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Abstract. Deep analysis of domain content yields novel insights and can be 

used to produce better courses. Aspects of such analysis can be performed by 

applying AI and statistical algorithms to student data collected from educational 

technology and better cognitive models can be discovered and empirically 

validated in terms of more accurate predictions of student learning.  However, 

can such improved models yield improved student learning?  This paper reports 

positively on progress in closing this loop. We demonstrate that a tutor unit, 

redesigned based on data-driven cognitive model improvements, helped 

students reach mastery more efficiently. In particular, it produced better 

learning on the problem-decomposition planning skills that were the focus of 

the cognitive model improvements. 
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1   Introduction 

Much instruction is designed by intuition, drawing on the experiences and self-

reflections of instructional designers or subject-matter experts.  However, conscious 

access to our own knowledge is quite limited – estimated to be only about 30% of 

what we know [3]. The techniques of Cognitive Task Analysis (CTA), such as 

structured interviews of experts, can reveal such hidden knowledge. Furthermore, 

course redesign based on such analysis has been shown to improve student learning 

beyond that achieved by the original courses [3]. We have seen that greater levels of 

automation in CTA can be achieved by “mining” the log data from users of 

educational technology. By employing AI and statistical methods, better cognitive 

models have been discovered across multiple domains, and with student data from 

multiple technologies (intelligent tutors, online courses, games) [8]. This work is part 

of a related set of efforts to use data to discovery models of student knowledge and 

skill [1, 2]. One benefit of this data-driven approach to CTA is that it supplements 



human qualitative judgment with automated quantitative metrics that rigorously test 

purported cognitive model improvements. A critical next step is to the “close the 

loop” by using the improved cognitive models to redesign instruction and then to 

compare, in a controlled experimental study, whether the redesign produces better 

student learning than the original. 

Past experiments testing the benefits for student learning of CTA-based course 

redesigns have had impressive results, but have typically taken a broad strokes 

approach to redesign [10; 3]. The redesigned “treatment” course usually differs from 

the original “control” course in many ways not all of which are clearly attributable to 

cognitive model improvements or to the insights obtained from CTA. One exception 

is a tightly controlled experiment within an algebra story problem symbolization tutor 

where the treatment differed from the control only in the replacement of one problem 

type (simpler story problems) with another (symbolic substitution problems) [6]. Prior 

CTA, employing the Difficulty Factors Assessment technique, had discovered the 

cognitive skills of composing symbolic expressions (e.g., if w=40x and y=800-w, 

then y=800-40x) as a particularly difficult component in learning to model story 

problems in algebraic symbols. The treatment was designed to isolate practice on 

these skills and led to improved learning over the control, including transfer from 

symbolic substitution to story problems [6].  

The Difficulty Factors Assessment is a paper-based predecessor of our current 

educational technology data mining techniques for CTA; and while the symbolization 

study is a nice example of closing the loop, it does not provide direct evidence that 

data mining can be leveraged to produce better student learning. That is the goal of 

the current paper. Before presenting the experiment, we first review the CTA that led 

to the recommended improvements. 

2 Using Educational Technology Data for Cognitive Task Analysis 

In [11], we presented a data-driven method for researchers to use data from 

educational technologies to identify and validate improvements in a cognitive model. 

For statistical modeling purposes, we used a simplification of a cognitive model made 

up of hypothesized components of knowledge or skills that students must acquire to 

be successful on target assessment tasks or activities.  These knowledge components 

(KCs) identify latent variables in a logistic regression model called the Additive 

Factors Model (AFM) [11], which is a generalization of item-response theory [12]. 

The method involves a wash-rinse-repeat iteration: 1) inspect learning curve 

visualizations and best-fitting parameters of AFM for a given set of knowledge 

components (a KC model), 2) hypothesize changes to the KC model based on 

identified problematic KCs, and 3) refit AFM with the new KC model and return to 

step 1. 



 
Fig. 1. A scaffolded “composite area” problem from the original Geometry Cognitive Tutor. In 

the lower table, the student fills in all cell values except the row and column labels. The 

columns for the areas of the metal square and the bottom of the can are given to scaffold 

student reasoning toward finding the composite area of scrap metal. These square and circle 

columns (2 and 5) are absent in an unscaffolded composite area problem. 

 

This method was applied to a publicly available data set from DataShop [5] called 

“Geometry Area (1996-97).”  This data was generated by students using a Cognitive 

Tutor for learning geometry. A screen shot from a newer version of the tutor can be 

seen in Fig.1. The data included 5,104 student steps completed by 59 students. Using 

the visualizations available in DataShop, we identified potential improvements to the 

best existing KC model at the time we started, called Textbook-New, had 10 KCs. 

Three of the learning curves for these KCs are shown in Fig. 2. The lines represent the 

error rate (y-axis) averaged over all students for the first 20 practice opportunities for 

each KC. Most of the KCs in this model have reasonably smooth learning curves, like 

circle-area (some roughness in the learning curve can result from noise rather than a 

bad KC and particularly so when there are fewer observations being averaged, which 

is common at higher opportunity numbers.) The compose-by-addition curve is 

particularly jagged with upward blips at opportunities 12 and 15-18 where the curve 

jumps from about 25% to about 50%. Assuming there are particular problem steps 

that are more likely to occur at these opportunities (which is the case in this data set), 

those steps appear to have some knowledge demand that the other steps do not. The 

compose-by-addition KC involves “composite area problems”, that is, problems 

where the area of a composite shape must be found by combining (adding or 

subtracting) the areas of two constituent regular shapes (e.g., what’s left when a circle 

is cut from a square). In addition to the bumpy curve, the AFM parameter estimates 

indicate that compose-by-addition has no apparent learning (the slope parameter 

estimate is 0), yet it is associated with difficult tasks (the intercept parameter is 1.04 

in log-odds, corresponding to a 26% error rate). The rough curve, flat slope, and non-

trivial error rate are indications of a poorly defined KC.  

 



 

Fig. 2. Example learning curves where Y-axis is the error rate averaged across students (and 

KCs) and the X-axis is learning opportunities. Most curves, like the one for circle-area KC, are 

reasonably smooth and decreasing as indicated in the overall curve on the left. The curve for 

“compose-by-addition” is not smooth, with large jumps in the error rate particularly at 

opportunities 12 and 15. 

A visualization of the error rates on problem steps tagged with compose-by-

addition revealed that some steps are much harder than others. These steps may 

involve additional knowledge-demands that make them harder. By inspecting the 

problem content, we found that some of the composite problems were “scaffolded” 

such that they included columns that cued students to find the component areas first 

(see the square and circle columns in Fig. 1) [4]. Other problems were “unscaffolded” 

and did not start with such columns, thus students had to pose these sub-goals 

themselves. Indeed the blips in error rate for compose-by-addition (seen in the 

learning curve in Fig. 2) correspond with a high frequency of these more difficult 

unscaffolded problems. This analysis suggested that the compose-by-addition KC was 

not at a fine enough level to accurately explain the student data and that an alternative 

KC decomposition is needed. To improve the model, we split compose-by-addition 

into three KCs, one representing “compose-by-addition” with scaffolding present, a 

second where the student had to “decompose” a composite area without scaffolding, 

and a third where the student needs simply to “subtract” in order to execute a 

decomposition plan (formulated in a prior question within the same problem). In the 

new “DecomposeArith” KC model, the 20 steps that were previously labeled with the 

compose-by-addition KC are relabeled -- six with the new decompose KC, eight with 

the new subtract KC, and six keep the compose-by-addition KC label. The 

DecomposeArith model results in smoother, declining learning curves and, when fit 

with AFM, yields a significantly better prediction of student performance than the 

original.  

To further validate the hypothesized model improvements, we performed a 

parallel analysis on a second Geometry Area data set also available in DataShop 

called “Geometry Area Hampton 2005-2006 Unit 34.” The original Textbook student 

model associated with this data set had 13 KCs and when the steps for compose-by-

addition were split into the three KCs as suggested above, a new DecomposeArith 

model was created with 15 KCs. Using AFM, we confirmed that this new model 

better predicts student data, reducing BIC (15,375 to 15,176) and root mean square 

error (RMSE) on test set fit in cross validation (.408 to .404) and thus supporting the 

existence of the new KCs.  

The next step was to use the discovered model to improve the instruction in the 

cognitive tutor unit. 



3   Redesigning the Geometry Cognitive Tutor 

An improved cognitive model can be used in multiple possible ways to redesign a 

tutor: 

1) Resequencing – position problems requiring fewer KCs before ones needing 

more earlier 

2) Knowledge tracing – add/delete skill bars for better cognitive mastery 

3) Creating new tasks – add problems to focus practice on new KCs 

4) Changing instructional messages, feedback or hint messages 

We applied the improved model to the Geometry area unit of a high school geometry 

course. The improved model’s new KCs are related to the planning of problem 

decomposition. We added three new skills to the tutor that differentiate unscaffolded 

decomposition, scaffolded, and simple addition/subtraction. These new skills resulted 

in changes to knowledge tracing and led to the creation of new tasks. In particular, 

students in the new version are not given credit for the difficult decomposition 

planning step via success on simpler scaffolded or subtraction steps, but only through 

success on unscaffolded composition steps.  

We also added new problems to better target these newly identified skills. In our 

first attempt at redesign (briefly described in [11]), we identified four types of 

problems: unscaffolded, table scaffolded, area scaffolded, and problem statement 

scaffolded. Table scaffolded problems reflect the current setup in the tutor and include 

columns for intermediate areas (as in Fig. 1).  Unscaffolded problems remove the 

columns for intermediate areas. Area scaffolded problems give the areas of the 

component shapes.  Problem statement scaffolded problems have the same table as 

the unscaffolded problems but provide an explicit hint in the problem statement 

directing the student to first find the component areas. During the implementation of 

this first redesign attempt [11], we experienced some issues with the parameter 

settings and knowledge tracing algorithm which resulted in students never mastering 

all skills. We also found that the problem statement scaffolded problems did not seem 

to help the students learn the KCs, so we removed this type of problem in the next 

design iteration. 

More importantly, inspired by related work [6], we realized there was an 

opportunity to better support students’ learning of the hardest skill, the decomposition 

planning skill that recognizes a composite area is being sought and sets sub-goals to 

find it by first finding the component areas.  We called this the “know to pose” skill 

and it always appeared with other skills on problem steps in the first redesign. The 

design challenge was to create a problem (or step) that makes visible and isolates just 

this “know to pose” skill. Our solution, shown in Fig. 3, was to ask students to come 

up with a plan to solve an unscaffolded composite area problem and recognize a 

correct description of such a plan. 

In general, changes in skills can lead to changes in the feedback and hint messages 

the tutor provides. Thus, the new problems also come with new, more focused, 

context-sensitive instruction that follows directly from the cognitive model 

improvements.   

 



 

Fig. 3. Example of new problem type to isolate the know-to-pose KC. Students need to 

perceive the desired irregular area as being composed of areas of regular shapes and then devise 

a decomposition plan for solving for the irregular area. They do not need to execute the plan, 

but rather recognize a description of it. 

To implement the new tutor, we needed to set the Bayesian Knowledge Tracing 

parameters for the new KCs.  We set them by hand based on the available data, while 

recognizing the possibility of introducing differences between the experimental 

conditions. Given the introduction of more KCs, we wanted to avoid students in the 

treatment spending more time than the control, so we tried to err in the direction of 

more lenient settings (i.e., a higher initial probability of knowing a new KC). As it 

turned out, these settings were not too low as treatment students better learned 

decomposition skills than control students.   

We also implemented a “minimizing” problem-selection algorithm which would 

help focus student practice by selecting problems with the fewest unmastered skills. 

This new algorithm is in contrast with the standard algorithm which selects problems 

that maximize a student’s opportunity to practice unmastered skills. 

 

4   Experiment 
 

We performed an in vivo experiment comparing the redesigned tutor (“treatment”) 

with the existing tutor (“control”). The study was run with 103 students (52 control, 

51 treatment) as part of regular geometry classes in a local suburban high school in 

the Fall of 2011. Due to absenteeism, seven students did not complete the posttest and 

were excluded from our analyses leaving 96 students (48 control, 48 treatment).  

Pre- and post-test measures were paper and pencil and included two versions (A 

and B) and two orders (four forms) with 12 problems each (5 area, 6 composition, and 

1 compare - a qualitative judgment of the relative area of two related figures). The 

forms (A1, A2, B1, and B2) were randomly assigned for both pre and posttest.  For 



each version, the cover stories, constants and sequence of problems varied but the 

shapes remained the same.   

The treatment had one problem type, unscaffolded problems, that are harder than 

the table scaffolded problems used in the control and are more genuinely 

representative of the desired problem solving. The treatment also had two other 

problem types, area scaffolded and decomposition planning (as in Fig. 3), that are less 

complex, involving fewer steps but better isolating the critical decomposition skills.  

The intention was that these problems would more efficiently focus student learning 

on these skills, minimize distraction from and time spent on other skills, and better 

prepare students for unscaffolded problem solving practice. Thus, we hypothesized 

students would learn decomposition skills more effectively and more efficiently, that 

is, at a faster rate.   

As shown in Fig. 4a, indeed, the treatment students mastered the required skills in 

much less time on average (20.9 minutes) than the control (28.4 minutes; see Fig. 1a). 

An ANCOVA with pre-test as a covariate found this difference to be statistically 

reliable (F (1, 93) = 4.6, p = .03) and an effect size (Cohen’s d) of .6 indicates that it 

is substantial. Interestingly, despite taking 26% less time, the treatment students 

solved more problems (14.0 per student) than control students (10.4). We discuss later 

the reasons behind the treatment’s faster completion of problems. We confirmed that 

all students mastered all knowledge components (8 in the treatment and 6 in the 

control) according to the Cognitive Tutor’s Bayesian Knowledge Tracer (pknown > 

.95).   

We must be cautious in using the tutor data alone to conclude that treatment 

students learned at a faster rate. The mastery criteria employed by the two tutors was 

different, based on different cognitive models. The post-tests, however, were the same 

and provide a more clearly comparable assessment of student achievement and its 

transfer from the computer environment to paper. We find, indeed, that the treatment 

did just as well on the posttest (M = 86.6% correct) as the control (M = 85.5%).  An 

ANCOVA with pre-test as a covariate finds no reliable post-test difference by 

condition (F(1, 93) = 1.03, p=.31). The cognitive model differences in the two tutors 

suggest we should see a different pattern of performance on the post-test, with better 

performance of the treatment on composition problems. As Fig. 4b shows we find just 

such a pattern. We performed a MANOVA with condition as a factor and two 

separate post-test sub-scores, one for the decomposition problems and one for the 

pure area problems, as the dependent variables. Indeed the condition by problem-type 

interaction apparent in Fig. 4 is significant (F (1, 94) = 4.05, p = .047).   

In fact, treatment students better performance on the composition items on the 

post-test may be underestimated in that many of the items were easier scaffolded 

composition problems. One of the problems in particular (the PIZZA problem) was an 

unscaffolded composition problem (it seeks the area after removing a circle inscribed 

in a square). We expected it to be the hardest problem on the test and indeed it was 

(pretest = 59%, average all pretest = 80%). The pre to post results are striking: the 

control shows little difference, a 5% gain (.50 to .55), whereas the treatment has an 

18% gain (.67 to .85). This difference is consistent with the hypothesis that the 

redesigned tutor enables better learning of the challenging problem decomposition 

skills. 
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Toward better explaining the faster learning rate in the treatment, we also 

disaggregated the instructional time into time spent on composition steps versus 
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the difficult problem decomposition planning skills that were identified by way of a 

semi-automated Cognitive Task Analysis process. These students performed better on 

the targeted composition problems on the post-test.  

It appears from the post-test results, that the treatment may not have gotten optimal 

practice on some area skills. For example, the treatment did not do as well on 

trapezoid area problems on the post-test. Unlike immediately prior units that 

differentiate individual area skills (e.g., rectangle vs. circle vs. trapezoid), this 

composite area unit had a single “individual area” KC for all regular shapes.  We 

know from prior model search that this merged KC is too coarse and would benefit 

from being split into more specific KCs.  Doing so, we suspect, would yield further 

improvements in student learning from this composition unit. Students using such a 

further redesigned unit should still do many fewer area steps overall than in the 

current control, but would get more as-needed practice on harder area skills, like 

trapezoid area, than the current treatment.  

A related limitation of the current “close-the-loop” demonstration is that the 

redesigns follow from a KC model that, while validated statistically, was proposed 

from human inspection of learning curve data [13].  It would further strengthen the 

argument for this approach to have other demonstrations of close-the-loop success in 

other domains where LFA has achieved KC model discoveries through more 

automatic methods [8]. 

It may be tempting to conclude that “students learn what they spend time on”, but 

this simple statement is dangerously misleading. It depends critically on how we 

categorize student activities. All of the problems that both groups solved in this study 

were composition problems, and the control group spent more time on these problems 

overall. Thus, by the simple statement, they should have learned the decomposition 

skills better.  They did not.  A finer grained cognitive analysis of student activity tells 

a different story -- one that matches the data!  We need to categorize problem-solving 

steps, not problems, and we need to do so with respect to their cognitive demands, 

recognizing that different contexts for the same action require students to acquire 

different knowledge [13]. Our prior model discovery revealed a different skill is 

needed for unscaffolded composition steps than for scaffolded ones. 

The phrase “how we categorize student activities” is another way of saying 

“cognitive model”. Students learn the elements (the knowledge components) of the 

cognitive model they spend time practicing. However, the structure of that model is 

not obvious.  Knowledge components are not directly observable and most are not 

open to conscious reflection, despite our strong feelings of self-awareness of our own 

cognition [3]. They can, however, be inferred and discovered from student 

performance data across multiple tasks [cf., 7] via a statistical comparison of 

alternative categorizations, that is, of alternative cognitive models.   

Thus, it is a great opportunity for AI and Education not only in mining educational 

technology data to discover better cognitive models, but in closing the loop by 

redesigning systems based on the resulting insights and testing them toward achieving 

better student learning. 
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