools to support students’ understanding (see also Stigler & Hiebert, 
2004).  
 


