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ABSTRACT 

Student modeling plays a critical role in developing and 
improving instruction and instructional technologies. We present a 
technique for automated improvement of student models that 
leverages the DataShop repository, crowd sourcing, and a version 
of the Learning Factors Analysis algorithm. We demonstrate this 
method on eleven educational technology data sets from 
intelligent tutors to games in a variety of domains from math to 
second language learning. In at least ten of the eleven cases, the 
method discovers improved models based on better test-set 
prediction in cross validation. The improvements isolate flaws in 
the original student models, and we show how focused 
investigation of flawed parts of models leads to new insights into 
the student learning process and suggests specific improvements 
for tutor design. We also discuss the great potential for future 
work that substitutes alternative statistical models of learning 
from the EDM literature or alternative model search algorithms.  
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1. INTRODUCTION 
Student models drive the great many instructional decisions that 
automated tutors currently make, whether it is how to organize 
instructional messages, sequence topics and problems in a 
curriculum, adapt pacing to student needs, or select appropriate 
materials and tasks. Student models also appear critical to 
accurate assessment of self-regulated learning skills or 
motivational states. A better student model yields better 
instruction, which leads to improved learning. More accurate skill 
diagnosis leads to better prediction of what a student knows which 
provides better assessment. Better assessment leads to more 
efficient learning overall. 

Cognitive Task Analysis (CTA) has been shown to lead to better 
instruction [2], and CTA is currently the best strategy for creating 
cognitive models. Unfortunately, CTA is an expensive and time 
intensive process that is fundamentally driven by human experts. 
The main goal of this research is to accelerate the process of 
improving student models. Educational data mining and machine 
learning techniques can be used to improve these models in an 
automated fashion. In this research, we combine an automated 
search algorithm with existing proposed student models in the 
DataShop repository in a crowd sourcing fashion. Using this 
process, we have been able to make improvements in the models 
that lead to important focused insights into ways to improve the 
instruction of the tutoring systems that use these models. 

1.1 Background and Related Work 
A number of studies have demonstrated how detailed CTA can 
result in dramatically better instruction [2; 7; 9]. Cognitive Task 
Analysis clearly works in creating cognitive models but as it 
currently exists, CTA has several limitations. First, CTA is more 

of an art than a science involving many subjective decisions. 
Second, the most successful CTA approaches are heavy in human 
effort. Approaches like structured interviews, think alouds, or 
developing cognitive model simulations all require high level of 
psychological expertise and significant time investment. 

It may be possible to achieve similar outcomes using more 
automated techniques that utilize educational data mining and 
machine learning on large sets of student data. These techniques 
can reap many of the benefits of CTA, but with less effort and 
expertise than currently required. CTA typically produces a 
symbolic representation of a student model, for instance, a rule-
based production system of the skills in a domain. An alternative 
is to use data and statistical inference to create a student model 
involving continuous parameters over latent variables with links 
to observed student performance variables. 

In domains where cognitive models have been created, the 
learning curves derived from these models are a source for data- 
driven model revision. Others have applied learning curve 
analysis in the improvement of tutors. In one study of a constraint-
based tutor for teaching database programming [10], learning 
curve analysis was used to analyze log data and make student 
model improvements. Creating models of student performance is 
useful both for student assessment and for better student 
instruction. With respect to assessment, use of such models in on-
line systems might in fact be just as good at the job that 
standardized tests are intended to perform [5]. With respect to 
better instruction, such models are the basis for the kind of 
student-customized adaptive instruction that intelligent tutoring 
systems can provide [6]. Cognitive Tutors for mathematics are 
now in use in more than 2600 schools across the US for some 
600,000 students per year. While these systems have been quite 
successful, there is room for improvement in the student models 
that drive their behavior. 

The DataShop repository at the Pittsburgh Science of Learning 
Center (http://learnlab.org/datashop) provides a resource for 
educators and researchers to create, modify, and evaluate student 
models [8]. DataShop is an open data repository for educational 
data with associated visualization and analysis tools. DataShop 
has data from thousands of students derived from interactions 
with on-line course materials and intelligent tutoring systems. The 
data is fine-grained, with student actions recorded roughly every 
20 seconds, and it is longitudinal, spanning semester or yearlong 
courses. As of December 2011, over 300 datasets are stored 
including over 70 million student actions, which equates to over 
190,000 student hours of data. Most student actions are “coded” 
meaning they are not only graded as correct or incorrect, but are 
categorized in terms of the hypothesized competencies or 
“Knowledge Components” needed to perform that action. 

In DataShop terminology, Knowledge Components (KCs) are 
used to represent pieces of knowledge, concepts or skills that 
students need to solve problems. When a specific set of KCs are 



 

mapped to a set of instructional tasks (usually steps in problems) 
they form a KC Model. A KC model is a specific kind of student 
model. DataShop provides an easy interface for exporting, 
modifying, and importing KC models, allowing researchers to 
evaluate and compare alternative KC models. 

1.2 Student Model Improvement 
A number of automated and hand search methods of exploring the 
cognitive model space have been proposed [1; 4; 10; 11; 13; 14]. 
These approaches create alternative models that are scored against 
existing models using one of several metrics for model prediction 
of student performance and how it changes over time. These 
include Akaike information criterion (AIC), Bayesian information 
criterion (BIC), and cross validation [12]. A statistical model is 
needed to make predictions about changes in student performance 
and DataShop uses an extension of item response theory that 
incorporates a growth or learning term [cf., 3; 14]. We refer to this 
model as the “Additive Factors Model” (AFM) [1; 13] and it is 
shown in Figure 1. In this statistical model, the discrete portion of 
the student model is represented by qjk, the so-called “Q matrix” 
[16], which maps hypothesized difficulty or learning factors (the 
knowledge components or skills) to steps in problems. These 
factors are hypothesized causes for difficulty (βk) or for learning 
improvement as students practice (γk). AFM gives a probability 
that a student i will get a problem step j correct based on the 
student’s baseline proficiency (θi), the baseline difficulty (βk) of 
the required KCs (qjk), and the improvement (γk) in those KCs as 
the student gets practice opportunities (Tik). 

	
  
Figure 1. In the Additive Factors Model (AFM), the probability 
student i gets step j correct (pij) is proportional to the overall 
proficiency of student i (θi) plus for each factor or knowledge 
component k present for this step j (indicated by qjk), add the base 
difficulty of that factor (βk) and the product of the number of 
practice opportunities this student (i) has had to learn this factor 
(Tik) and the amount gained for each opportunity (γk). 

Previous efforts to evaluate cognitive models have used BIC as 
the evaluation criteria [1]. BIC reduces the chances of over-fitting 
the data by penalizing for increasing the number of parameters in 
the model. It is much faster to compute than cross validation and 
reasonably predicts the results of cross validation. When time is 
not an issue, cross validation is preferred. There is currently no 
consensus on how to perform the folding process in cross 
validation for student model comparison and we discuss three 
alternatives below (which are in use in DataShop). 

2. THE CREATION AND EVALUATION 
OF STUDENT MODELS IN DATASHOP 
Before discussing automated generation of student models, we 
first describe how DataShop supports researchers in creating and 
evaluating alternative knowledge component-based student 
models (represented as Q matrices). The log data collected in 
DataShop is composed of student attempts on problem steps in a 
given set of instruction. Each of these problem steps can be tied to 
one or more skills or knowledge components. This linking of 
problem steps to knowledge components is called a KC model in 
DataShop and represents a student model for that set of 
instruction. Researchers can export KC models from DataShop, 

modify them using Excel or another editor, and then import a new 
model into DataShop for comparison. 

KC models in DataShop are fit to data using the AFM equation in 
Figure 1, and metrics for AIC, BIC, and three versions of cross 
validation are provided to evaluate and compare different models. 

We illustrate the modification of a KC model to produce an 
improved model with implications for tutor redesign. The 
example data comes from a data set called Geometry9697 and can 
be found in the DataShop repository under Public Datasets. Figure 
2 shows a screen shot of (a more recent version of) the tutor used 
in generating the data. 

In this example, the best hand-generated model divides the 
ALT:COMPOSE-BY-ADDITION KC of the original in-use 
model into three KCs: Subtract, compose-by-addition, and 
decompose. The original ALT:COMPOSE-BY-ADDITION KC 
labels steps where the student must find the area of an irregular 
shape that may be the sum or difference of two regular shapes 
(e.g., what’s left when a circle is cut from a square). This KC was 
targeted for improvement because, as shown in the top of Figure 
3, it was found to have a non-smooth learning curve (a large 
difference between actual and predicted values) and although it is 
relatively difficult (26% error rate), the learning curve does not 
indicate any learning (the error rate does not go down with 
opportunities) and, correspondingly, the AFM slope estimate (γj) 
is zero. As described in [15], these features of a learning curve 
(not smooth, not low, and not declining) are indicators of a poorly 
defined KC. A KC may be improved by investigating the problem 
steps it labels, usually focusing on those where the error rate is 
much higher (or lower) than normal as in opportunities 12, 15-18, 
etc., shown in the curve at the top of Figure 3. The analyst seeks a 
feature of these problem steps that may change the difficulty of 
performing or learning that step (i.e., a difficulty or learning 
factor) that is not shared by the other problem steps. In this case, 
almost all of the hardest problem steps required students to 
identify the two regular shapes that make up a target irregular 
shape (i.e., to visually “decompose” and set subgoals to find the 
area of these regular shapes first). These problem steps were 
relabeled with a KC called decompose. In other problems, the 
ALT:COMPOSE-BY-ADDITION steps came after an explicit 
scaffold given to students to find the area of the regular shapes 
(e.g., a prompt to find the square and circle areas before finding 
the leftover). These remaining problem steps were relabeled 
compose-by-addition. We say that ALT:COMPOSE-BY-
ADDITION was “split” by the decompose factor to produce a 
new “decompose” KC and a modified “compose-by-addition” KC 
with fewer steps associated with it. 

By inspecting a subset of particularly easy problem steps, another 
factor was identified (repeated steps in the same problem) and 
these steps were labeled Subtract. That is, ALT:COMPOSE-BY- 
ADDITION was further split into a third set of steps. In sum, the 
new KC model splits the ALT:COMPOSE-BY-ADDITION KC 
in the Original model (which labels 20 steps) into three different 
KCs: compose-by-addition (6 steps), decompose (8 steps), and 
Subtract (6 steps). 

The bottom of Figure 3 shows, for all three new KCs, the resulting 
learning curves and the parameter estimates for the difficulty 
intercepts (in both logit terms, βk, and converted to a probability) 
and for the KC learning slopes (γk). Inspecting the empirical 
learning curves (red lines), all three look smoother than the 
original ALT:COMPOSE-BY-ADDITION, thus meeting the 



 

 
 
 
 
 
 
 
    

 
 
 
 
 
 
 
 

 
 
 
 
 
 
  

 
 
 
 

Figure 2. A screen shot of the problem Circle N present in the area unit of the Geometry Cognitive Tutor. In Question 1, students are 
given the area of the circle and must find the radius, diameter, and circumference. In Question 2, students are given the circumference 
and must find the radius, diameter, and area. The Hint message is in response to a student hint request for the highlighted cell. 

“smoothness” criteria. The decompose KC learning curve appears 
to be declining in error rate and, correspondingly, the slope 
parameter is greater than zero indicating an improvement in the 
model. The Subtract KC curve is not declining but it is already at 
a low error rate from the start, so this also indicates an 
improvement in the model. Such a pattern indicates the KC is 
already known and mastered, therefore, little to no learning is 
expected. The story for the new compose-by-addition KC is mixed 
– while smoother, it is not declining and not already low. It might 
be possible to make further improvements in this KC. 

The decompose KC results are quite different from the other two 
newly labeled KCs and the original KC (ALT:COMPOSE-BY-
ADDITION) with a much higher initial error rate (57%) and a 
declining curve (intercept = .36, slope = .15). Given these results 
and the lack of mastery on the decompose KC after six 
opportunities, we recommend a higher concentration of 
decomposition problems with additional instructional aids such as 
worked examples, specific hints, and problems that isolate 
practice on this skill [15]. These results also indicate less practice 
is needed on the Subtract KC and corresponding problem steps 
could be reduced or even eliminated from the curriculum. 

The statistical fit (shown in the blue lines in Figure 3) is based on 
the Additive Factors Model described above. Models are 
evaluated using AIC, BIC, and 10-fold cross validation. We report 
the root mean-square error (RMSE) averaged over the ten test sets 
in the cross validation. 

For this dataset, the best models according to BIC and cross 
validation are ones that incorporate the distinction between 
unscaffolded (decompose) and scaffolded problem steps. More 
complexity, (e.g., models with 12 and 13 KCs) pays off relative to 
a simpler model with 10 KCs. But more complexity is not always 

better. The Original production rule model in the tutor had 15 
skills, yet according to BIC and cross validation measures the 
simpler models with 12 and 13 skills are better predictors. 

 
Figure 3. A knowledge component (KC) with a non-smooth 
learning curve (see top half of the figure) is replaced in an 
improved student model with three new KCs with smoother 
curves (see bottom half of the figure). 

There are a couple instructional consequences of the fact that the 
decompose skill was confounded with performing scaffolded 
decomposition and, even, with simple subtraction. First, students 
were able to give the appearance of mastery because they were 
essentially given credit for this more complex skill when they 
successfully performed the two simpler skills. It is possible for 
students to graduate on the merged skill by only getting scaffolded 
decomposition and subtraction steps correct and never or rarely 
getting an unscaffolded decompose step correct (the tutor’s 
knowledge tracing algorithm allows for an occasional slip). 



 

Second, because there was no differentiation of these skills, there 
was no way to provide any isolated or extra practice on the tough 
unscaffolded decompose skill. Thus, for both of these reasons, 
there was not enough practice of decompose. 

We have illustrated how new KC models can be produced and 
evaluated within DataShop. This process has produced many 
different models across a variety of datasets. For instance, the 
Geometry9697 dataset had at least 10 KC models associated with 
it. These models range in number of KCs from 1 to 15 with a 
median of 12 KCs. The KC models vary on factors including the 
shape of a figure, the formula involved, whether a formula is 
applied forward or backward, whether or not this step repeats an 
analogous one in the same problem, etc. 

We next present the use of the LFA algorithm to perform an 
automated search for better models. A key trick is to use, in a 
crowd-sourcing fashion, existing models entered by DataShop 
users as the basis for input to this search algorithm 

3. APPLYING LEARNING FACTORS 
ANALYSIS (LFA) ACROSS DOMAINS 
3.1 Adapting LFA for use in DataShop 
Learning Factors Analysis (LFA) [1] is an algorithm that 
automatically finds better student models by searching through a 
space of KC models, represented as Q matrices, to find the one 
that best predicts student-learning data. The input to LFA includes 
a dataset of records that indicate a student, a step identifier (i.e., 
part of a problem or activity for which there is an observed and 
gradable student action), the order in which each student 
experiences each step, and whether the student was successful or 
not on the step (usually whether the students first action on a step 
is correct, that is, neither a hint request nor an incorrect action). 
The LFA input also includes a matrix, in the same form as the Q 
matrix described above, that indicates for each unique step (the 
rows) what candidate features or factors may affect student 
performance and learning on that step (the columns). This so-
called P matrix is used, along with a set of operators, to determine 
the space of possible Q matrices that LFA searches over. 
The output of LFA is a list of Q matrices (KC models) rank 
ordered (using either AIC or BIC) by how well they predict the 
student data. In the search process, new Q matrices are created 
from the current Q matrix by applying operators (split, merge, or 
add in the complete LFA) using a factor in the P matrix to modify 
some aspect of the current Q matrix. 

Figure 4 provides a simple example of the search process 
beginning with the mapping of problem steps to Q and P matrices. 
In this example, a Q matrix with factors for multiplication (Mult) 
and subtraction (Sub) is modified by applying a split operator to a 
column in the Q matrix (Sub) using a column in the P matrix 
(Neg-result).  The outcome is a new Q matrix (called Q’ in Figure 
4) that has the steps of Sub partitioned into two subsets (Sub-Pos 
and Sub-Neg) according to the values of Neg-result. 

An important challenge in a broad application of LFA is 
determining how the P matrix gets created. In early applications 
of LFA, a human user (a single domain expert) created the P 
matrix. In the spirit of crowd sourcing, we have used the multiple 
hand-created KC models in DataShop as an alternative way to 
create the P matrix. The P matrix is automatically derived by 
combining all of the hypothesized KCs in the pre-existing KC 
models for that dataset. More specifically, the P matrix maintains 
the same rows (one for every step in every problem), but the 

columns (the hypothesized factors or KCs) are the union of all the 
columns in the pre-existing KC models (such that the number of 
columns is the sum of the number of columns across the existing 
models minus any duplicate columns). 

 
Figure 4. Example of a Q matrix and P matrix mapped to problem 
steps and the resulting Q’ matrix when Sub in the Q matrix is 
“split” by Neg-result from the P matrix. 

LFA implements a best-first search. In each iteration of the 
search, the best Q matrix so far (as measured by AIC or BIC) is 
chosen for expansion. The LFA search process begins with the 
simplest possible Q-matrix where all steps involve one and only 
one KC. New candidate Q matrices (KC models) are generated by 
applying operators to the columns in the P matrix and the selected 
Q matrix. In the version used here, we only used the split 
operator: LFA creates new candidate Q matrices by splitting KCs 
in the current Q matrix using relevant factors in the P matrix. The 
search stops either after a pre-set number of iterations or when 
model improvements diminish (see below). 

The search process results in the creation of machine-generated 
KC models that are usually more predictive (as measured by cross 
validation) than any of the starting models. Because the current 
implementation is only using LFA’s split operator, which only 
generates single KC codes for each problem step, it is possible a 
starting model that includes multiple KCs per step could be better 
than any LFA model generated. Although cross validation is 
arguably the best way to test the predictive efficacy of a model, it 
is too computationally expensive to run inside the LFA search. 
Instead we have used BIC and, more recently, AIC as the heuristic 
to guide the search. After the search is complete, we test the best 
models using cross validation. 

3.2 Method: Apply LFA across 11 datasets 
In order to examine the LFA search process across a variety of 
datasets, we used eleven datasets representing five domains 
(geometry, algebra, fractions, English articles, and statistics) from 
the DataShop repository. Each dataset had from 1-16 KC models 
previously created by content specialists or researchers and most 
(65%) of these models coded a single KC per step. The number of 
knowledge components within models ranged from 1-48 and the 
number of student users ranged from 41-318. In addition to a 
variety of dataset characteristics, we have a wide group of 
researchers/authors represented: Lovett (statistics), Wiley (English 
articles), Booth (equation solving), Lomas (fractions), Koedinger 
(symbolization), Stamper, Ritter and Koedinger (geometry area). 

To each dataset, we applied a version of LFA that: 1) used only 
the split operator, 2) started with a Q matrix with a single KC 
labeling all problem steps, and 3) started with a P matrix made up 
of the union of all existing KC models. We ran the search process 
twice on each dataset, once using BIC as the search heuristic and 
once using AIC. The search continues until a streak of 5 iterations 
does not produce a model with an improved heuristic value. We 
compared the two best models from each of the AIC and BIC runs 
(4 models total) with all the existing models using root mean 



 

square error (RMSE) as determined by 10-fold cross validation. 
Three different cross validations were run: 1) student stratified 
(SSCV), 2) item stratified (ISCV), and 3) no stratification 
(NSCV). For student stratified and item stratified cross validation, 
students or items (i.e., problem steps), respectively, were 
randomly chosen for the folds. No stratification cross validation 
selects the 10 folds randomly from the dataset as a whole, 
irrespective of student or item. We chose item stratified cross 
validation as the primary metric (the one used in Tables), because 
we are concerned with improving tutors and item stratified cross 
validation corresponds most closely with a key tutor decision of 
what next problem to select. 

3.3 Results: Better Models Found 
Table 1 summarizes the results. Analysis of the datasets using 
RMSE from a 10-fold item stratified cross validation (ISCV) 
shows a machine-generated model is the best predictor of student 
performance across all eleven datasets and all four domains. This 
can be seen in Table 1 by noting that the RMSE values in the 
Best-LFA column (representing the results of machine-generated 
models) are all lower than those in the columns for the best model 
found by hand (Best-hand) and for the original model in use by 
the tutoring system or game (Orig-in-use). 

The results from both SSCV and NSCV were mostly similar in 
that in 10 of 11 datasets, an LFA model was best. For the DFA-
318 dataset, the Best-hand model was better on SSCV and NSCV 
(but not on ISCV). That model involved some steps being coded 
by more than one KC – such multi-KC coding is not a model that 
the LFA version we used (which only incorporates the split 
operator) can produce, however, a version with LFA's add 
operator could, in principle, produce such a model. 
Besides reducing prediction error, the LFA-discovered models 
tend to better capture student learning in that the typical slopes on 
learning curves are steeper. The last columns in Table 1 show a 

comparison of the median learning slope (γk) for the Best-hand 
and Best-LFA models. In all but a couple of cases, the median 
learning slope is larger for the Best-LFA model than it is for the 
Best-hand model (e.g., 0.11 vs. 0.07 for Geometry9697).  

4. INTERPRETING STUDENT MODEL 
IMPROVEMENTS 
We have shown how an automated process, such as an LFA 
search, discovers new and improved student models. But, are 
these improvements substantial and interpretable? Can they be 
used to propose plausible improvements in a tutoring system?  

One method to evaluate newly discovered machine models is to 
investigate when and how much each KC in the original model is 
changed in the transformations that produced the best-hand and 
best-machine models. By isolating improvement in knowledge 
components, areas of student difficulty can be uncovered and 
automated systems can be redesigned to more efficiently address 
student learning by focusing better instruction and more practice 
on more difficult skills and less practice on easier skills. 

We use the Geometry9697 dataset as an example of a proposed 
strategy for interpreting LFA results toward model and tutor 
improvement. That strategy starts with inspecting the impact of 
model improvements on specific aspects of the original model. A 
key observation is that while the overall prediction error (RMSE) 
reductions in Table 1 may seem small, LFA is likely to make 
significant changes in the KC model only in a few isolated places, 
that is, only for some of the original KCs. Although those changes 
may be practically significant, they are obscured in the overall 
RMSE change given much of the model remains the same.  

Thus, we suggest trying to identify which of the KCs in a base 
model are most substantially changed in the creation of a new 
model. One way to do so is to compute the reduction in RMSE 
between models for each of the KCs in the base model.

 
Table 1. The root mean square error (RMSE) for the best KC models as determined by item stratified cross validation. 

	
  

RMSE Median Learning 
slope (logit) 

	
  

	
  
Dataset 

	
  

	
  
Content area Orig 

in-use 
Best- 
hand 

Best- 
LFA 

Best- 
hand 

Best- 
LFA 

Geometry9697 Geometry area 0.4129 0.4033 0.4011 0.07 0.11 

Hampton 0506 Geometry area NA 0.4022 0.4012 0.03 0.04 

Cog Discovery Geometry area NA 0.3250 0.3244 0.16 0.16 

DFA-318 Story problems 0.4461 0.4407 0.4405 0.07 0.17 

DFA-318-main Story problems 0.4376 0.4287 0.4266 0.09 0.17 

Digital game Fractions 0.4442 0.4396 0.4346 0.17 0.14 

Self-explanation Equation solving NA 0.4014 0.3927 0.01 0.04 

IWT 1 English articles 0.4262 0.4110 0.4068 0.10 0.12 

IWT 2 English articles 0.3854 0.3854* 0.3806 0.12 0.16 

IWT 3 English articles 0.3970 0.3965 0.3903 0.05 0.15 

Statistics-Fall09 Statistics 0.3648 0.3527 0.3353 ** 0.09 
NA: Original models (or statistics on them) were not available in some cases. 
* IWT 2 dataset only has 1 model, therefore the original-in-use and best-hand models have the same RMSE. 
**The best-hand model for Statistics-Fall09 dataset has only 1 KC. 



 

More specifically, for each data point labeled by a base model 
KC, we find the RMSE based on the predictions of the base model 
and compare it with the RMSE based on the predictions of the 
new model. We compute the percent reduction in RMSE ((base - 
new)/base). 

Table 2 summarizes the results of this analysis on the 
Geometry9697 dataset by comparing each pair of the Original, 
best hand, and best LFA models in terms of the Original model 
KCs. As anticipated, the last row shows that for most of the 
Original KCs (12 of 15), there is little to no improvement in the 
best hand and best LFA models. However, for three of the KCs, 
there are large reductions in prediction error. The TRIANGE- 
SIDE KC has the largest RMSE reduction from Original to LFA 
model (11.1%); however, the decrease is mostly caught in the 
improvements made to the best hand-model from the Original 
model (10.0%). The COMPOSE-BY-ADDITION KC is also 
improved (as described in section 2) just in the original to hand- 
model transition. The CIRCLE-RADIUS KC, on the other hand, 
realizes an almost 6% reduction of RMSE from the Original 
model to the best hand-model, and then another sizeable reduction 
of almost 4% from best-hand model to the best LFA model. This 
discovery of LFA represents a genuine machine-based discovery 
not directly anticipated by human analysts. 

Table 2. Improvement in knowledge components in the 
Geometry9697 dataset measured by the percent reduction of root 
mean squared error (RMSE) from item-stratified cross validation. 

 
% reduction in RMSE Original model 

KCs orig->hand       hand->LFA     orig-LFA 
CIRCLE-RADIUS 5.8% 4.0% 9.5% 
COMPOSE-BY- 
ADDITION 5.2% 0.3% 5.5% 

TRIANGLE-SIDE 10.0% 1.2% 11.1% 
Range of the 12 
other KCs -.5 to 3.4% -.3 to 1.0% -.2 to 3.1% 

 
A closer look at the CIRCLE-RADIUS KC from the Original 
shows it is coded as three separate KCs in the best hand-model: 
(1) circle area, (2) circle-diam-from-given, and (3) circle-diam- 
from-subgoal. In all three of these KCs, computing a radius is the 
target skill but how it is computed depends on what component 
measure is provided. For example, in the Circle-N problem (see 
Figure 2), area is given in the first row of the table (and in the text 
as Question 1) and students must compute the remaining values 
including radius; this is labeled as the circle-area KC. In the 
circle-diam-from-subgoal KC, circumference is given (row 2 or 
Q2) and in the circle-diam-from-given KC, diameter is given. As 
can be seen in Figure 5, the LFA model further changes these 
same KCs by either combining (e.g., circle-diam-from-given 
combines with three other KCs to form Geometry) or splitting 
(e.g, circle-area splits to form a reduced version of itself and a 
new KC called radius-from-area). Circle-diam-from-subgoal 
remains the same from best hand to best machine. We use the 
circle-area split as an illustration of how the machine-model 
uncovered a useful improvement in the original model that was 
not anticipated by humans generating hand models. 
 

	
  
Figure 5. The splitting and combining of circle-radius and other 
related hypothesized knowledge components in going from the 
original-model to the best hand model to the best machine model. 
In Figure 5, we see the circle-area KC in the best hand-model has 
22 problem steps but after the LFA algorithm is applied this one 
KC is divided into two KCs – one with 19 problem steps and the 
other with 3 problem steps. What is unique about these three 
problem steps that they split from the original 22 to form a “new” 
KC? 

A careful examination of the three problem steps in the new 
radius-from-area KC reveals a backward strategy is necessary for 
a correct solution (e.g., finding radius when area of circle is given) 
unlike the other nineteen problem steps, which require a forward 
strategy. Although using a backward strategy is not uncommon in 
the dataset (about 27% of the problem steps require it), none of 
the other KCs were split between backward and forward by the 
search algorithm. In fact, eight of thirteen KCs in the best hand- 
model label backward steps but only circle-area benefits from 
being split into forward and backward versions. 

Figure 6 is analogous to Figure 3 and shows the effect of the LFA 
discovery to split circle-area in the best hand-model (called 
DecompArithDiam) into circle-area (labeling fewer steps) and 
radius-from-area. Both resulting learning curves are smoother 
than the original and they have steeper slopes (.105 and .165, 
respectively, as compared to .068). 

Performance on the circle-area backward problems (called radius-
from-area) is lower (54%) than performance on the circle-area 
forward problems (80%), which is perhaps not a surprise. 
However, in this context, it is surprising that the difference in 
backward vs. forward performance on the other KCs is small and 
statistically negligible. For example, pentagon area does not split 
from apothem or side (backward = 66%, forward = 62%), 
parallelogram area does not split from parallelogram side 
(backward = 89%, forward = 91%), trapezoid area does not split 
from base or height (backward = 54%, forward = 55%), and 
triangle area does not split from base or height (backward = 68%, 
forward = 78%). 

In addition to not finding a backward split for any of the area 
formulas for other shapes, there was no forward-backward split 
for other circle formulas (circumference = pi*diameter and 
diameter = 2*radius). A unique feature of working the circle area 
formula backwards is that it requires a square root operation to 
find the radius (after dividing the given area by pi). Thus, the 
uncovered knowledge component appears to be about learning 
when and how to employ a square root operation rather than about 
a general ability to apply a backward strategy, for instance, by 
using algebra (as suggested in the hint in Figure 2). Note, the need 
to employ a square root is also required in backward application 
of the square area formula, however, this tutor unit did not have 
any such problems where only the area of a square is given and 
the side must be found. 



 

	
  
Figure 6. Learning curves and model values of circle area 
knowledge component in best hand-model and after splitting to 
circle area and radius-from-area KCs in best LFA model. 

The consequences for tutor changes based on this automated 
discovery of LFA are significant. We recommend the tutor 
distinguish area-to-radius problems while merging all other 
forward/backward area combinations (e.g., pentagon side and 
pentagon area). The current unit in the Geometry Tutor only has 
three problem steps associated with the area-to-radius KC, not 
enough to lead to mastery on a difficult skill. Thus, more such 
problems should be created. The skill tracking, which is done with 
skill bars in the tutor, should be modified to maintain the forward- 
backward distinction for the circle area formula, but merge the 
forward-backward distinctions for other formulas (including the 
other circle formulas for circumference-diameter and the 
diameter-radius relationships). This change should substantially 
reduce the time students currently take to separately (and 
unnecessarily) demonstrate mastery of both the forward and 
backward versions of each of the area formulas. This time could 
in turn be used to make sure that students get enough practice in 
cases where their prior algebra background appears insufficient 
for backward application of formulas, namely in use of the square 
root operation. Further, given the need for more square root 
practice, square-area-to-side problems should also be added. 

5. Conclusion and Future Work 
This paper demonstrates an automated technique for the discovery 
of better student models using input from previously generated 
models. LFA discovered better student models in 11 of 11 cases 
as measured by item stratified cross validation and 10 of 11 cases 
by student stratified and non-stratified cross validation. 

Although the reduction in overall error (RMSE) appears rather 
small, we demonstrated how this small error reduction is a 
consequence of most of the discovered model being essentially 
the same as the original. There are a few isolated changes that are 
statistically large and, more importantly, practically significant for 
tutor redesign. 

A related, more nuanced point is that even in cases where there is 
no significant improvement in prediction error, the new model 
may be better in parsimony (i.e., by reducing the number of KCs). 
Parsimony improvements in student models are important 
scientifically because they simplify explanations and suggest 
broader transfer of learning. They are also practically important in 
that tutors with a more compact student model will save and focus 
student time. 

Student models are critical to effective adaptive instruction. 
Different kinds of student model changes (e.g, original KCs 

splitting or not splitting) suggest specific tutor redesigns. A 
number of instructional design changes are suggested when an 
original KC is split into one or more new KCs. First, the skill bars 
and knowledge tracing need to be changed to include the new 
KCs and to be sure that students master all of them. Second, often 
a newly discovered KC will occur in too few of the existing 
problems and thus new problems need to be created. Third, the 
distinction discovered in the KC split (e.g., use of square root) 
may be better highlighted in the various forms of instruction that 
tutor may employ including worked examples, error feedback 
messages, and next-step hint messages. Similarly, a different set 
of instructional design changes are suggested when a number of 
original KCs are merged (i.e., are not split) into a single KC. First, 
the skill bars and knowledge-tracing model need to be changed to 
eliminate unnecessary distinctions. With corresponding 
knowledge tracing parameter changes, the number of practice 
problems a student needs to master the merged KC will be 
significantly reduced relative to the greater number previously 
needed to master each of the separate KCs. Second, the 
commonality discovered in the KC merge (e.g., the learning 
obstacle for most area operations is learning to retrieve and map 
the right formula, not learning how to apply it in a forward or 
backward direction) can be highlighted in the various forms of 
instruction that tutor employs. Doing so may better encourage the 
desired generalization and greater transfer of learning. 
The general LFA algorithm includes an “add” operation that can 
produce multiple KC codes for a single problem step. For 
efficiency reasons (for larger datasets, LFA ran for multiple days) 
and to simplify interpretation of the results, we did not use the add 
operator in the version of LFA employed here. However, in the 
case that a new KC is added, there are instructional implications 
beyond those indicated above for split operations. Namely, there 
is the possibility of inventing new tasks that isolate a KC that 
might only occur with other KCs in the current set of tasks. Doing 
so has been demonstrated to yield significant improvements in 
student learning [7]. Future work should explore the use of the 
add operator in the LFA algorithm and, more generally, needed 
algorithm improvements to increase efficiency. 

Some other automated techniques discover models that are 
difficult or impossible to understand, either toward deriving 
insights into student learning or making practical improvements in 
instruction. The output of LFA is more interpretable and 
convertible to tutor changes than these alternative “black box” 
machine learning methods that may produce Q matrices (or other 
latent variable representations) without consistent application of 
analyst-derived codes or without code labels at all. Even so, the 
output of LFA is complex and not trivial to interpret. Thus, we 
recommend a strategy (illustrated in Table 2) for isolating the 
practically significant student model improvements that LFA 
discovers. Such improvements in the student model have direct 
implications for many aspects of tutor design including problem 
development, knowledge tracing, problem selection and 
sequencing, skill bar display, instructional hint and hint message 
content. Using data to automatically improve student models and, 
in turn, improve instructional systems is a tremendous opportunity 
for educational data mining, especially as we accumulate large 
datasets and relevant techniques in repositories like DataShop. 

A notable innovation here is a simple form of crowd sourcing of 
the work done by data analysts using DataShop. A significant 
limitation of LFA recognized in prior work [1] is the need for the 
P matrix input to the algorithm, that is, the human coding needed 



 

to produce the various difficulty and learning factors on problem 
steps that are the basis for hypothesizing knowledge components. 
This limitation is addressed here by taking advantage of the 
DataShop facilities for creating and storing hand-built KC models 
and the fact that analysts have been using those facilities to create 
models. 

Our simple version of combining human and machine intelligence 
toward better model discovery could be applied more broadly 
beyond DataShop data or student modeling. The general idea 
involves a web-site with these components: 1) users can modify 
an existing model (e.g., add new features based on feature 
engineering) and see whether their new model yields better 
predictions (e.g., DataShop’s KC model leaderboard display), 2) a 
machine algorithm that collects features across all human-entered 
models (e.g., a simple union of all features), and 3) a machine 
algorithm that searches over the space of features to identify more 
predictive models (e.g., the LFA algorithm). We leave it for future 
research to test this proposed generalization of the approach 
presented here. 
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