

Automated Student Model Improvement
Kenneth R. Koedinger

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

koedinger@cmu.edu

Elizabeth A. McLaughlin
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

mimim@cs.cmu.edu

John C. Stamper
 Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

john@stamper.org

ABSTRACT

Student modeling plays a critical role in developing and
improving instruction and instructional technologies. We present a
technique for automated improvement of student models that
leverages the DataShop repository, crowd sourcing, and a version
of the Learning Factors Analysis algorithm. We demonstrate this
method on eleven educational technology data sets from
intelligent tutors to games in a variety of domains from math to
second language learning. In at least ten of the eleven cases, the
method discovers improved models based on better test-set
prediction in cross validation. The improvements isolate flaws in
the original student models, and we show how focused
investigation of flawed parts of models leads to new insights into
the student learning process and suggests specific improvements
for tutor design. We also discuss the great potential for future
work that substitutes alternative statistical models of learning
from the EDM literature or alternative model search algorithms.
Keywords

Student modeling, model discovery, model comparison.

1. INTRODUCTION
Student models drive the great many instructional decisions that
automated tutors currently make, whether it is how to organize
instructional messages, sequence topics and problems in a
curriculum, adapt pacing to student needs, or select appropriate
materials and tasks. Student models also appear critical to
accurate assessment of self-regulated learning skills or
motivational states. A better student model yields better
instruction, which leads to improved learning. More accurate skill
diagnosis leads to better prediction of what a student knows which
provides better assessment. Better assessment leads to more
efficient learning overall.

Cognitive Task Analysis (CTA) has been shown to lead to better
instruction [2], and CTA is currently the best strategy for creating
cognitive models. Unfortunately, CTA is an expensive and time
intensive process that is fundamentally driven by human experts.
The main goal of this research is to accelerate the process of
improving student models. Educational data mining and machine
learning techniques can be used to improve these models in an
automated fashion. In this research, we combine an automated
search algorithm with existing proposed student models in the
DataShop repository in a crowd sourcing fashion. Using this
process, we have been able to make improvements in the models
that lead to important focused insights into ways to improve the
instruction of the tutoring systems that use these models.

1.1 Background and Related Work
A number of studies have demonstrated how detailed CTA can
result in dramatically better instruction [2; 7; 9]. Cognitive Task
Analysis clearly works in creating cognitive models but as it
currently exists, CTA has several limitations. First, CTA is more

of an art than a science involving many subjective decisions.
Second, the most successful CTA approaches are heavy in human
effort. Approaches like structured interviews, think alouds, or
developing cognitive model simulations all require high level of
psychological expertise and significant time investment.

It may be possible to achieve similar outcomes using more
automated techniques that utilize educational data mining and
machine learning on large sets of student data. These techniques
can reap many of the benefits of CTA, but with less effort and
expertise than currently required. CTA typically produces a
symbolic representation of a student model, for instance, a rule-
based production system of the skills in a domain. An alternative
is to use data and statistical inference to create a student model
involving continuous parameters over latent variables with links
to observed student performance variables.

In domains where cognitive models have been created, the
learning curves derived from these models are a source for data-
driven model revision. Others have applied learning curve
analysis in the improvement of tutors. In one study of a constraint-
based tutor for teaching database programming [10], learning
curve analysis was used to analyze log data and make student
model improvements. Creating models of student performance is
useful both for student assessment and for better student
instruction. With respect to assessment, use of such models in on-
line systems might in fact be just as good at the job that
standardized tests are intended to perform [5]. With respect to
better instruction, such models are the basis for the kind of
student-customized adaptive instruction that intelligent tutoring
systems can provide [6]. Cognitive Tutors for mathematics are
now in use in more than 2600 schools across the US for some
600,000 students per year. While these systems have been quite
successful, there is room for improvement in the student models
that drive their behavior.

The DataShop repository at the Pittsburgh Science of Learning
Center (http://learnlab.org/datashop) provides a resource for
educators and researchers to create, modify, and evaluate student
models [8]. DataShop is an open data repository for educational
data with associated visualization and analysis tools. DataShop
has data from thousands of students derived from interactions
with on-line course materials and intelligent tutoring systems. The
data is fine-grained, with student actions recorded roughly every
20 seconds, and it is longitudinal, spanning semester or yearlong
courses. As of December 2011, over 300 datasets are stored
including over 70 million student actions, which equates to over
190,000 student hours of data. Most student actions are “coded”
meaning they are not only graded as correct or incorrect, but are
categorized in terms of the hypothesized competencies or
“Knowledge Components” needed to perform that action.

In DataShop terminology, Knowledge Components (KCs) are
used to represent pieces of knowledge, concepts or skills that
students need to solve problems. When a specific set of KCs are

mapped to a set of instructional tasks (usually steps in problems)
they form a KC Model. A KC model is a specific kind of student
model. DataShop provides an easy interface for exporting,
modifying, and importing KC models, allowing researchers to
evaluate and compare alternative KC models.

1.2 Student Model Improvement
A number of automated and hand search methods of exploring the
cognitive model space have been proposed [1; 4; 10; 11; 13; 14].
These approaches create alternative models that are scored against
existing models using one of several metrics for model prediction
of student performance and how it changes over time. These
include Akaike information criterion (AIC), Bayesian information
criterion (BIC), and cross validation [12]. A statistical model is
needed to make predictions about changes in student performance
and DataShop uses an extension of item response theory that
incorporates a growth or learning term [cf., 3; 14]. We refer to this
model as the “Additive Factors Model” (AFM) [1; 13] and it is
shown in Figure 1. In this statistical model, the discrete portion of
the student model is represented by qjk, the so-called “Q matrix”
[16], which maps hypothesized difficulty or learning factors (the
knowledge components or skills) to steps in problems. These
factors are hypothesized causes for difficulty (βk) or for learning
improvement as students practice (γk). AFM gives a probability
that a student i will get a problem step j correct based on the
student’s baseline proficiency (θi), the baseline difficulty (βk) of
the required KCs (qjk), and the improvement (γk) in those KCs as
the student gets practice opportunities (Tik).

	

Figure 1. In the Additive Factors Model (AFM), the probability
student i gets step j correct (pij) is proportional to the overall
proficiency of student i (θi) plus for each factor or knowledge
component k present for this step j (indicated by qjk), add the base
difficulty of that factor (βk) and the product of the number of
practice opportunities this student (i) has had to learn this factor
(Tik) and the amount gained for each opportunity (γk).

Previous efforts to evaluate cognitive models have used BIC as
the evaluation criteria [1]. BIC reduces the chances of over-fitting
the data by penalizing for increasing the number of parameters in
the model. It is much faster to compute than cross validation and
reasonably predicts the results of cross validation. When time is
not an issue, cross validation is preferred. There is currently no
consensus on how to perform the folding process in cross
validation for student model comparison and we discuss three
alternatives below (which are in use in DataShop).

2. THE CREATION AND EVALUATION
OF STUDENT MODELS IN DATASHOP
Before discussing automated generation of student models, we
first describe how DataShop supports researchers in creating and
evaluating alternative knowledge component-based student
models (represented as Q matrices). The log data collected in
DataShop is composed of student attempts on problem steps in a
given set of instruction. Each of these problem steps can be tied to
one or more skills or knowledge components. This linking of
problem steps to knowledge components is called a KC model in
DataShop and represents a student model for that set of
instruction. Researchers can export KC models from DataShop,

modify them using Excel or another editor, and then import a new
model into DataShop for comparison.

KC models in DataShop are fit to data using the AFM equation in
Figure 1, and metrics for AIC, BIC, and three versions of cross
validation are provided to evaluate and compare different models.

We illustrate the modification of a KC model to produce an
improved model with implications for tutor redesign. The
example data comes from a data set called Geometry9697 and can
be found in the DataShop repository under Public Datasets. Figure
2 shows a screen shot of (a more recent version of) the tutor used
in generating the data.

In this example, the best hand-generated model divides the
ALT:COMPOSE-BY-ADDITION KC of the original in-use
model into three KCs: Subtract, compose-by-addition, and
decompose. The original ALT:COMPOSE-BY-ADDITION KC
labels steps where the student must find the area of an irregular
shape that may be the sum or difference of two regular shapes
(e.g., what’s left when a circle is cut from a square). This KC was
targeted for improvement because, as shown in the top of Figure
3, it was found to have a non-smooth learning curve (a large
difference between actual and predicted values) and although it is
relatively difficult (26% error rate), the learning curve does not
indicate any learning (the error rate does not go down with
opportunities) and, correspondingly, the AFM slope estimate (γj)
is zero. As described in [15], these features of a learning curve
(not smooth, not low, and not declining) are indicators of a poorly
defined KC. A KC may be improved by investigating the problem
steps it labels, usually focusing on those where the error rate is
much higher (or lower) than normal as in opportunities 12, 15-18,
etc., shown in the curve at the top of Figure 3. The analyst seeks a
feature of these problem steps that may change the difficulty of
performing or learning that step (i.e., a difficulty or learning
factor) that is not shared by the other problem steps. In this case,
almost all of the hardest problem steps required students to
identify the two regular shapes that make up a target irregular
shape (i.e., to visually “decompose” and set subgoals to find the
area of these regular shapes first). These problem steps were
relabeled with a KC called decompose. In other problems, the
ALT:COMPOSE-BY-ADDITION steps came after an explicit
scaffold given to students to find the area of the regular shapes
(e.g., a prompt to find the square and circle areas before finding
the leftover). These remaining problem steps were relabeled
compose-by-addition. We say that ALT:COMPOSE-BY-
ADDITION was “split” by the decompose factor to produce a
new “decompose” KC and a modified “compose-by-addition” KC
with fewer steps associated with it.

By inspecting a subset of particularly easy problem steps, another
factor was identified (repeated steps in the same problem) and
these steps were labeled Subtract. That is, ALT:COMPOSE-BY-
ADDITION was further split into a third set of steps. In sum, the
new KC model splits the ALT:COMPOSE-BY-ADDITION KC
in the Original model (which labels 20 steps) into three different
KCs: compose-by-addition (6 steps), decompose (8 steps), and
Subtract (6 steps).

The bottom of Figure 3 shows, for all three new KCs, the resulting
learning curves and the parameter estimates for the difficulty
intercepts (in both logit terms, βk, and converted to a probability)
and for the KC learning slopes (γk). Inspecting the empirical
learning curves (red lines), all three look smoother than the
original ALT:COMPOSE-BY-ADDITION, thus meeting the

Figure 2. A screen shot of the problem Circle N present in the area unit of the Geometry Cognitive Tutor. In Question 1, students are
given the area of the circle and must find the radius, diameter, and circumference. In Question 2, students are given the circumference
and must find the radius, diameter, and area. The Hint message is in response to a student hint request for the highlighted cell.

“smoothness” criteria. The decompose KC learning curve appears
to be declining in error rate and, correspondingly, the slope
parameter is greater than zero indicating an improvement in the
model. The Subtract KC curve is not declining but it is already at
a low error rate from the start, so this also indicates an
improvement in the model. Such a pattern indicates the KC is
already known and mastered, therefore, little to no learning is
expected. The story for the new compose-by-addition KC is mixed
– while smoother, it is not declining and not already low. It might
be possible to make further improvements in this KC.

The decompose KC results are quite different from the other two
newly labeled KCs and the original KC (ALT:COMPOSE-BY-
ADDITION) with a much higher initial error rate (57%) and a
declining curve (intercept = .36, slope = .15). Given these results
and the lack of mastery on the decompose KC after six
opportunities, we recommend a higher concentration of
decomposition problems with additional instructional aids such as
worked examples, specific hints, and problems that isolate
practice on this skill [15]. These results also indicate less practice
is needed on the Subtract KC and corresponding problem steps
could be reduced or even eliminated from the curriculum.

The statistical fit (shown in the blue lines in Figure 3) is based on
the Additive Factors Model described above. Models are
evaluated using AIC, BIC, and 10-fold cross validation. We report
the root mean-square error (RMSE) averaged over the ten test sets
in the cross validation.

For this dataset, the best models according to BIC and cross
validation are ones that incorporate the distinction between
unscaffolded (decompose) and scaffolded problem steps. More
complexity, (e.g., models with 12 and 13 KCs) pays off relative to
a simpler model with 10 KCs. But more complexity is not always

better. The Original production rule model in the tutor had 15
skills, yet according to BIC and cross validation measures the
simpler models with 12 and 13 skills are better predictors.

Figure 3. A knowledge component (KC) with a non-smooth
learning curve (see top half of the figure) is replaced in an
improved student model with three new KCs with smoother
curves (see bottom half of the figure).

There are a couple instructional consequences of the fact that the
decompose skill was confounded with performing scaffolded
decomposition and, even, with simple subtraction. First, students
were able to give the appearance of mastery because they were
essentially given credit for this more complex skill when they
successfully performed the two simpler skills. It is possible for
students to graduate on the merged skill by only getting scaffolded
decomposition and subtraction steps correct and never or rarely
getting an unscaffolded decompose step correct (the tutor’s
knowledge tracing algorithm allows for an occasional slip).

Second, because there was no differentiation of these skills, there
was no way to provide any isolated or extra practice on the tough
unscaffolded decompose skill. Thus, for both of these reasons,
there was not enough practice of decompose.

We have illustrated how new KC models can be produced and
evaluated within DataShop. This process has produced many
different models across a variety of datasets. For instance, the
Geometry9697 dataset had at least 10 KC models associated with
it. These models range in number of KCs from 1 to 15 with a
median of 12 KCs. The KC models vary on factors including the
shape of a figure, the formula involved, whether a formula is
applied forward or backward, whether or not this step repeats an
analogous one in the same problem, etc.

We next present the use of the LFA algorithm to perform an
automated search for better models. A key trick is to use, in a
crowd-sourcing fashion, existing models entered by DataShop
users as the basis for input to this search algorithm

3. APPLYING LEARNING FACTORS
ANALYSIS (LFA) ACROSS DOMAINS
3.1 Adapting LFA for use in DataShop
Learning Factors Analysis (LFA) [1] is an algorithm that
automatically finds better student models by searching through a
space of KC models, represented as Q matrices, to find the one
that best predicts student-learning data. The input to LFA includes
a dataset of records that indicate a student, a step identifier (i.e.,
part of a problem or activity for which there is an observed and
gradable student action), the order in which each student
experiences each step, and whether the student was successful or
not on the step (usually whether the students first action on a step
is correct, that is, neither a hint request nor an incorrect action).
The LFA input also includes a matrix, in the same form as the Q
matrix described above, that indicates for each unique step (the
rows) what candidate features or factors may affect student
performance and learning on that step (the columns). This so-
called P matrix is used, along with a set of operators, to determine
the space of possible Q matrices that LFA searches over.
The output of LFA is a list of Q matrices (KC models) rank
ordered (using either AIC or BIC) by how well they predict the
student data. In the search process, new Q matrices are created
from the current Q matrix by applying operators (split, merge, or
add in the complete LFA) using a factor in the P matrix to modify
some aspect of the current Q matrix.

Figure 4 provides a simple example of the search process
beginning with the mapping of problem steps to Q and P matrices.
In this example, a Q matrix with factors for multiplication (Mult)
and subtraction (Sub) is modified by applying a split operator to a
column in the Q matrix (Sub) using a column in the P matrix
(Neg-result). The outcome is a new Q matrix (called Q’ in Figure
4) that has the steps of Sub partitioned into two subsets (Sub-Pos
and Sub-Neg) according to the values of Neg-result.

An important challenge in a broad application of LFA is
determining how the P matrix gets created. In early applications
of LFA, a human user (a single domain expert) created the P
matrix. In the spirit of crowd sourcing, we have used the multiple
hand-created KC models in DataShop as an alternative way to
create the P matrix. The P matrix is automatically derived by
combining all of the hypothesized KCs in the pre-existing KC
models for that dataset. More specifically, the P matrix maintains
the same rows (one for every step in every problem), but the

columns (the hypothesized factors or KCs) are the union of all the
columns in the pre-existing KC models (such that the number of
columns is the sum of the number of columns across the existing
models minus any duplicate columns).

Figure 4. Example of a Q matrix and P matrix mapped to problem
steps and the resulting Q’ matrix when Sub in the Q matrix is
“split” by Neg-result from the P matrix.

LFA implements a best-first search. In each iteration of the
search, the best Q matrix so far (as measured by AIC or BIC) is
chosen for expansion. The LFA search process begins with the
simplest possible Q-matrix where all steps involve one and only
one KC. New candidate Q matrices (KC models) are generated by
applying operators to the columns in the P matrix and the selected
Q matrix. In the version used here, we only used the split
operator: LFA creates new candidate Q matrices by splitting KCs
in the current Q matrix using relevant factors in the P matrix. The
search stops either after a pre-set number of iterations or when
model improvements diminish (see below).

The search process results in the creation of machine-generated
KC models that are usually more predictive (as measured by cross
validation) than any of the starting models. Because the current
implementation is only using LFA’s split operator, which only
generates single KC codes for each problem step, it is possible a
starting model that includes multiple KCs per step could be better
than any LFA model generated. Although cross validation is
arguably the best way to test the predictive efficacy of a model, it
is too computationally expensive to run inside the LFA search.
Instead we have used BIC and, more recently, AIC as the heuristic
to guide the search. After the search is complete, we test the best
models using cross validation.

3.2 Method: Apply LFA across 11 datasets
In order to examine the LFA search process across a variety of
datasets, we used eleven datasets representing five domains
(geometry, algebra, fractions, English articles, and statistics) from
the DataShop repository. Each dataset had from 1-16 KC models
previously created by content specialists or researchers and most
(65%) of these models coded a single KC per step. The number of
knowledge components within models ranged from 1-48 and the
number of student users ranged from 41-318. In addition to a
variety of dataset characteristics, we have a wide group of
researchers/authors represented: Lovett (statistics), Wiley (English
articles), Booth (equation solving), Lomas (fractions), Koedinger
(symbolization), Stamper, Ritter and Koedinger (geometry area).

To each dataset, we applied a version of LFA that: 1) used only
the split operator, 2) started with a Q matrix with a single KC
labeling all problem steps, and 3) started with a P matrix made up
of the union of all existing KC models. We ran the search process
twice on each dataset, once using BIC as the search heuristic and
once using AIC. The search continues until a streak of 5 iterations
does not produce a model with an improved heuristic value. We
compared the two best models from each of the AIC and BIC runs
(4 models total) with all the existing models using root mean

square error (RMSE) as determined by 10-fold cross validation.
Three different cross validations were run: 1) student stratified
(SSCV), 2) item stratified (ISCV), and 3) no stratification
(NSCV). For student stratified and item stratified cross validation,
students or items (i.e., problem steps), respectively, were
randomly chosen for the folds. No stratification cross validation
selects the 10 folds randomly from the dataset as a whole,
irrespective of student or item. We chose item stratified cross
validation as the primary metric (the one used in Tables), because
we are concerned with improving tutors and item stratified cross
validation corresponds most closely with a key tutor decision of
what next problem to select.

3.3 Results: Better Models Found
Table 1 summarizes the results. Analysis of the datasets using
RMSE from a 10-fold item stratified cross validation (ISCV)
shows a machine-generated model is the best predictor of student
performance across all eleven datasets and all four domains. This
can be seen in Table 1 by noting that the RMSE values in the
Best-LFA column (representing the results of machine-generated
models) are all lower than those in the columns for the best model
found by hand (Best-hand) and for the original model in use by
the tutoring system or game (Orig-in-use).

The results from both SSCV and NSCV were mostly similar in
that in 10 of 11 datasets, an LFA model was best. For the DFA-
318 dataset, the Best-hand model was better on SSCV and NSCV
(but not on ISCV). That model involved some steps being coded
by more than one KC – such multi-KC coding is not a model that
the LFA version we used (which only incorporates the split
operator) can produce, however, a version with LFA's add
operator could, in principle, produce such a model.
Besides reducing prediction error, the LFA-discovered models
tend to better capture student learning in that the typical slopes on
learning curves are steeper. The last columns in Table 1 show a

comparison of the median learning slope (γk) for the Best-hand
and Best-LFA models. In all but a couple of cases, the median
learning slope is larger for the Best-LFA model than it is for the
Best-hand model (e.g., 0.11 vs. 0.07 for Geometry9697).

4. INTERPRETING STUDENT MODEL
IMPROVEMENTS
We have shown how an automated process, such as an LFA
search, discovers new and improved student models. But, are
these improvements substantial and interpretable? Can they be
used to propose plausible improvements in a tutoring system?

One method to evaluate newly discovered machine models is to
investigate when and how much each KC in the original model is
changed in the transformations that produced the best-hand and
best-machine models. By isolating improvement in knowledge
components, areas of student difficulty can be uncovered and
automated systems can be redesigned to more efficiently address
student learning by focusing better instruction and more practice
on more difficult skills and less practice on easier skills.

We use the Geometry9697 dataset as an example of a proposed
strategy for interpreting LFA results toward model and tutor
improvement. That strategy starts with inspecting the impact of
model improvements on specific aspects of the original model. A
key observation is that while the overall prediction error (RMSE)
reductions in Table 1 may seem small, LFA is likely to make
significant changes in the KC model only in a few isolated places,
that is, only for some of the original KCs. Although those changes
may be practically significant, they are obscured in the overall
RMSE change given much of the model remains the same.

Thus, we suggest trying to identify which of the KCs in a base
model are most substantially changed in the creation of a new
model. One way to do so is to compute the reduction in RMSE
between models for each of the KCs in the base model.

Table 1. The root mean square error (RMSE) for the best KC models as determined by item stratified cross validation.

	

RMSE Median Learning
slope (logit)

	

	

Dataset

	

	

Content area Orig

in-use
Best-
hand

Best-
LFA

Best-
hand

Best-
LFA

Geometry9697 Geometry area 0.4129 0.4033 0.4011 0.07 0.11

Hampton 0506 Geometry area NA 0.4022 0.4012 0.03 0.04

Cog Discovery Geometry area NA 0.3250 0.3244 0.16 0.16

DFA-318 Story problems 0.4461 0.4407 0.4405 0.07 0.17

DFA-318-main Story problems 0.4376 0.4287 0.4266 0.09 0.17

Digital game Fractions 0.4442 0.4396 0.4346 0.17 0.14

Self-explanation Equation solving NA 0.4014 0.3927 0.01 0.04

IWT 1 English articles 0.4262 0.4110 0.4068 0.10 0.12

IWT 2 English articles 0.3854 0.3854* 0.3806 0.12 0.16

IWT 3 English articles 0.3970 0.3965 0.3903 0.05 0.15

Statistics-Fall09 Statistics 0.3648 0.3527 0.3353 ** 0.09
NA: Original models (or statistics on them) were not available in some cases.
* IWT 2 dataset only has 1 model, therefore the original-in-use and best-hand models have the same RMSE.
**The best-hand model for Statistics-Fall09 dataset has only 1 KC.

More specifically, for each data point labeled by a base model
KC, we find the RMSE based on the predictions of the base model
and compare it with the RMSE based on the predictions of the
new model. We compute the percent reduction in RMSE ((base -
new)/base).

Table 2 summarizes the results of this analysis on the
Geometry9697 dataset by comparing each pair of the Original,
best hand, and best LFA models in terms of the Original model
KCs. As anticipated, the last row shows that for most of the
Original KCs (12 of 15), there is little to no improvement in the
best hand and best LFA models. However, for three of the KCs,
there are large reductions in prediction error. The TRIANGE-
SIDE KC has the largest RMSE reduction from Original to LFA
model (11.1%); however, the decrease is mostly caught in the
improvements made to the best hand-model from the Original
model (10.0%). The COMPOSE-BY-ADDITION KC is also
improved (as described in section 2) just in the original to hand-
model transition. The CIRCLE-RADIUS KC, on the other hand,
realizes an almost 6% reduction of RMSE from the Original
model to the best hand-model, and then another sizeable reduction
of almost 4% from best-hand model to the best LFA model. This
discovery of LFA represents a genuine machine-based discovery
not directly anticipated by human analysts.

Table 2. Improvement in knowledge components in the
Geometry9697 dataset measured by the percent reduction of root
mean squared error (RMSE) from item-stratified cross validation.

% reduction in RMSE Original model

KCs orig->hand hand->LFA orig-LFA
CIRCLE-RADIUS 5.8% 4.0% 9.5%
COMPOSE-BY-
ADDITION 5.2% 0.3% 5.5%

TRIANGLE-SIDE 10.0% 1.2% 11.1%
Range of the 12
other KCs -.5 to 3.4% -.3 to 1.0% -.2 to 3.1%

A closer look at the CIRCLE-RADIUS KC from the Original
shows it is coded as three separate KCs in the best hand-model:
(1) circle area, (2) circle-diam-from-given, and (3) circle-diam-
from-subgoal. In all three of these KCs, computing a radius is the
target skill but how it is computed depends on what component
measure is provided. For example, in the Circle-N problem (see
Figure 2), area is given in the first row of the table (and in the text
as Question 1) and students must compute the remaining values
including radius; this is labeled as the circle-area KC. In the
circle-diam-from-subgoal KC, circumference is given (row 2 or
Q2) and in the circle-diam-from-given KC, diameter is given. As
can be seen in Figure 5, the LFA model further changes these
same KCs by either combining (e.g., circle-diam-from-given
combines with three other KCs to form Geometry) or splitting
(e.g, circle-area splits to form a reduced version of itself and a
new KC called radius-from-area). Circle-diam-from-subgoal
remains the same from best hand to best machine. We use the
circle-area split as an illustration of how the machine-model
uncovered a useful improvement in the original model that was
not anticipated by humans generating hand models.

	

Figure 5. The splitting and combining of circle-radius and other
related hypothesized knowledge components in going from the
original-model to the best hand model to the best machine model.
In Figure 5, we see the circle-area KC in the best hand-model has
22 problem steps but after the LFA algorithm is applied this one
KC is divided into two KCs – one with 19 problem steps and the
other with 3 problem steps. What is unique about these three
problem steps that they split from the original 22 to form a “new”
KC?

A careful examination of the three problem steps in the new
radius-from-area KC reveals a backward strategy is necessary for
a correct solution (e.g., finding radius when area of circle is given)
unlike the other nineteen problem steps, which require a forward
strategy. Although using a backward strategy is not uncommon in
the dataset (about 27% of the problem steps require it), none of
the other KCs were split between backward and forward by the
search algorithm. In fact, eight of thirteen KCs in the best hand-
model label backward steps but only circle-area benefits from
being split into forward and backward versions.

Figure 6 is analogous to Figure 3 and shows the effect of the LFA
discovery to split circle-area in the best hand-model (called
DecompArithDiam) into circle-area (labeling fewer steps) and
radius-from-area. Both resulting learning curves are smoother
than the original and they have steeper slopes (.105 and .165,
respectively, as compared to .068).

Performance on the circle-area backward problems (called radius-
from-area) is lower (54%) than performance on the circle-area
forward problems (80%), which is perhaps not a surprise.
However, in this context, it is surprising that the difference in
backward vs. forward performance on the other KCs is small and
statistically negligible. For example, pentagon area does not split
from apothem or side (backward = 66%, forward = 62%),
parallelogram area does not split from parallelogram side
(backward = 89%, forward = 91%), trapezoid area does not split
from base or height (backward = 54%, forward = 55%), and
triangle area does not split from base or height (backward = 68%,
forward = 78%).

In addition to not finding a backward split for any of the area
formulas for other shapes, there was no forward-backward split
for other circle formulas (circumference = pi*diameter and
diameter = 2*radius). A unique feature of working the circle area
formula backwards is that it requires a square root operation to
find the radius (after dividing the given area by pi). Thus, the
uncovered knowledge component appears to be about learning
when and how to employ a square root operation rather than about
a general ability to apply a backward strategy, for instance, by
using algebra (as suggested in the hint in Figure 2). Note, the need
to employ a square root is also required in backward application
of the square area formula, however, this tutor unit did not have
any such problems where only the area of a square is given and
the side must be found.

	

Figure 6. Learning curves and model values of circle area
knowledge component in best hand-model and after splitting to
circle area and radius-from-area KCs in best LFA model.

The consequences for tutor changes based on this automated
discovery of LFA are significant. We recommend the tutor
distinguish area-to-radius problems while merging all other
forward/backward area combinations (e.g., pentagon side and
pentagon area). The current unit in the Geometry Tutor only has
three problem steps associated with the area-to-radius KC, not
enough to lead to mastery on a difficult skill. Thus, more such
problems should be created. The skill tracking, which is done with
skill bars in the tutor, should be modified to maintain the forward-
backward distinction for the circle area formula, but merge the
forward-backward distinctions for other formulas (including the
other circle formulas for circumference-diameter and the
diameter-radius relationships). This change should substantially
reduce the time students currently take to separately (and
unnecessarily) demonstrate mastery of both the forward and
backward versions of each of the area formulas. This time could
in turn be used to make sure that students get enough practice in
cases where their prior algebra background appears insufficient
for backward application of formulas, namely in use of the square
root operation. Further, given the need for more square root
practice, square-area-to-side problems should also be added.

5. Conclusion and Future Work
This paper demonstrates an automated technique for the discovery
of better student models using input from previously generated
models. LFA discovered better student models in 11 of 11 cases
as measured by item stratified cross validation and 10 of 11 cases
by student stratified and non-stratified cross validation.

Although the reduction in overall error (RMSE) appears rather
small, we demonstrated how this small error reduction is a
consequence of most of the discovered model being essentially
the same as the original. There are a few isolated changes that are
statistically large and, more importantly, practically significant for
tutor redesign.

A related, more nuanced point is that even in cases where there is
no significant improvement in prediction error, the new model
may be better in parsimony (i.e., by reducing the number of KCs).
Parsimony improvements in student models are important
scientifically because they simplify explanations and suggest
broader transfer of learning. They are also practically important in
that tutors with a more compact student model will save and focus
student time.

Student models are critical to effective adaptive instruction.
Different kinds of student model changes (e.g, original KCs

splitting or not splitting) suggest specific tutor redesigns. A
number of instructional design changes are suggested when an
original KC is split into one or more new KCs. First, the skill bars
and knowledge tracing need to be changed to include the new
KCs and to be sure that students master all of them. Second, often
a newly discovered KC will occur in too few of the existing
problems and thus new problems need to be created. Third, the
distinction discovered in the KC split (e.g., use of square root)
may be better highlighted in the various forms of instruction that
tutor may employ including worked examples, error feedback
messages, and next-step hint messages. Similarly, a different set
of instructional design changes are suggested when a number of
original KCs are merged (i.e., are not split) into a single KC. First,
the skill bars and knowledge-tracing model need to be changed to
eliminate unnecessary distinctions. With corresponding
knowledge tracing parameter changes, the number of practice
problems a student needs to master the merged KC will be
significantly reduced relative to the greater number previously
needed to master each of the separate KCs. Second, the
commonality discovered in the KC merge (e.g., the learning
obstacle for most area operations is learning to retrieve and map
the right formula, not learning how to apply it in a forward or
backward direction) can be highlighted in the various forms of
instruction that tutor employs. Doing so may better encourage the
desired generalization and greater transfer of learning.
The general LFA algorithm includes an “add” operation that can
produce multiple KC codes for a single problem step. For
efficiency reasons (for larger datasets, LFA ran for multiple days)
and to simplify interpretation of the results, we did not use the add
operator in the version of LFA employed here. However, in the
case that a new KC is added, there are instructional implications
beyond those indicated above for split operations. Namely, there
is the possibility of inventing new tasks that isolate a KC that
might only occur with other KCs in the current set of tasks. Doing
so has been demonstrated to yield significant improvements in
student learning [7]. Future work should explore the use of the
add operator in the LFA algorithm and, more generally, needed
algorithm improvements to increase efficiency.

Some other automated techniques discover models that are
difficult or impossible to understand, either toward deriving
insights into student learning or making practical improvements in
instruction. The output of LFA is more interpretable and
convertible to tutor changes than these alternative “black box”
machine learning methods that may produce Q matrices (or other
latent variable representations) without consistent application of
analyst-derived codes or without code labels at all. Even so, the
output of LFA is complex and not trivial to interpret. Thus, we
recommend a strategy (illustrated in Table 2) for isolating the
practically significant student model improvements that LFA
discovers. Such improvements in the student model have direct
implications for many aspects of tutor design including problem
development, knowledge tracing, problem selection and
sequencing, skill bar display, instructional hint and hint message
content. Using data to automatically improve student models and,
in turn, improve instructional systems is a tremendous opportunity
for educational data mining, especially as we accumulate large
datasets and relevant techniques in repositories like DataShop.

A notable innovation here is a simple form of crowd sourcing of
the work done by data analysts using DataShop. A significant
limitation of LFA recognized in prior work [1] is the need for the
P matrix input to the algorithm, that is, the human coding needed

to produce the various difficulty and learning factors on problem
steps that are the basis for hypothesizing knowledge components.
This limitation is addressed here by taking advantage of the
DataShop facilities for creating and storing hand-built KC models
and the fact that analysts have been using those facilities to create
models.

Our simple version of combining human and machine intelligence
toward better model discovery could be applied more broadly
beyond DataShop data or student modeling. The general idea
involves a web-site with these components: 1) users can modify
an existing model (e.g., add new features based on feature
engineering) and see whether their new model yields better
predictions (e.g., DataShop’s KC model leaderboard display), 2) a
machine algorithm that collects features across all human-entered
models (e.g., a simple union of all features), and 3) a machine
algorithm that searches over the space of features to identify more
predictive models (e.g., the LFA algorithm). We leave it for future
research to test this proposed generalization of the approach
presented here.

ACKNOWLEDGMENTS
Our thanks to Hui Cheng for running the search algorithm, to
DataShop (http://pslcdatashop.org) for dataset access, and to the
National Science Foundation (#SBE-0354420) for funding of the
Pittsburgh Science of Learning Center.

6. REFERENCES
[1] Cen, H., Koedinger, K. R., & Junker, B. (2006). Learning

Factors Analysis: A general method for cognitive model
evaluation and improvement. In M. Ikeda, K.D. Ashley, T.-
W. Chan (Eds.) Proceedings of the 8th International
Conference on Intelligent Tutoring Systems, 164-175. Berlin:
Springer-Verlag.

[2] Clark, R.E., Feldon, D., van Merriënboer, J., Yates, K., &
Early, S. (2008). Cognitive task analysis. In Spector, J. M.,
Merrill, M.D., van Merriënboer, J., & Driscoll, M.P. (Eds.)
Handbook of research on educational communications and
technology (3rd ed.). Mahwah: Lawrence Erlbaum.

[3] Draney, K.L., Pirolli, P., & Wilson, M. (1995). A
measurement model for complex cognitive skill. In P.
Nichols, S.F. Chipman, & R.L. Brennan (Eds.), Cognitively
diagnostic assessment (pp. 103–126). Hillsdale: Erlbaum.

[4] Falmange, J.C., Koppen, M., Villano, M., Doignon, J.P. &
Johannesen, L. (1990). Introduction to knowledge spaces:
How to build, test, and search them. Psychological Review,
97, 201-224.

[5] Feng, M., Heffernan, N.T., & Koedinger, K.R. (2009).
Addressing the assessment challenge in an online system that
tutors as it assesses. User Modeling and User-Adapted
Interaction: The Journal of Personalization Research
(UMUAI). 19(3), pp. 243-266.

[6] Koedinger, K. R. & Aleven, V. (2007). Exploring the

assistance dilemma in experiments with Cognitive Tutors.
Educational Psychology Review, 19 (3): 239-264.

[7] Koedinger, K.R. & McLaughlin, E.A. (2010). Seeing
language learning inside the math: Cognitive analysis yields
transfer. In S. Ohlsson & R. Catrambone (Eds.), Proceedings
of the 32nd Annual Conference of the Cognitive Science
Society. (pp. 471-476.) Austin, TX: Cognitive Science
Society.

 [8] Koedinger, K.R., Baker, R.S.J.d., Cunningham, K.,
Skogsholm, A., Leber, B., Stamper, J., (2011) A Data
Repository for the EDM community: The PSLC DataShop.
In Romero, C., Ventura, S., Pechenizkiy, M., Baker, R.S.J.d.
(Eds.) Handbook of Educational Data Mining. Boca Raton,
FL: CRC Press.

[9] Lee, R. L. (2003). Cognitive task analysis: A meta-analysis
of comparative studies. Unpublished doctoral dissertation,
University of Southern California, Los Angeles, California.

[10] Martin, B., & Mitrovic, A. (2004). Evaluating Intelligent
Education Systems with Learning Curves in Proceedings of
the workshop on evaluation at AH2004, Eindhoven, pp. 179-
188.

[11] Martin, B., Mitrovic, T., Mathan, S., & Koedinger, K.R.
(2011). Evaluating and improving adaptive educational
systems with learning curves. User Modeling and User-
Adapted Interaction (2011) 21:249–283.

[12] Model Values. In PSLC DataShop. Retrieved 4/10/12 from
https://pslcdatashop.web.cmu.edu/help?page=modelValues

[13] Pavlik Jr., P.I., Cen, H., Koedinger, K.R.: Learning Factors
Transfer Analysis: Using Learning Curve Analysis to
Automatically Generate Domain Models. In: Barnes, T.,
Desmarais, M., Romero, C., Ventura, S. (eds.) Proceedings
of the the 2nd International Conference on Educational Data
Mining, Cordoba, Spain, pp. 121-130 (2009).

[14] Spada, H., & McGaw, B. (1985). The assessment of learning
effects with linear logistic test models. In S. E. Embretson
(Ed.), Test design: Developments in Psychology and
Psychometrics.

[15] Stamper, J. & Koedinger, K.R. (2011). Human-machine
student model discovery and improvement using data. In J.
Kay, S. Bull & G. Biswas (Eds.), Proceedings of the 15th
International Conference on Artificial Intelligence in
Education, pp. 353-360. Berlin: Springer.

[16] Tatsuoka, K.K. (1983) Rule space: An approach for dealing
with misconceptions based on item response theory. Journal
of Educational Measurement, 20, 345-354.

