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Abstract. This paper investigates the use of conversational agents to scaffold on-line collaborative learning 

discussions through an approach called Academically Productive Talk (APT). In contrast to past work on 

dynamic support for collaborative learning, where agents were used to elevate conceptual depth by leading 

students through directed lines of reasoning (Kumar & Rosé, 2011), this APT-based approach uses generic 

prompts that encourage students to articulate and elaborate their own lines of reasoning, and to challenge and 

extend the reasoning of their teammates.  This paper integrates findings from a series of studies across content 

domains (biology, chemistry, engineering design), grade levels (high school, undergraduate), and facilitation 

strategies.  APT based strategies are contrasted with simply offering positive feedback when the students 

themselves employ APT facilitation moves in their interactions with one another, an intervention we term 

Positive Feedback for APT engagement.  The pattern of results demonstrates that APT based support for 

collaborative learning can significantly increase learning, but that the effect of specific APT facilitation 

strategies is context specific. It appears the effectiveness of each strategy depends upon factors such as the 

difficulty of the material (in terms of being new conceptual material versus review) and the skill level of the 

learner (urban public high school vs. selective private university).  In contrast, Feedback for APT engagement 

does not positively impact learning. In addition to an analysis based on learning gains, an automated 

conversation analysis technique is presented that effectively predicts which strategies are successfully operating 

in specific contexts.  Implications for design of more agile forms of dynamic support for collaborative learning 

are discussed. 
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INTRODUCTION 
 

With the recent press given to online education and increasing enrolment in Internet-based courses, the 

need for scaling up quality educational experiences online has never been so urgent.  The biggest 

limitations are related to the human side of effective educational experiences.  While instructor time is 

a scarce commodity in many such courses, students are plentiful.  Thus, one important contribution the 

field of intelligent support for group learning can make is to develop technologies to structure 



interactions between students in order to maximize the benefit students receive from one another.  

Effective collaborative learning experiences are known to provide many benefits to learners in terms 

of cognitive, metacognitive, and social impact (Kirschner, Paas, & Kirschner, 2009; Scardamalia & 

Bereiter, 1993, 2006; Webb & Palinscar, 1996).  These experiences offer a potentially valuable 

resource for massively open online courses, if affordances can be provided that facilitate high quality 

collaborative learning interactions in the absence of human facilitators that can keep up with the high 

enrolment in such courses.  Effective, automated support for such interactions is the key. 

 In this paper, we build on a paradigm for dynamic support for group learning that has proven 

effective for improving interaction and learning in a series of online group learning studies.  In 

particular we refer to using tutorial dialogue agent technology to provide interactive  support within a 

synchronous collaborative chat environment (Kumar et al., 2007; Chaudhuri et al., 2008; Chaudhuri et 

al., 2009; Kumar et al., 2010; Ai et al., 2010; Kumar & Rosé, 2011).  This form of support can be 

called dynamic for two reasons.  First, the conversational agents are interactive.  They have the 

capability of conducting multi-turn directed lines of reasoning with students that respond to the 

particulars of student input in response to their prompts (Rosé et al., 2001; Rosé & VanLehn, 2005).  

Second and more importantly, they can be triggered through real time analysis of the collaborative 

discussion as it unfolds (Kumar et al., 2007; Kumar et al., 2010; Adamson et al., 2013; Dyke et al., in 

press).  The decision making process for identifying triggers in the ongoing collaboration in real time 

and then launching a specific supportive behaviour at the appropriate time in response to those triggers 

can be thought of as a strategy.  In our prior work, each study described a single strategy that was 

meant to behave dynamically, according to the same context-sensitive rules for all student groups. In 

the current work, we explore the ways the dynamic support strategy itself might need to be adapted 

depending upon the characteristics of the student population.  In particular, we build on prior work in 

triggering support based on real time analysis of collaborative discourse and work towards a new 

characteristic of dynamic support.  Specifically, we are building an empirical foundation for adapting 

the strategy taken by the support technology to the specific, contextual needs of different student 

populations.  We refer to the concept of strategy adaptation that we work towards in this article as 

agile support for collaborative learning. 

This paper integrates findings from a series of studies across content domains (biology, 

chemistry, engineering design), grade levels (high school, undergraduate), and facilitation strategies.  

In each study, each experimental condition makes use of only one strategy.  As we observe the pattern 

of results across studies, where the studies differ in domain and grade level, we see that the ranking 

among strategies in terms of the relative effectiveness of alternative strategies differs depending on the 

student population and learning task.  We also observe a characteristic pattern in the interaction 

between students within successful conditions that can be detected with high reliability through 

automated collaborative process analysis.  Thus we offer this series of studies along with the 

automated process analysis technique as an initial empirical foundation for the development of a more 

agile approach to dynamic support for group learning. In particular, the choice of facilitation strategy 

can be adapted in response to an assessment of the patterns of interaction, i.e., whether the 

characteristic pattern indicating a successful intervention is present. 

In the remainder of the paper we first describe a theoretical foundation from prior work in the 

literature on computer supported collaborative learning, tutorial dialogue agents, and classroom 

discourse.  We then describe our technical approach, which is a publically available architecture for 

dynamic support for collaborative learning called Bazaar.  Next we describe the set of experimental 

studies we present in this article.  Finally, we integrate across the results presented in the individual 



studies in order to motivate a research agenda for future work in the area of intelligent support for 

group learning.  We conclude with a discussion of the limitations of this study and remaining research 

questions. 

 

 

THEORETICAL FRAMEWORK  
 

The theoretical foundation for the work reported in this paper comes from three areas.  We begin with 

literature from the Computer Supported Collaborative Learning (CSCL) community. Here we draw 

insights into types of conversational interactions that are associated with learning in groups and typical 

static technology for increasing the prevalence of those types of interactions, and thereby increasing 

learning.  Next we review more recent work from the CSCL community where dynamic forms of 

support for group learning have been developed and demonstrated to be advantageous over more 

typical static forms of support.  We then review the classroom discussion facilitation literature that 

motivates the set of dynamic support strategies we evaluate in this paper. We propose that these 

strategies can serve as building blocks for a new form of dynamic support for group learning that we 

refer to as “agile” support for group learning. 

 

Supporting Effective Collaborative Discussion Using Static Script-Based Support  
 

The field of Computer Supported Collaborative Learning (CSCL) has a rich history extending for 

nearly two decades, covering a broad spectrum of research related to learning in groups, especially in 

computer mediated environments.  A detailed history is beyond the scope of this article, but interested 

readers can refer to Stahl‟s well known history of the field (Stahl, Koschmann & Suthers, 2006) and 

other foundational work (Dillenbourg et al., 1995).   

An important technological goal of work in the field of CSCL is to develop environments with 

affordances that support effective group learning.  The foundation for this work comes from insight 

into the patterns of conversational interactions that are valuable for learning.  A series of studies in the 

computer-supported collaborative learning field demonstrate the pedagogical value of social 

interaction from a cognitive perspective, showing that interventions that intensify argumentative 

knowledge construction, in support of group knowledge integration and consensus building, enhances 

the development of multi-perspective knowledge (Weinberger et al., 2007; Weinberger and Fischer, 

2006).   

Despite differences in orientation between alternative subcommunities of the learning 

sciences, some conversational behaviors that have been identified as valuable are very similar across 

subcommunities.  Some such example frameworks for characterizing valuable conversational 

behaviors share two aspects: namely, the requirement for reasoning to be explicitly displayed in some 

form, and the preference for connections to be made between the perspective of one student and that 

of another.  It is related to this characterization of valuable discussion behaviors for learning that we 

base our work in this article.  Alternative frameworks for analysis of group knowledge building that 

privilege subtly different formulations of these behaviors are plentiful. In particular, these include 

Transactivity (Berkowitz & Gibbs, 1983; Teasley, 1997; Weinberger & Fischer 2006), Inter-subjective 

Meaning Making (Suthers, 2006), and Productive Agency (Schwartz, 1998). Schwartz and colleagues 

arguing from a Sociocultural perspecive (Schwartz, 1998) and de Lisi and Golbeck arguing from a 

Piagetian Cognitivist perspective (de Lisi & Golbeck, 1999) make very similar arguments for the 



significance of these kinds of behaviors. The idea of transactivity comes originally from a Piagetian 

framework. It is important to note that when Schwartz describes, from a Vygotskian perspective, the 

mental scaffolding that collaborating peers offer one another, he describes it in terms of one student 

using words that serve as a starting place for the other student‟s reasoning and knowledge 

construction. This implies explicit articulations of reasoning, so that the reasoning can be known by 

the partner and then built upon by that partner. The process is explained similarly to how we describe 

the production of transactive contributions. In both cases, mental models are articulated, shared, 

mutually examined, and possibly integrated.  

The most popular formalization of the construct of transactivity (Berkowitz & Gibbs, 1979) 

includes 18 types of transactive moves. These characterize each student‟s conversational turn, as long 

as it is considered an explicit reasoning display that connects with some previously articulated 

reasoning display. Within this schema, transacts have been divided along multiple different 

dimensions, which we will draw from later in the article to motivate our series of experimental studies. 

One important dimension represents whether the transact might be self-oriented (the contribution 

operates on the speaker‟s own reasoning) or other-oriented (the contribution operates on the reasoning 

of a partner) (Teasley, 1997; Berkowitz & Gibbs, 1979).  Another important dimension is whether the 

contribution represents the original idea as stated or transforms it.  Another dimension is whether the 

contribution is consensus oriented or conflict oriented.   

In order to support the growth of student discussion skills, it is necessary to design 

environments with affordances that encourage transactive behaviors and other valuable learning 

behaviors.  The most popular approach to providing such affordances in the past decade has been that 

of script-based collaboration (Dillenbourg, 2002; Kollar et al., 2006; Kobbe et al., 2007). A script is a 

schema for offering scaffolding for collaboration.  Some typical forms of scripts come in the form of 

instructions that structure a collaborative task into phases, or structured interfaces that reify certain 

types of contributions to the collaboration.  Such scripts are typically implemented statically, 

providing the same support in all cases.  A script may describe any of a wide range of features of 

collaborative activities, including its tasks, timing, the distribution of roles, and the methods and 

patterns of interaction between the participants.  Static scripts do not behave differently depending on 

what is happening in the collaboration per se.  Instead, they operate according to choices that are made 

ahead of time and generally held constant within conditions in an experimental study. 

Scripts can be classified as either macro-scripts or micro-scripts (Dillenbourg & Hong, 2008). 

Macro-scripts are pedagogical models that describe coarse-grained features of a collaborative setting, 

which sequence and structure each phase of a group's activities to foster learning and social 

interaction. Micro-scripts, in contrast, are models of dialogue and argumentation that are embedded in 

the environment, and are intended to be adopted and progressively internalized by the participants. 

Scripts can be more or less coercive, from strict “follow-me” style prompts to subtle suggestions of 

behavior implicit in the activity's structure. Stricter scripts can work to reduce the gap between 

expected and observed student behavior, producing a more uniform appearance of discussion. 

However, they run the risk of over-scripting (Dillenbourg, 2002), where the application of 

inappropriate or unneeded supports have a detrimental effect on collaboration and learning. 

 

Dynamic Script-Based Support with Conversational Agents 
 

The early non-adaptive scripting approaches described above can sometimes result in both over-

scripting and in interference between multiple scripts (Weinberger et al., 2007), both of which have 



been shown to be detrimental to student performance. More dynamic approaches can trigger scripted 

support in response to the automatic analysis of participant activity (Soller & Lesgold, 2000; Erkens & 

Janssen, 2008; Rosé et al., 2008; McLaren et al., 2007; Mu et al., 2012). This sort of analysis can 

occur at a macro-level, following the state of the activity as a whole, or it can be based on the micro-

level classification of individual user contributions.   Some prior work on adaptive support for 

collaborative learning used hint-based support for individual learning with technology to support peer 

tutoring interactions (Diziol et al., 2010).  Other prior work on dynamic conversational agent based 

support built on a long history of work using tutorial dialogue agents to support individual learning 

with technology (Wiemer-Hastings et al., 1998; Rosé et al., 2001; Graesser et al., 2002; Zinn et al., 

2002).   

The collaborative tutoring agents described by Kumar and colleagues (Kumar & Rosé, 2011; 

Kumar et al., 2007) were among the first to implement dynamic scripting in a CSCL environment.  In 

that work, the role of the support was to increase the conceptual depth of discussions by occasionally 

engaging students in directed lines of reasoning called Knowledge Construction Dialogues (KCDs) 

(Rosé & VanLehn, 2005) that lead students step by step to construct their understanding of a concept 

and how it applies to the collaborative problem solving context.  These encounters were triggered in 

the midst of collaborative discussions by detection that students were discussing an issue that is 

associated with one of the pre-authored interactive directed lines of reasoning.  Thus, these 

interventions had the ability to be administered when appropriate given the discussion, rather than 

being triggered in a one-size-fits-all fashion.  In an initial evaluation (Kumar et al., 2007), this form of 

dynamic support was associated with higher learning gains than a control condition where students 

had access to the same lines of reasoning, but in a static form. In a subsequent study, students were 

found to gain significantly more if they had the option to choose whether or not to participate in the 

directed line of reasoning when it was triggered (Chaudhuri et al., 2009).  Scripting such as this offers 

the potential for minimal interventions to be used more precisely and to greater effect, with greater 

likelihood of students internalizing the support's intended interaction patterns. Further, the benefits of 

fading support over time (Wecker & Fischer, 2007) could be more fully realized, as the frequency of 

intervention could be tuned to the students' demonstrated competence.  

A major limitation of the specific form of interactive support provided by KCDs is that by 

their very nature they are content specific.  Thus, for every new concept, a separate authoring effort 

was necessary, which limits the scalability of the approach.   

 

Towards a New Generation of Dynamic Support for Collaborative Learning Inspired by 

Academically Productive Talk 
 

A promising direction for addressing the issue raised above related to content specificity is to draw 

inspiration from the classroom discourse literature, where content independent strategies for eliciting 

valuable interaction between students have been developed and tested.  One notable framework for 

such elicitation is Academically Productive Talk (APT) (Michaels, O‟Connor and Resnick, 2007).  

APT is a classroom discussion facilitation approach that has grown out of instructional theories that 

emphasize the importance of social interaction in the development of mental processes, in particular 

ones that value engaging students in transactive exchanges. Drawing on over 15 years of observation 

and study, Michaels, O‟Connor and Resnick propose a number of core “moves” displayed in Table 1. 

These serve as tools that teachers can employ in order to encourage the development of academically 

productive classroom discussions – in other words, classroom discussions in which students make 



their reasoning public, listen deeply and critically to one another‟s contributions, and then interact 

with them transactively.   

Our recent pilot efforts have begun to develop intelligent conversational agent facilitators 

whose behavior is not content specific, but rather draws from this literature on facilitation strategies 

(Adamson et al., 2013; Clarke et al., 2013; Dyke et al., in press).  The design of such support is 

consistent with the literature on facilitation of collaborative learning groups (e.g., Hmelo-Silver & 

Barrows, 2006), and leverages the large body of work that has shown that APT facilitation behaviors 

are beneficial for learning with understanding (Adey & Shayer, 1993; Bill, Leer, Reams, & Resnick, 

1992; Chapin & O'Connor, 2004; Resnick, Asterhan, & Clarke, in press; Resnick, Salmon, Zeitz, 

Wathen, & Holowchak, 1993; Topping & Trickey, 2007; Wegerif, Mercer, & Dawes, 1999).   

 

Table 1  

Academically Productive Talk Facilitation Moves 

 
 

The set of Academically Productive Talk moves includes the revoice of a student statement: 

“So let me see if I‟ve got your thinking right. You‟re saying XXX?”, which encourages students to 

reformulate or transform the articulation of their reasoning in order to clarify their meaning. Another 

Example Teacher Utterance Accountable Talk Move Transact Category 

Explain your thinking. SAY MORE SELF ORIENTED, 

REPRESENTATIONAL, 

CONSENSUS ORIENTED 

What's it prove? Put it into words. PRESS FOR REASONING SELF ORIENTED, 

REPRESENTATIONAL, 

CONSENSUS ORIENTED 

Let me see if I understand correctly.  Are you 

saying they were all adopted? 

REVOICE SELF ORIENTED, 

TRANSFORMATIONAL, 

CONSENSUS ORIENTED 

If capital „G‟‟s dominant, wouldn‟t all babies be 

orange? 

CHALLENGE SELF ORIENTED, 

TRANSFORMATIONAL, 

CONFLICT ORIENTED 

Can you repeat what she said? RESTATE OTHER ORIENTED, 

REPRESENTATIONAL, 

CONSENSUS ORIENTED 

Help him out, Stephen.  Can you add to what he 

said? 

ADD MORE OTHER ORIENTED, 

REPRESENTATIONAL, 

CONSENSUS ORIENTED 

Kelly, are they right?  Do you agree or disagree 

with what they said? 

AGREE/DISAGREE OTHER ORIENTED, 

REPRESENTATIONAL, 

CONFLICT ORIENTED 

In your own words, explain why she‟s right or 

wrong. 

EXPLAIN OTHER OTHER ORIENTED, 

TRANSFORMATIONAL, 

CONFLICT ORIENTED 



move involves asking students to apply their own reasoning to someone else‟s reasoning: “Do you 

agree or disagree, and why?”, which may stimulate sociocognitive conflict, otherwise known as 

conflict-oriented consensus building.  As we have illustrated in Table 1, these core moves can be 

characterized in terms of the type of transactive behavior they might elicit from students along the 

three dimensions we introduced above.  It is important to note that across these dimensions, these 

types of transacts can be seen as having a logical ordering which might then apply to the 

corresponding APT facilitation moves as well.  For example, one must understand one‟s own 

reasoning before one can hope to understand another person‟s reasoning, thus self-oriented transacts 

could be seen as less demanding than other-oriented ones.  Furthermore, one must understand 

reasoning as stated before one can transform or extend that reasoning, thus representational transacts 

might be seen as less demanding than transformational ones. Reasoning must be understood before it 

can be rightly challenged, thus, it would be possible to argue that conflict oriented consensus building 

requires more than consensus oriented transactive behavior.  Some prior work has attempted to tease 

apart differential meditational effects of transacts from these various categories (Azmitia & 

Montgomery, 1993).  Building upon this foundation, it is reasonable to hypothesize that the specific 

APT move that would be helpful to students would depend upon the student‟s specific capabilities or 

the difficulty of the material being discussed. 

In earlier published studies where teachers used approaches like Academically Productive 

Talk, students have shown steep changes in achievement on standardized math scores, transfer to 

reading test scores, and retention of transfer for up to 3 years (Adey & Shayer, 1993; Bill, Leer, 

Reams, & Resnick, 1992; Chapin & O'Connor, 2004; Resnick, Asterhan, & Clarke, in press; Resnick, 

Salmon, Zeitz, Wathen, & Holowchak, 1993; Topping & Trickey, 2007; Wegerif, Mercer, & Dawes, 

1999).   These successes in the classroom discourse literature offer hope that these facilitation 

strategies could be used to design effective support for collaborative learning, a concept we refer to as 

APT agents.  However, none of these earlier studies have explored the question of what the 

preconditions for successful use of specific APT moves might be, or what kinds of learners would 

benefit most from which facilitation moves.  Nevertheless, this kind of detailed insight is needed if 

these moves are to be used to their maximum benefit as support for collaborative learning. 

We report on the first wave of APT agent studies in this article. Rather than treat the 

conversational agents as the sole participants with enough authority to direct the discussion, we 

encouraged the students to practice productive talk themselves.  Thus in each study we offered the 

students instruction on APT moves prior to their online interaction with one another.  The agents‟ use 

of APT moves could then serve both to model this style of discussion, as well as to directly facilitate 

transactive conversational behaviour between students.  We also included an intervention to offer 

encouraging feedback to students for either using APT moves, or engaging in the behaviors the moves 

were meant to elicit. 

In an initial published proof of concept regarding the effectiveness of APT agents at 

improving collaborative processes and learning (Dyke et al., in press), the collaborative task was to 

engage in a series of collaborative discussions in which students make predictions, then make 

observations, and then explain why their predictions did or did not come to pass.  Through this 

experience, the students observe that glucose, water and iodine molecules all diffuse through dialysis 

tubing while starch molecules do not. The activity naturally lends itself to observing a variety of 

distinct cell models involving dialysis tubing containing an inside environment immersed in a beaker 

containing the outside environment. In each, a choice must be made for which liquid will be placed 

outside and which liquid will be placed inside.  The collaborative task content, the macro-scripts that 



supported it, and the list of key concepts used for revoicing were all developed iteratively with 

feedback from teachers and content experts.  An excerpt from the study that shows the agent offering 

an APT move in its first turn and a Feedback move in its second turn is displayed in Table 2. The 

tutor‟s feedback move is triggered by Student1‟s explanation attempt in the first turn.  The tutor‟s 

revoicing move is triggered by Student3‟s contribution in the fourth turn. 

In this study, the APT agent provided both macro scripting and micro scripting support in 

order to structure the interaction.  The macro scripting support provided a common task structure 

across conditions.  While acting in the role of macro support provider, the APT agent provided 

instructions for the collaborative task, and introduced each step of the collaborative task, with the goal 

of controlling for time on task across conditions.   This behavior is not displayed in the excerpt above.  

The micro level support was meant to respond to the particulars of the conversation as it unfolded.  

Each experimental condition was defined based on which behaviors would trigger a supportive move, 

and what that move would be. 

 

Table 2   

Example of Feedback and Revoicing in the Dyke et al. study.   

Time Author Text 

08:41 Student1 it weighs more because there is more in it 

08:45 Student2 

starch is tested with a tube as the glucose is tested with a piece of paper like 

material 

08:45 Tutor Thanks for offering an explanation, Student1 :-) 

08:46 Student3 

the longer you leave the test strip in the water the darker green the strip gets and the 

more weight the glucose solution collects 

09:22 Student1 Student3, wouldn‟t it just show that there was more in it 

09:26 Tutor 

Would another way to say that be "indicators can prove that there was a 

change in concentration ?" 

09:31 Student2 

wat Student3 said and starch cant get any darker when purple and the water would 

be clear so no more 

 

The Dyke et al. (in press) study was run as a 2x2 between subjects factorial design in which 

the interactive support provided some behaviors in common across conditions, but other behaviors 

were manipulated experimentally.  The first variable for manipulation was the presence or absence of 

the Revoicing behavior. The second variable was the presence or absence of the APT Feedback 

behavior, which is simply positive reinforcement when students were detected to engage in APT 

behaviour with one another.  Students showed significant learning gains in all conditions, and there 

was a significant main effect of Revoicing such that students in the Revoicing condition learned 

significantly more between Pretest and Posttest, with an effect size of .34 standard deviations.  There 

was no significant main effect of Feedback although there was a trend for it to have a negative effect.  

And there was no significant interaction between the two factors. 

Despite the substantial literature supporting the effectiveness of APT in classroom 

discussions, it must be acknowledged that much is not known about the mechanism through which the 

complex intervention has done its work. This can only be determined through more fine-grained, 

careful experimentation.  The treatment has always been complex involving multiple facilitation 

moves, used within whole classes, where a human teacher insightfully decides when and with whom 



to use each move. The series of controlled studies presented in this article was meant to begin to fill 

this empirical gap, in order to begin to build an empirical foundation for evidence-based design 

principles for development of effective APT-inspired dynamic support for collaborative learning in 

groups.  The Dyke et al. study is the first study that demonstrated the effectiveness of Revoicing as 

support for collaborative learning with 9
th
 graders, and thus it forms the starting place for our series of 

studies investigating the generality of the effect in this article.   

 

 
Figure 1. CSCL environment from the Dyke et al. study. 

 

BAZAAR: A FLEXIBLE ARCHITECTURE FOR COLLABORATION SUPPORT  

 
The publically available Bazaar architecture

1
 enables easy integration of a wide variety of discussion 

facilitation behaviors that has enabled the set of experimental studies we describe in the next section.  

We begin this section by describing from a user perspective one integrated environment where Bazaar 

provides collaboration support to distributed groups of learners collaborating synchronously.  Next we 

describe the inner workings of the architecture and how it enables effective coordination of supportive 

facilitation behaviors.  We then discuss how we have used this resource to implement the facilitation 

behaviors we evaluate in our experimental studies. 

 

 

                                                      
1
 http://www.cs.cmu.edu/~dadamson/bazaar/ 



APT Inspired Dynamic Collaborative Learning Support 

 
The Bazaar architecture (Adamson & Rosé, 2012) has been used in a variety of studies (Howley et al., 

2012; Clarke et al., 2013; Adamson et al., 2013; Dyke et al., in press) to implement supportive 

interventions involving conversational chat agents that participate as facilitators in collaborative 

learning tasks.  The architecture has been successfully integrated with a variety of collaborative 

environments. These include a standard interface for XMPP multiparty chat, a specialized text chat 

room with a shared whiteboard (Muhlpfordt & Wessner, 2005; Hohenwarter & Preiner, 2007).   

Figure 1 displays an integration between Bazaar and the ConcertChat (Muhlpfordt & Wessner, 2005) 

synchronous chat collaboration environment, which was used in the Dyke et al. (in press) study.  

Because the Bazaar architecture enables quick development of supportive interventions, one can 

efficiently proceed from a concept for a new support behavior to a fully functional collaboration 

environment.  In Figure 1, the panel on the right hand side of the interface is a chat panel where 

students interact with one another through synchronous chat.  The turns labelled as “Tutor” are turns 

that come from the intelligent conversational agent providing facilitation moves in the conversation.  

In this example we see the agent performing a Revoicing move.  On the left is a shared white board 

where either the agent or the students can insert images that are then visible to the whole group.  In 

this case, the image displays a cell model that the students were meant to discuss in the Diffusion Lab.  

The relative size of the chat panel and the white board can be adjusted by clicking in between the two 

panels and dragging in one direction or the other. 

 

Bazaar 

 
Bazaar is a modular framework for designing multi-party collaborative agents that builds upon the 

earlier Basilica architecture (Kumar & Rosé, 2011).  Like Basilica, in addition to its core architecture, 

Bazaar plays host to a library of reusable behavioral components that each trigger a simple form of 

support.  More complex supportive interventions are constructed by integrating multiple simpler 

behaviors.  For example, in the Dyke et al. (in press) study, in the condition with both Revoicing and 

Feedback, the agent needed to coordinate the macro-level prompts with the micro-level prompts from 

both the Revoicing and Feedback strategies.   

Both the agent's overall composition and the configuration of each component are specified in 

plain-text properties files, offering a glimpse at the sort of low-overhead flexibility for authoring, 

content, and deployment championed by recent work (Kobbe et al., 2007). Bazaar and its predecessor 

are event-driven systems in which independent behavioral components receive, filter, and respond to 

user, environment, and system-generated events, and present the unified output of these components to 

the user. Bazaar improves on the Basilica architecture by integrating the orchestration of otherwise 

competing or conflicting agent behaviors, by simplifying the relationships between components, and 

by offering an extensible mechanism selecting proposed agent actions.  The issue of potential clash 

between macro-level support and micro-level support is especially important, as we have observed 

that experiencing these clashes is distracting and confusing for students (Howley et al., in press).  

Thus, it is important to note that coordination between simple support behaviors is necessary even 

when only one APT facilitation strategy is being used. 

Figure 2 illustrates a typical Bazaar configuration where events triggered by student 

contributions in the chat or whiteboard are aggregated in the Input Coordinator.  Unlike Basilica, event 

processing in Bazaar is divided into two distinct phases. Preprocessor components analyse the event 



stream in search of triggers for supportive interventions.  Two examples are shown in Figure 2, 

including the Revoicable Annotator, which looks for student turns that could be revoiced by the agent, 

and the Participation Counter, which keeps track of how many utterances each student has contributed 

recently.  These preprocessed events are relayed to a set of Reactors components. Depending on the 

active agent strategies, under specified circumstances, these Reactors will propose tutor actions in 

response to these events. The Output Coordinator, described in the next section, then makes decisions 

about sequencing and timing and thus manages the coordination of potentially clashing interventions.  

Thus, the Output Coordinator controls when the prompts or other behaviors associated with a triggered 

strategy are presented to the students. 

The Output Coordinator houses Bazaar‟s primary architectural improvement.  In an agent able 

to offer multiple dynamic behaviors, more than one support strategy may be simultaneously 

appropriate. Bazaar‟s predecessors sometimes suffered from clashes between behaviors in cases where 

multiple were triggered simultaneously.  It is important to note that the interference of multiple 

supports caused by these clashes could invalidate the benefit of any of them, to the detriment of the 

learner (Weinberger et al., 2007; Howley et al., in press).  It is important to note that participants in a 

collaborative session, including the facilitator, are not simply focused on the task – they are involved 

in numerous simultaneous processes including social bonding, idea formation, argumentation, time 

management, and off-task activity.  Managing an APT discussion poses additional challenges.  While 

the kind of in-depth discussion that APT elicits is valuable for learning, it takes time. Facilitators must 

always keep time constraints in mind in order to achieve an appropriate balance of breadth and depth 

within and across topics as well as in parcelling out attention to different students. 

As we have alluded to, we observed problems with time management in an earlier prototype 

implementation of an APT agent implemented using Basilica (Howley et al., in press) that manifested 

as clashes between the macro and micro scripting behaviors triggered during the study.  As a technical 

solution to this multi-policy management problem, Bazaar draws on and extends the “concurrent 

mode” approach described by (Lison, 2011).  In Lison‟s work, the author adds a “soft” constraint on 

new proposals by increasing the relative weight of those from the same source as recent actions, 

preferring that source as a “focus of attention” for as long as it had new actions to propose. Proposals 

with a great enough activation weight (or priority) from different sources can outweigh this 

preference, allowing flexible yet consistent responses in the face of noisy input or multiple valid 

states. Evaluation in a simulated human-robot learning task showed that this “soft” control method 

performed better than using a hierarchical finite-state controller to select the next source of action. We 

apply this approach in Bazaar, allowing recent actions to influence the priority of new proposals, and 

extend it, allowing recent actions to promote or suppress proposals from any source.   

In the subsections that follow, we describe Bazaar‟s event flow in more detail, and the way in 

which it affords flexible orchestration between multiple behavioral components. This orchestration is 

key to providing agile, responsive conversational supports.  It also underpins Bazaar‟s role as a rapid 

research platform.  

 

Events and Components 
 

In Bazaar, an Event is an object representing something interesting that has happened in the world of 

the agent. Some Events come from the environment and map to the actions of participants, like a user 

entering a chat room, or an incoming user message – these may be annotated by Preprocessor 

components to reflect a rich understanding of the Event. New Events can also result from the analysis 



of other Events, or represent awareness of system state. Events such as these are used to launch phases 

of macro-scripts, or to initiate dynamic support.  Bazaar components can generate and respond to 

arbitrary author-defined Events, thus it is not possible to provide a comprehensive list.  The default 

Event classes handled by the core Bazaar components include Message (a chat message is sent by a 

student), Presence (a student enters or leaves the chat room), Whiteboard (a student manipulates an 

object in the shared whiteboard), Dormancy (a student or group has been idle for a certain amount of 

time), Launch (author-specified conditions for beginning a macro-script have been met), and Step 

Done (a stage in a macro-script step has been completed). 

 

 
Figure 2. In the Bazaar pipeline, Events are processed in two stages. 

 

Components in Bazaar represent a modular representation of related behavior and state-

knowledge, corresponding to all or part of a single method of scripting or support. Components 

respond to those Events they consider relevant.  Bazaar defines a two-step event-processing flow, 

dividing components‟ event-processing responsibility into  Preprocessor and Reactor roles. While 

some components may act in both roles, this two-stage processing is still enforced. When a new Event 

is received by the system, all Preprocessor components that have registered for a particular Event class 

are given the opportunity to respond to it. They may respond by generating new Events (perhaps to 

indicate a shift in the conversation's focus) or by adding information to the original Event. Events are 

subsequently delivered to those Reactor components which are registered for these Events‟ classes. 

Reactors have the opportunity to respond to preprocessed Events (to dynamically enact sub-scripts or 

supports) by proposing actions to the Output Coordinator.  



 
Figure 3. Proposals are managed by the Output Coordinator. 

 

Output Coordinator: Prioritizing Proposed Actions 

 
As mentioned above, the Output Coordinator is needed to avoid clashes between multiple 

proposals that may have been triggered within the same period of time.  Most commonly, clashes 

occur between proposals related to macro level support and proposals related to micro level support.  

Figure 3 illustrates an example proposal flow within the Output Coordinator.  Proposals for agent 

action, received from the Reactor components, are queued by Bazaar‟s Output Coordinator. When a 

Reactor creates a Proposal, it is assigned a timed window of relevance, and a priority (between 0 and 

1). Periodically, the Output Coordinator will re-evaluate the priority of each remaining Proposal (by 

taking hints from recently enacted Proposals), rejecting those that have expired, and accepting and 

enacting the Event with the highest priority. A previously-accepted agent action can leave a lingering 

presence with the Output Coordinator, a Proposal Advisor, which can re-weight the priority of (or 

entirely suppress) incoming Proposals until its influence expires. Each action Proposal is constructed 

with a timeout-window after which it is no longer relevant - if a queued Proposal has not been 

accepted when its timeout expires, it is removed from the queue. When a message is accepted or 

rejected, a callback method (which may be defined at the time of Proposal creation) is invoked, 

allowing the proposing Component to update its state accordingly. 



Bazaar provides methods for creating Proposals with Proposal Advisors for common use 

cases. These include sending simple single turn messages, or interventions that involve sequences of 

messages and that suppress all subsequent Proposals (or those from a particular set of source 

components) for a given amount of time or until the sequence of associated behaviors is complete (to 

allow an opportunity for student follow-up, for example). In most cases, employing these pre-defined 

advisors is sufficient to author a smooth and natural agent experience. Bazaar also supports more 

advanced proposal-management techniques, such as affording a Proposal the ability to re-evaluate its 

own importance in light of subsequent Events.  

By allowing Proposals to establish constraints on near-future Events in a general way, 

conversational agents authored in Bazaar can be responsive to changes in both student behavior, and 

in the behaviors enacted by the agents‟ behavioral components. As support behaviors re-evaluate their 

own relevance, the agent thus has the potential to effectively change strategies dynamically, based on 

whether the current strategy is having the desired effect. Authors of Bazaar agents can specify these to 

suit their experimental, pedagogical, and practical needs. In particular, the rigidity of timing with 

which macro-scripted elements are executed can be adjusted along the spectrum between replicability 

and internal experimental validity, and natural, external conversational validity. Table 3 details the 

Proposal and Advisor configurations for components used in the studies described in this article. 

 

Table 3  

Proposal and Advisor configurations for components described in this article. 

Bazaar 

Component 

Behavior Intent Proposal 

Priority 

Proposal 

Timeout 

Advisor Implementation 

Timed 

Script  

Provide consistent time for 

each section across groups, 

allow time for reading 

High 60 

seconds 

Block all tutor actions for a 

time proportional to the length 

of the displayed prompt. 

Social 

Support 

Offer immediate responses 

to social cues   

Low 3 seconds Block all tutor actions for 5 

seconds. 

APT 

Feedback 

Give immediate feedback 

on student APT behaviors 

High 3 seconds Block all other tutor actions for 

5 seconds, block other APT 

moves for 20 seconds 

Revoicing Highlight and clarify 

student-generated concepts 

Medium 

(proportional 

to candidate 

similarity) 

15 

seconds 

Block all other tutor actions for 

10 seconds, block other APT 

moves for a further 45 seconds 

Agree 

Disagree 

Support discussion of 

student-generated concepts 

Medium 

(proportional 

to candidate 

similarity) 

15 

seconds 

Check for student followup 

before acting. Prioritize agree-

disagree tutor followup 

prompts. Block other tutor 

actions for 10 seconds, block 

other APT moves for a further 

45 seconds. 

 

Using Bazaar to Implement Supportive Interventions 

 

Three different interventions are evaluated in the series of studies reported in this paper. Revoicing 

elicits Self-Oriented, Transformational, Consensus Oriented transacts. Agree-Disagree elicits Other-



Oriented, Representational, Conflict-Oriented transacts. Finally, APT Feedback is designed to offer 

non-specific encouragement for students to engage in APT related behaviors.  As will become clear, 

all of these interventions reused many of the same components in their implementation. 

 

Detecting Academically Productive Talk Candidates  
 

The two APT interventions implemented for the studies reported in this paper required the detection of 

task-relevant conceptual assertions.  For example, attempts at articulation of task-relevant assertions 

could be the focus of a reformulation elicited by a Revoice facilitation move or the idea that a student 

agrees or disagrees with in response to an Agree/Disagree move. 

In order to identify task-relevant conceptual assertions, we worked with domain experts and 

instructors to develop a “gold standard” list of statements that captured important concepts and 

misconceptions for the unit of study. Such statements were drawn from both the experts‟ knowledge 

and expectations and from transcripts of an unsupported dry-run of the task.  We use a “bag of 

synonyms” cosine similarity measure (Fernando & Stevenson, 2008; Mihalcea et al., 2006), which 

essentially measures overlap in word usage. Student assertions which are within a certain threshold of 

similarity to the gold statements are identified as revoicable or agree-disagree candidates that could 

be evaluated by the group. Both the Revoicing and Agree-Disagree supports described employ use the 

same detection method (implemented as a Bazaar Pre-Processor component), although with a looser 

similarity threshold in the latter case.   

 

Revoicing Facilitation 
 

One of the forms of support evaluated in this paper is a Bazaar agent that performs the APT Revoicing 

move. The agent compares student input against a list of correct statements drawn from the data 

collected in pilot runs of the studies. If an entry in this list could be interpreted as a paraphrase of the 

student's input using the method described above, it is offered by the agent as a "revoicing" to the 

students. The same statement was never offered more than once in the same session as a revoicing. 

When student statements were not close enough to match the revoicing list but contained the first 

mention of important lesson concepts (like "test strip" or "molecule size"), the agent would ask the 

student or a peer to expand or restate their contribution.  Examples are given in Table 4. 

 

Table 4  

Examples of Revoicing Behaviors 
Student Contribution  Revoicing Facilitation Response 

basically the glucose will get inside Maybe you could state that as "the cell membrane is 

permeable to glucose." 

it changed becouse the tube obsorbed the iodine, So are you saying "the molecules diffused through the 

membrane?" 

I predict that if the holes in the plastic are large 

enough , the glucose will go into the water 

solution.. 

Maybe you could state that as "both water and glucose 

molecules are able to move between the two 

environments." 

 

An example from a unit of 9
th
 grade biology on Genetics, which was the context for Study 2 

discussed below, is displayed in Table 5.  Here all of the student turns that are detected to be 



revoicable are marked with italics.  The Tutor‟s revoicing is marked in bold.  Note that while two 

turns were detected as revoicable in the Preprocessor, a revoicing was only triggered once because of 

the constraint that the same concept won‟t be revoiced more than once in the same conversation.  

What we see in this example is that the tutor‟s revoicing of Student1 created the opportunity for that 

idea to be the focus of reformulation and clarification, as shown by Student2‟s followup. 

 

Table 5  

Extended Revoicing example in a 9
th
 grade biology lesson from a Genetics unit. 

Time Author Text 

00:12 Student1 

yes both of  the parents are momozygous but yellow cat is dominent and white cat is 

recessive 

00:27 Tutor 

Let me make sure I understand you - are you saying a white cat had to come 

from parents who both carry the recessive white fur gene? 

00:36 Student2 because the orange color coat is more dominant than the white color coat 

00:57 Student1 its true  

 

Agree-Disagree Facilitation 
 

We also present a conversational agent behavior based on the “Agree-Disagree” APT move. 

As the group discusses flows, the agent monitors the chat for student assertions that could be followed 

up by a check for agreement or understanding. This uses the detection method described above, but 

with a looser match threshold than that employed by the Revoicing behavior. This results in the 

detection of a greater number of candidate statements, and more opportunities for support than the 

Revoicing agent could afford. Not all of these detected statements will result in the agent triggering an 

Agree-Disagree move.  Instead, when a candidate statement is identified, the Agree-Disagree 

component waits for the other students in the group to respond to it. If another student responds with 

an evaluation of their peer‟s contribution (along the lines of “I agree” or “I think you‟re wrong”), but 

does not support their evaluation with an explanation, the agent will encourage this second student to 

provide one. If a student instead follows up with another candidate statement, the agent does nothing, 

leaving the floor open for productive student discussion to continue unimpeded, reducing the risk of 

over-scripting their collaboration. If the other students do not respond with either an evaluation or a 

contentful followup, the agent prompts them to comment on the candidate statement – for example, 

“What do you think about Student‟s idea? Do you agree or disagree?” This interactive process is 

illustrated in Figure 4.  

Table 6  

Agree-Disagree example in a 9
th
 grade biology lesson from a Genetics unit. 

Time Author Text 

00:00 Student1 the yellow cat is probably GG and the white is gg 

00:15 Tutor Do you agree with Student1? Why, or why not? 

00:17 Student2 Gg,Gg.Gg.Gg. 

00:31 Student3 I do shes right 

00:47 Student1 i agree with Student2 for the possible outcomes 

00:48 Student2 I agree with Student1 



 

 
Figure 4. The Agree-Disagree move only triggers in the absence of productive student followup. 

 
Table 6 shows an example of this support in the high-school biology setting. Times are given 

in seconds from the beginning of the excerpt. Rows marked in italics are the automatically detected 

labels the agent uses to motivate its facilitation moves.  Student1 offers a contribution that is a 

candidate for evaluation.  After 15 seconds of no students following up, the agent inserts an Agree-

Disagree prompt.  Student2 then responds very quickly, and then Student3 follows suit.  Thus, the 

agent‟s prompt seems to have successfully engaged the group in responding to Student1.  

The excerpt shown in Table 7 is drawn from a unit of college Chemistry in intermolecular 

forces. This exchange is typical of a group interaction in this environment – Student1‟s contribution at 

17 seconds, although a candidate for evaluation, is not acted upon by the agent because Student3‟s 

follow up pre-empts it. After 15 seconds following Student3‟s statement without any sort of uptake by 

the group, the agent prompts the group to agree or disagree with it. Student2 offers a challenge, which 

leads to an extended back-and-forth between all three students. 

 

Table 7  

Agree-Disagree example in an undergraduate Chemistry unit on intermolecular forces. 

Time Author Text 

00:00 Student1 ok lots of things to do... 

00:13 Student1 first one  

00:17 Student1 surface area is higher 

00:20 Student2 arrow up? 

00:22 Student3 ok, boiling pt will go up and vdW will go up for all of them consecutively... right? 

00:37 Tutor Do you concur with Student3? Why, or why not? 

00:41 Student2 hmm not necessarily 

00:47 Student1 area goes up for each 

00:50 Student2 would it? 

00:51 Student2 im not sure 

00:56 Student3 yea for sure area goes up 

 



APT Feedback 
 

A final behavior implemented using Bazaar and evaluated in this paper provides positive feedback for 

student APT.  Here the goal is to offer encouragement when students themselves begin to act as APT 

facilitators with one another.  Thus, rather than offer APT facilitation moves, the agent‟s task here was 

to detect when students were doing it.  Student input was matched against a list of hand-crafted 

patterns indicating APT moves including explanation, challenges, revoicing, and requests for others to 

provide each of the same. If a student statement matched, the agent publicly praised the student's 

move, and (when appropriate) encouraged the other students to attend to and interact with that student.  

Rather than perform APT based facilitation itself, as the Revoicing behavior does, the Feedback 

behavior was meant to indirectly support the prevalence of APT in the discussions by encouraging 

students to take this facilitation role.  An example is presented in Table 8, where moves detected as 

worthy of positive feedback are marked in italics, and the agent‟s feedback is marked in bold. 

 

Table 8  

Feedback example from the Dyke et al. study. 

Time Author Text 

08:41 Student1 it weighs more because there is more in it 

08:45 Student2 

starch is tested with a tube as the glucose is tested with a piece of paper like 

material 

08:45 Tutor Thanks for offering an explanation, Student1 :-) 

08:46 Student3 

the longer you leave the test strip in the water the darker green the strip gets and 

the more weight the glucose solution collects 

09:22 Student1 Student3, wouldn‟t it just show that there was more in it 

 

 

METHOD 
 

The line of inquiry investigated in this article was prompted by the hypothesis that by incorporating 

intelligent agents to model, support, coach, and provide feedback for students using Academically 

Productive Talk (APT) moves, students will benefit in terms of learning and interaction. Note that we 

do not hypothesize that all APT moves are interchangeable.  Rather, in this work we manipulate the 

usage of different APT moves in order to understand better their separate and joint effects on measures 

of learning and interaction.  The experiments presented in this paper build on the early success of a 

form of APT, namely revoicing support, in a study with 9
th
 grade biology students (Dyke et al., in 

press).  The series of studies presented in this paper serve as a test of the generality of the effect.   

As an advance organizer for the series of studies and analyses, what we will see in these 

studies is that the positive effect of APT facilitation behaviors is context specific.  Thus, a more 

generalizable form of support would need insights into the contextual pre-conditions for the success of 

these facilitation strategies.  The pattern of results across the studies begins to provide an empirical 

foundation for a more agile, more generalizable form of support that can use APT facilitation 

behaviors in a more nuanced, population sensitive way.  Note that we are not claiming in our 

presentation of these studies that we already have this agile form of support.  Rather, our 

investigations provide the initial empirical foundation for developing such an approach.  In addition to 



the learning gains analysis for each study, we present an automated process analysis technique that 

proves surprisingly accurate in identifying which interventions were most successful in each context.  

An automated measure that provides an indication of the relative success of alternative intervention 

strategies within contexts can be used to discover new associations between contexts and facilitation 

strategies in real time.  Thus, we will argue that beyond the insights into the individual contexts 

investigated in this series of studies, the results allow us to make cautious predictions beyond those 

contexts using the results from the process analysis we present as one of the contributions of this 

paper.   

 

Experimental Paradigm Common Across Studies 
 

In all four studies discussed in this paper, which includes the foundational Dyke et al. (in press) study 

and three new ones, the instructional goal is for students to understand principles that explain causal 

mechanisms at a deep level. To that end, we prompt students for explanation in the context of group 

discussion with the goal that students will articulate and monitor their own reasoning, evaluate one 

another‟s reasoning, and challenge one another.  In all cases, students interact with their group 

members by logging into a chat room assigned to their group in the ConcertChat environment 

displayed in Figure 1 above, a discussion environment with a shared whiteboard (Mühlpfordt & 

Wessner, 2005).  

 

Assessment 
 

In all studies presented in this paper, we employ both summative assessments in the form of pre/post 

domain-knowledge tests, as well as process assessments that measure the interventions‟ success in 

eliciting more of the behaviors that mark effective collaborative learning processes.  Thus the first 

analysis we do in all studies is to verify that learning took place between pre and post-test (using an 

ANOVA) and then to test for differences in learning between conditions (using an ANCOVA). 

Beyond the learning gains analyses, we also do a process analysis.  The specific interaction 

goal of APT interventions is to engage students in a more intensive exchange of explanations.  More 

specifically, the desired contributions within these exchanges are what we referred to above as 

revoicable assertions.  By more intensive, we do not mean that students utter more explanations per se, 

but that the explanations they utter are directed towards building on those of their partner students.  

The motivation for attempting to achieve this was to raise the level of critical thinking and learning.  

Thus, in addition to a Pre/Post test measure of learning, a process analysis to verify that the 

intervention did its job is also important for evaluating our hypothesis.  Anecdotally, we have 

observed that in some conversations, there were bursts of explanation behavior where this kind of 

intensive knowledge exchange was taking place.  The purpose of our quantitative process analysis was 

to measure the extent to which this kind of bursty behavior was occurring within discussions as a 

result of the manipulation. 

In order to accomplish this, the chat logs were segmented into intervals such that one 

observation is extracted per student for each interval. For young learners, we use 5 minutes as the 

interval since they type slower and take more time before responding whereas for older, more 

advanced learners, we use 2 minutes as the interval. In this way, we keep the average number of 

contributions per segment comparable between age groups.  In each observation, we count the number 

of revoicable assertions contributed by the student and the number of revoicable assertions contributed 



by other group members.  Conversations with more bursty behavior patterns should have a higher 

correlation between these two variables, which would signify that students are more active in the 

conversation when their partner students are also active. 

Thus, for the process analysis, we evaluate the effect of condition on the correlation within 

time slices between occurrences of revoicable assertions of a student with those of the other students 

in the same group.  We used a multi-level model to analyse the results in order to account for non-

independence between instances.  We expect to see that the correlation is significantly higher in the 

condition with the intervention when the intervention is effective.  We do the analysis separately for 

each independent factor within each study in order to contrast discourse behaviour between 

conditions.  Specifically, we used what is referred to as a random intercept and slope model, which 

allows estimating a separate latent regression line for a student‟s behavior in relation to that of their 

partner students within time slices. In this model, each student trajectory is characterized by a 

regression with latent slope and intercept.  

To do this analysis, we used the Generalized Linear Latent and Mixed Models (GLLAMM) 

(Rabe-Hesketh, Skrondal, & Pickles, 2004) add-on to STATA (Rabe-Hesketh & Skrondal, 2012). The 

dependent measure was number of revoicable assertions by the student within the time slice.  The 

independent variable was the number of revoicable assertions contributed by the other students in the 

group within the same time slice.  The condition variable was added as a fixed effect, and as an 

interaction term with the independent variable.  A significant interaction between condition and 

independent variable in this case would indicate a significant difference in correlation between a 

student‟s contribution of revoicable assertions and that of their partner students.  A positive difference 

would be indicative of an intensification of the interaction between students.  A significant positive 

difference in intercept between conditions would indicate that the intervention raised the average 

number of revoicable assertions within time slices. 

 

Recap of Study 1: 9
th

 Grade Diffusion Lab 
 

The first of four studies, which we discussed above (Dyke et al., in press), was carried out during a 

module introducing the concepts of selective permeability, diffusion, osmosis and equilibrium.  This 

study took place in an urban high school, and the content was relatively new to the students since they 

were at the beginning of a new unit in their course.  In this study, the students worked together in a 

collaborative session for about 20 minutes.  As mentioned, this study was run as a 2x2 between 

subjects factorial design, where the first variable for manipulation was the presence or absence of the 

Revoicing behavior. The second variable was the presence or absence of the APT Feedback behavior. 

Students showed significant learning gains in all conditions, and there was a significant main effect of 

Revoicing such that students in the Revoicing condition learned significantly more between Pretest 

and Posttest, with an effect size of .34 standard deviations.  There was no significant main effect of the 

APT Feedback manipulation although there was a trend for it to have a negative effect.  And there was 

no significant interaction between the two factors. 

In order to compare the results from this study with those of the other studies, we present now 

the process analysis results from this study.  The process analysis using the random intercept and slope 

model showed an interesting contrast between the Revoicing intervention and the APT Feedback 

intervention that is indicative of a possible explanation for the differential effect on learning during the 

collaborative activity.  In the Revoicing condition (where there was a Revoicing agent to offer micro 

level support), we saw the pattern that we anticipated in conjunction with a positive learning effect in 



comparison with the Control condition (where were was no Revoicing agent).  There was no 

significant difference in intercept between conditions, confirming that there was no difference in 

absolute number of revoicable assertions between conditions.  More importantly, there was no 

significant correlation between the number of revoicable assertions of a student and that of his partner 

students in the Control condition where there was not a Revoicing agent.  However, there was a 

significant interaction between the Revoicing condition variable and the number of revoicable 

assertions contributed by partner students (R = .14, z = 2.03, p < .05). This indicates that there was a 

significantly higher positive correlation between the number of revoicable assertions contributed by a 

student and that contributed by partner students in the Revoicing condition.  Thus we do see evidence 

that in the Revoicing condition, the intervention had the effect of precipitating pockets of intensive 

discussion.   

In contrast, with the APT Feedback intervention we see an entirely different pattern.  In this 

case, there was a significant positive effect on the intercept associated with the APT Feedback 

condition, indicating that students contributed significantly more revoicable assertions in the APT 

Feedback condition. However, there was a marginal interaction between condition and the number of 

revoicable assertions, this time with a negative coefficient (R = -.16, z = -1.87, p = .07). This indicates 

that while students were talking more, they were interacting with one another less intensively, which is 

consistent with the finding of no effect on learning. A possible explanation is that the Feedback agent 

elicited interaction between students and itself while the Revoicing agent elicited interaction between 

students, which was the goal. 

 

Study 2: 9
th

 Grade Genetics 

 
Figure 5 Example of a Punnet Square 

 

The second study was conducted within the same course where the first study was conducted, but two 

months later, in a unit on Genetics.  The study was carried out during a module specifically 

introducing the concept heredity, and the use of Punnet squares as a tool to reason about the 

inheritance of single traits. At the time of the study, the material was somewhat familiar to the students 

since they were towards the end of the unit by the time the study took place.  In the collaborative 

activity that lasted for about 20 minutes, student groups were presented with a set of three problems 



and asked to reason about the physical and genetic traits of the hypothetical parents of a set of sibling 

organisms. Specifically, in each problem, students were shown a litter of eight kittens that varied in fur 

color (either orange or white), and were instructed to identify the genotypes and phenotypes of the 

parents, and to explain their reasoning to their teammates. This sort of “backwards” reasoning had not 

been explicitly addressed in the course to date – students only had prior experience with “forward” 

reasoning from given parental traits. The mystery parents were presented as the inputs to an 

unpopulated Punnet square, as shown in Figure 5. As an incentive, students were told that the best 

team, determined by a combination of discussion quality and post-test scores, would be awarded with 

a modest prize of food. Each of the three tasks was progressively harder than the last in that fewer 

clues about the parent‟s identities were included.  

The collaborative task content, the macro-scripts that supported it, and the list of key concepts 

used for revoicing were all developed iteratively with feedback from teachers and content experts. 

 

Participants 
 

This study was conducted in the same seven 9th grade biology classes of an urban school district that 

the first study was run in, only two months later. The classes were distributed across two teachers 

(with respectively 3 and 4 classes) for a total of 78 consenting students, who were randomly assigned 

to groups of 3.  Groups were randomly assigned to conditions.   

 

Experimental Manipulation 
 

In this study, only Revoicing behaviors were manipulated experimentally.  The APT Feedback that 

was evaluated in the first study was not repeated in the second study since it did not lead to a positive 

effect with this student population in that study.  In both conditions of this study, the agent provided 

the same macro level support by guiding the students through the activity using the same phases 

introduced in such a way as to control for time on task.  Only the micro-level support varied between 

conditions.   

 

Study Procedure 
 

Just like in the first study, the students first participated in a normal class lesson on genetics as part of 

the course curriculum. At the end of the period, they took a pre-test. The pre-test included four 

multiple-choice questions testing the students‟ ability to use Punnet squares to reason about the 

likelihood of genetic and physical traits of children based upon the traits of the parents, and one open-

ended question designed to elicit explanation of reasoning about parental identity based upon the 

physical traits of offspring.   

In the next class period, the students participated in a 20 minute collaborative computer-

mediated activity during which the experimental manipulation took place.  The students did the 

activity in groups of three students, scaffolded by conversational agents.  Students within classes were 

randomly assigned to groups and then groups to conditions. As in the first study, this activity was 

introduced by a cartoon depicting the use of APT and a reminder of the basic science principles 

underlying the activity, in this case principles of simple inheritance. At the end of this second phase, 

the students took a post-test of the same design as the pre-test, although with different characteristics 

and genotypes presented in each problem. 



Results 
 

As in the Diffusion Lab study, we evaluated pre-to-post test learning and the effect of condition on 

learning and on the collaborative process.  However, the material appears to have been too easy for the 

students.  Post-test scores were higher on average than pre-tests scores, but not significantly.  And 

although the trend was for students in the Revoicing condition to learn more than students in the 

Control condition, the difference was not significant or even marginal.  Thus we do not elaborate on 

the learning gains analysis here. 

While the learning gains analysis does not allow us to draw new insights about learning, we 

can observe how the collaborative processes play out with the same student population used in Study 

1, but with material that appears to be less challenging for them.  The process analysis using the 

random intercept and slope model showed an interesting contrast between this study and the Diffusion 

lab study.  Similar to the Diffusion study, there was no significant difference in intercept between 

conditions, confirming again that there was no difference in absolute number of revoicable assertions 

between conditions.  This time, however, there was a significant correlation between the number of 

revoicable assertions of a student and that of his partner students in in both conditions (R = .31, z= 

3.59, p < .001), and no difference in slope between conditions.  Thus, we have confirming evidence 

that there was no difference in effect between conditions.  Students were interacting productively in 

both conditions regardless of support, possibly because the material was easy for them and thus they 

may not have needed the revoicing support. 

 

Study 3: Freshman Engineering Design  
 

As a second replication of the successful Diffusion Lab study, we ran a study in a Freshman 

Engineering Design course at a selective private university.  The material presented in the study was 

relatively familiar to the students.  The experimental manipulation was identical to that of Study 1, 

including both the APT Feedback manipulation and the Revoicing manipulation. 

 

Participants 
 

109 mechanical engineering students participated in the experiment, which was held over six sessions 

spread evenly between two days. Students were grouped into teams of three or four individuals. The 

number of three person and four person groups was roughly evenly distributed between conditions.  In 

each session, the groups were evenly distributed between the three conditions.  The two days of the 

experiment were separated by two weeks. 

 

 

Experimental Procedure 
 

Each session started with a follow-along tutorial of computer-aided analysis where the students 

analysed a wrench they had designed in a previous lab. A pre-test with 11 questions (7 multiple choice 

questions and 4 brief explanation questions) was administered after the analysis tutorial. The 

experimental manipulation happened during the Collaborative Design Competition after the pre-test. 

Students were asked to work as a team over 90 minutes to design a better wrench taking three aspects 

into consideration: ease of use, material cost and safety. Students were instructed to make three new 



designs and calculate success measures for each of the three aspects under consideration. As part of 

this process, students occasionally were requested to make predictions and explain them, however, it 

should be noted that this task was somewhat less conceptually oriented than that used in the other 

studies.   

 

Results 
 

The results of this study were strikingly different from the two conducted in 9
th
 grade Biology.  In 

particular, rather than achieving a positive effect, the Revoicing manipulation had a significant 

negative effect on learning within the APT Feedback condition with this more advanced population of 

learners. 

 As in the earlier studies, we began our analysis by first verifying that students learned between 

pre and posttest.  For this analysis, we treated Test as a repeated measure, with Pre and Post being the 

two time points.  We conducted an ANOVA test with Test as the dependent variable.  Time point, 

Revoicing, and Feedback were independent variables.  We included all two-way interaction terms as 

well as the three-way interaction term.  There was a significant main effect of Time point F(1,210) = 

9.28, p < .005, demonstrating that students learned.  None of the interaction terms were significant.  

Thus students learned between pre and posttest regardless of condition. 

 Next we tested for differences in learning between conditions.  For this analysis, we 

conducted an ANCOVA with Post-test as the dependent variable and Pre-test as a covariate.  

Revoicing and APT Feedback were the two independent variables.  We also included the interaction 

term in the model.  Here there was almost no effect of APT Feedback F(1, 104) = .03, p = .87.  There 

was a trend for a negative effect of the Revoicing manipulation F(1, 104) = 2.22, p =.13.  The 

interaction between APT Feedback and Revoicing was not significant, however, it should be noted 

that within the APT Feedback condition, there was a significant negative effect of Revoicing (p < .05).  

Thus, there is some qualified evidence of a potential detrimental effect of Revoicing with this 

population. 

Consistent with the negative trend, the process analysis using the random intercept and slope 

model showed an interesting contrast with the earlier studies when we evaluated the effect of the 

Revoicing manipulation.  Similar to the earlier studies, there was no significant difference in intercept 

between conditions, confirming again that there was no difference in absolute number of revoicable 

assertions between conditions.  There was, however, a significant correlation between the number of 

revoicable assertions of a student and that of his partner students in the control condition (R = .1, z= 

3.7, p < .001), as well as an interaction between condition and slope.  In contrast to the Diffusion study 

where we saw a positive effect of revoicing both on learning and on the slope, here we see a negative 

impact on slope based on the correlation on the interaction term. This echoes the trend for a negative 

effect on learning (R = -.1, z = 2.4, p < .05).  Thus, we have confirming evidence that there was a 

negative impact of the Revoicing manipulation with this population.  When we do the same analysis to 

evaluate the effect of the APT Feedback condition, we see no effect of any variable. 

 

Study 4: Freshman Honors Chemistry 
 

In the final study, published as a conference paper (Adamson et al., 2013), we tested the hypothesis 

that one reason why Study 3 was not successful was that the students did not need support in making 

themselves clear. Instead, we hypothesized that instead of support for basic articulation of ideas, they 



needed support to the next step of challenging each other‟s reasoning.  We consider this study to be a 

good comparison case to Study 3 because the student population was similarly university level from 

the same selective private university, and the material was similarly relatively familiar to the students. 

The collaborative task, which lasted for about 90 minutes, focused on intermolecular forces 

and their influence on the boiling points of liquids. For each problem in the activity, students were 

asked to predict whether a given substance would have a higher or lower boiling point than two of its 

relatives, explaining their reasoning about the set of molecules in terms of their structure and the 

forces at play. Each problem of this sort was followed up by revealing the actual boiling point of the 

mystery molecule, and asking students to revisit their predictions and explanations in light of the new 

data. A liquid‟s boiling point can be influenced simultaneously by a number of different 

intermolecular forces, each of which arises as a consequence of the molecules‟ particular structural 

attributes.  Correctly identifying the pertinent structural features of molecules and reasoning about 

how they will affect the liquid‟s boiling point is a non-trivial and multi-faceted task. Because multiple 

types of intermolecular forces influence liquids‟ boiling points, we employed the Jigsaw technique 

(Aronson, Blaney, Stephan, Sikes, & Snapp, 1978), assigning students within each group to read 

individually about one of three forces that contribute to a molecule‟s boiling point. This division also 

provided intrinsic motivation for collaboration, as the task could not be completed without knowledge 

from each of the student experts. 

 

Participants 
 

The participants in our study were first-year undergraduate students studying intermolecular forces in 

an Honors Chemistry course.  Students were randomly assigned to groups of three or four, and then 

groups were randomly assigned to conditions.  The balance of three and four person groups was even 

between conditions, and there was no effect of team size on any of our dependent measures.  All 

students in the course were required to participate in the online exercise for course credit, but they had 

the option of not consenting for their data to be included in our research. Thus, we only report results 

for consenting students.  Altogether, our analysis includes data from 18 students from 6 different 

groups, which is 9 students and 3 groups in each condition.   

 

Experimental Manipulation 

 

Our experimental design was a simple 2-condition between-subjects design where teams were 

assigned randomly either to the Agree-Disagree condition or the Control condition.  Both conditions 

were identical except for inclusion of the Agree-Disagree facilitation move by the agent.  Thus, both 

conditions benefitted both from macro-level and micro-level script based support.  In the Agree-

Disagree condition, whenever the agent was not engaged in a directed dialog, it was receptive to 

opportunities to dynamically offer support using the Agree-Disagree behavior, discussed above. 

 

Experimental Procedure 
 

The experimental procedure was simple. Students took a pretest, then participated in pairs in the 

online collaborative activity, and finally completed a post-test.  Pre and post tests were used to 

measure learning during the collaborative exercise.   

 



Results 
 

Our hypothesis was that the introduction of the Agree/Disagree agent would intensify the interaction 

between students, which might increase critical thinking, and subsequently increase learning.  Our 

analysis offers qualified support for the hypothesis. 

As before, we began our analysis by first verifying that students learned between pre and 

posttest.  For this analysis, we treated Test as a repeated measure, with Pre and Post being the two 

time points.  We conducted an ANOVA test with Test as the dependent variable.  Time point and 

Revoicing were independent variables.  We included the interaction between Time point and 

Condition as well.  There was a significant main effect of Time point F(1,31) = 7.58, p < .01, 

demonstrating that students learned.  The interaction term was not significant.  Thus students learned 

between pre and posttest regardless of condition.  As before, to evaluate the effect of condition on 

learning, we used an ANCOVA with posttest as the dependent variable, pretest as a covariate, 

Condition as an independent variable.  In this analysis, there was a marginal effect of Condition on 

learning (F(1,11) = 1.82, p < .1, effect size .55 standard deviations), such that students in the 

Agree/Disagree condition learned more.  The effect was moderate. 

Next we examined the intensifying effect of the intervention on the interaction between 

students using the same random intercept and slope model approach used in the earlier studies.  The 

analysis showed the pattern that we expected.  There was no significant difference in intercept 

between conditions, confirming that there was no difference in absolute number of revoicable 

assertions between conditions.  More importantly, there was no significant correlation between the 

number of revoicable assertions of a student and that of his partner students in the control condition 

where there was not an Agree/Disagree agent. There was, however, a significant interaction between 

the condition variable and the number of revoicable assertions contributed by partner students (R = 

.14, z = 2.03, p < .05). This suggests that there was a significant positive correlation between the 

number of revoicable assertions contributed by a student and that contributed by partner students in 

the Agree/Disagree condition.  Thus we do see evidence that the intervention had the effect of 

precipitating pockets of intensive discussion.   

 

DISCUSSION 
 

The pattern of results across studies is consistent with what we expected to see given the connection 

between types of transactive discussion behavior and how they are related to the three different 

discussion facilitation behaviors we explored in this paper. In particular, we contrasted Revoicing, 

which is meant to elicit self-oriented, consensus-oriented transacts, which we have argued should be 

less demanding and to some extent logically prior to other-oriented, conflict-oriented transacts, which 

are elicited by Agree-Disagree facilitation moves.  It would therefore be consistent to expect that 

Revoicing moves would be most needed by younger, less sophisticated learners, whereas Agree-

Disagree moves would be more appropriate for more advanced learners.  In prior studies of the effect 

of transactivity on learning (Azmitia & Montgomery, 1993), the effect was only observed in material 

that was difficult for learners, thus we would expect that learners who were close to mastery would not 

benefit substantially from APT.  Thus, where material is easy for learners, we would not predict a 

difference between conditions where we test APT in comparison with other facilitation behaviors or 

even no facilitation. 

 



Table 9   

Summary of Results Across Studies 
 9

th
 Grade Diffusion 9

th
 Grade Genetics Freshman 

Engineering Design  

Freshman Honors 

Chemistry 

Experimental 

Manipulation 

Revoicing vs No 

APT, Feedback vs 

No Feedback 

Revoicing vs No 

APT 

Revoicing vs No 

APT, Feedback vs 

No Feedback 

Agree-Disagree vs No 

APT 

Learning 

Effect 

Positive effect of 

Revoicing, no effect 

of Feebdack 

No significant 

effect of Revoicing 

No main effect but 

Significant negative 

effect of Revoicing in 

Feedback condition 

Marginal positive 

effect of Agree-

Disagree 

Process 

Analysis 

Significant positive 

effect of Revoicing, 

marginal negative 

effect of Feedback 

No effect of 

Revoicing 

Significant negative 

effect of Revoicing, 

no effect of Feedback 

Significant positive 

effect of Agree-

Disagree 

 

 In study 1 where we test Revoicing against Feedback for APT with young learners on material 

that was difficult for them, we observe a positive effect of Revoicing.  In study 2, we test Revoicing 

again, but this time with material that was easy for the students.   Here there was no significant 

difference between conditions.  This contrast is consistent with what we argued above.  It is true that 

since the group of learners was the same in the two studies, the difference in effect could have 

potentially been related to the fact that the students were already familiar with the support agents.  It is 

clear, however, that re-exposure to the same manipulation does not completely explain the difference 

in results across these two studies. In the first study, we observed a significant pre to post test gain 

across all conditions, including the condition where no support was offered beyond the macro level 

structuring of the activity. In the second study, no significant pre to post test gain was observed in any 

condition.  Rather, both pre and post test scores were high across conditions, which highlights the fact 

that the material was easy for the students.   

 Studies 3 and 4 involve more advanced learners on material that was moderately familiar to 

them.  More advanced learners are already good at articulating their own ideas.  Thus, Revoicing 

support is unneeded support for them.  Rather, they need to be pushed beyond that to connect to the 

reasoning of their partner students.  We expect then not to see a positive effect in study 3 where we 

test Revoicing on these advanced learners, and we do expect to see a positive result with Agree-

Disagree, which we test in the final study.  And we do see this. 

 The pattern of results with learning gains is as expected from prior work.  What is more 

striking is the picture that emerges when we compare the pattern of results from the learning gains 

analysis with that from the process analysis.  What we see from the series of studies presented in this 

paper is that the effect of condition on learning gains and on collaborative process provide largely 

converging evidence across studies.  This convergence highlights the value of the simple form of 

process analysis presented in this article for evaluating in process effect of collaboration support.  It 

shows that this process analysis can be used to gauge whether an intervention is working appropriately 

with a group of learners.  If the process analysis indicates that the strategy is not a good match for the 

learners, the strategy can be adjusted.  The new strategy can then be evaluated in process the same 

way, and further adjustments can be made.  Thus, this simple automated process analysis technique 

could form the foundation for a new, more agile approach to dynamic support for group learning 

where the strategy itself can adapt to the needs of the population of learners. 



 

CONCLUSIONS AND CURRENT WORK 
 

In this paper we have laid an empirical foundation for a research agenda for a new generation of 

dynamic support interventions to improve collaborative learning, which we have termed agile support 

for collaborative learning.  As we have demonstrated through an integration of results from four 

experimental studies, the effects of dynamic support vary based on the ability level of learners as well 

as the nature of the material itself.  Human instructors are highly agile in their usage of complex 

interventions such as Academically Productive Talk along many dimensions, including selection of 

students, selection of facilitation moves, timing, and sequencing.  Thus, we argue that achieving a 

higher level of agility is what is needed to move to the next stage – agility in terms of selection of 

students to target, selection of interaction strategies, and timing.  Nevertheless, while the results 

presented in this article are compelling, it would be more compelling to examine the contrast between 

multiple different strategies within the same study.  This will be important future work. 

Agility comes with challenges from an experimental standpoint, however.  As mentioned in 

the architecture discussion above, Bazaar‟s flexible approach to interactive script integration allows a 

variety of scripting paradigms to be implemented, with varying effects on the agents‟ internal and 

external validity. For example, specifying high priority and rigid constraints on macro-scripted 

actions, alongside low priority for dynamic feedback, produces an agent configuration with high 

internal experimental validity. In such a configuration, macro-script stages reliably occur at specified 

intervals, guaranteeing that each group of students interacting with instances of the agent engage with 

each stage of the script (and the associated learning opportunities) for the same amount of time. 

However, this comes with a loss of agility, and the potential for lost opportunities for natural 

collaborative conversation. The beginning of a new script phase may cut off an ongoing student 

conversation, or deny another component‟s chance to complete a follow-up move. On the other hand, 

if the dynamic components are configured to reserve more follow-up time after their behaviors are 

enacted (or the macro-script is configured to wait for a period of inactivity before preceding), there‟s 

greater opportunity for natural flow and resolution in student and agent interactions. This lends a 

greater external validity to the experience, but with greater variability in timing and experience 

between instances.  

The technical approach presented in this article enables a wide variety of strategies to be 

implemented.  The work presented in this paper provides the beginnings of the needed empirical 

foundation.  However, we do not argue that the foundation provided here is sufficient.  Rather, we 

offer this set of results as an argument in favour of a larger, more thorough and systematic 

investigation of the space of possibilities.  We offer the publically available Bazaar architecture and 

the set of results presented here to the community, inviting further work from a broad and creative 

community of researchers working on intelligent support for group learning.  While the statistical 

analysis technique used to estimate the effectiveness of a collaborative learning intervention is simple, 

we have demonstrated that it is highly accurate in separating effective from ineffective interventions.  

Because the approach is simple, it can be easily used by other researchers who take up the challenge to 

join the effort to fill out the space of results needed to work towards agile support for collaborative 

learning as a community of researchers. 
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