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Science and technology have had enormous 
impact on many areas of human endeavor. 
Consider travel.  Over the past two centuries, 
we have gone from horse-drawn carriages 
and unpaved roads to a vast and complex 
system of “planes, trains, and automobiles”.  
However, during that same period, science 
and technology have had surprisingly little 
effect on another crucial area of the human 
enterprise:  Education (1).  Although our na-
tion has made great strides toward the goal 
of universal K-12 schooling, progress on the 
quality and content of that schooling has 
been inadequate. As Slavin (2) critically 
notes, at the “dawn of the 21st century, edu-
cational research is finally entering the 20th 
century” (p. 15). Classrooms look much the 
same today as they did when the automobile 
and the steam engine were invented, and 
many large-scale field trials of science-based 
technological innovations in education have 
yielded scant evidence of improvement in 
student learning (3, 4), and the evidence in 
even the best studies is mixed (5).   

To return to our transportation analogy: 
The design and engineering of our complex 
airline system required the concurrent solu-
tion of many problems: from the aerodynam-
ics of control surfaces and the efficiency of 
engines, to the organization and coordination 
of the air traffic control system, the financial 
structure of the airline industry, and the man-
agement of a complex set of regulatory 
agencies. The challenge of improving educa-
tion is similarly complex and interactive, and 
advances in the efficacy and quality of our 
educational systems will not be straightfor-
ward.  The full complexity of education in-
volves many important issues, such as cul-
tural questions of values, but our focus is on 
the part of the full complexity that involves 
instructional decision-making in the context 
of determined instructional goals.  

We demonstrate how instructional com-
plexity implies that the typical “binary” de-
bates in education are inherently unproduc-
tive. For too many years, the ability to 
translate good psychological science into ef-
fective educational practice has been ham-
pered by the so called “reading wars”, “math 
wars”, and most recently “science wars” (6, 
7). In the following sections we describe a 

few of the battles and skirmishes from these 
wars and explain why – although often based 
on very solid empirical and theoretical work -
- they are unlikely to lead to solutions. We 
then elaborate on the factors that define the 
complexity of instructional design. Finally, 
we attempt to quantify that complexity and 
suggest a way to manage it by principled iso-
lation of primary functions of instruction – 
returning again to our analogy of the devel-
opment of the air transportation system.  We 
close with recommendations for ways to ad-
vance research on learning and to apply it ef-
fectively to the field of education as a whole.  

Two	
  Sides	
  to	
  Every	
  Educational	
  Debate?	
  
Researchers have come up with many di-
chotomies to describe educational methods 
(8) (see Table S1).  Typically, such dichoto-
mies contrast a focused approach -- involving 
more support and more emphasis on the 
“basics” (e.g., traditional instruction; direct 
instruction) against a more open-ended ap-
proach, involving greater student engagement 
and more emphasis on understanding (e.g., 
reform instruction; constructivism).  This 
widespread dichotomization of instructional 
methods is troubling for several reasons.  
One is that the there is no consensus on the 
meaning of the terms of interest. For exam-
ple, a particular instance of instruction that 
one person calls “direct instruction” may be 
called “inquiry” by another researcher. Such 
deep ambiguities derive from a widespread 
tendency to apply these labels to vaguely de-
scribed procedures, rather than to clear op-
erational definitions of instructional practices 
(9, 10).    

Another fundamental problem with such 
dichotomies is that even when the practices 
are reasonably well defined, there is not yet a 
strong evidential base for deciding which of 
the two choices is optimal for learning.  To 
the contrary, empirical investigations of gen-
eral instructional methods, including con-
trolled laboratory experiments in the fields of 
cognitive and educational psychology, often 
fail to yield such consensus.  For instance, al-
though some researchers have produced 
credible empirical evidence for learning 
benefits of immediate feedback (11) others 
have done the same for delayed feedback 
(12).  Similar controversy exists with data 
supporting the use of concrete materials (13) 
vs. abstract materials (14) to promote learn-
ing and transfer.  Even for those practices for 
which a consensus appears to be emerging, 
the evidence in favor of the purported princi-
ples is not typically strong.  For example, of 
the nine scientifically-based recommenda-

tions in the IES Practice Guide on organizing 
instruction and study (15), only two are con-
sidered to have strong evidence in their fa-
vor.  Three recommendations have low sup-
port, coming from just a few studies in a 
limited range of domains, and often with a 
small, homogeneous population (though new 
studies are accumulating (cf., 16)).  The four 
remaining recommendations have moderate 
support, indicating that the findings are not 
necessarily generalizable to a wider popula-
tion.  

Further complicating the picture is the 
fact that in cases where principles have been 
tested across a wide variety of content do-
mains or student populations, results often 
vary. For example, instruction that is effec-
tive for simple skills has been found to be in-
effective for more complex skills (17), and 
techniques such as prompting students to 
provide explanations (a strong recommenda-
tion in (15)) may not be universally effective 
(18).  The many positive demonstrations 
have targeted domain principles or laws (e.g., 
in mathematics and science), but there are 
negative results for procedural skills or more 
probabilistic or sparse-featured categories 
(9).  The effectiveness of different ap-
proaches is often contingent on student popu-
lation or level of prior achievement or apti-
tude; in fact, some interventions may be 
particularly important for low-achieving stu-
dents (19, 20). Thus, while relying on binary 
instructional decisions may be useful at the 
level of the individual student (e.g., will this 
student learn better right now if I give her 
feedback or if I let her grapple with the ma-
terial for a while?), the search for general 
methods of instruction that optimize the ef-
fectiveness, efficiency, and level of student 
engagement is far more challenging. 

Complexity	
  of	
  Instructional	
  Design	
  
Of the many factors inherent in real-world 
learning situations that might have an impact 
on instructional design we describe three of 
particular importance — type of instructional 
technique, subsequent decisions about dos-
age, and timing of the intervention—and dis-
cuss how each factor independently contrib-
utes to the complexity of instructional 
design.  Our approach is to (a) first indicate 
the vast size of the space of potential combi-
nations of different levels of all of these fac-
tors, and (b) then suggest a way to avoid the 
combinatorial explosion by conceptualizing 
the essential processes in terms of a “func-
tion space” of the learning, knowledge, and 
assessment outcome functions of instruction. 

Instructional techniques 
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It is tempting to think that the key to im-
proving how students learn is to devise re-
search-based instructional methods and to 
apply them broadly and consistently.  How-
ever, researchers in education and psychol-
ogy have, in fact, already proposed a wide ar-
ray of instructional techniques, and many 
experiments have demonstrated how such 
techniques improve student learning beyond 
that produced by comparable instruction 
without the targeted technique.   Just how 
many such techniques are there?  One can 
easily find many lists of learning or instruc-
tional principles that suggest instructional 
techniques and point to supporting research 
(15, 16, 21-28).   Each of these sources lists 
between 3 and 25 principles, and the overlap 
is far from complete. An in-depth synthesis 
of 9 such sources yielded an estimate of 30 
independent instructional principles (see Ta-
ble 1; a detailed mapping of each principle to 
the 9 sources can be found in External Data-
base S1). 

Dosage and implementation choices 
Other significant sources of uncertainty 

and complexity in instructional decision-
making stem from the fact that many of these 
distinctions are not binary, but rather have 
multiple possible strength values or else are 
continuous (e.g., the ratio of examples to 
questions/problems given in an assignment, 
the time spacing between practices, or the 
time delay of feedback).  These variables 
substantially increase the number of options 
to consider in instructional design and in a 
general theory of learning and instruction.  
Compounding this problem of complexity is 
the fact that these choice dimensions are 
mostly compatible with each other – that is, 
almost all of them can be combined or se-
quenced together with any other (29).  Figure 
1 illustrates how choices on one dimension 
can be independently combined with choices 
on other dimensions to produce a vast space 
of reasonable instructional choice options.  
The path of the thicker black arrows shown 
in Figure 1 indicates one set of choices on six 
instructional dimensions:  The interval be-
tween practices is gradually widened, the 
practices involve retrieval tasks or problems 
to solve rather than examples to study, the 
problems are presented in an abstract form, 
delayed feedback (after a full problem solu-
tion is attempted) is provided, the problems 
interleave different knowledge goals or top-
ics, and students are prompted to “self-
explain” the principles that justify their prob-
lem solving steps. As indicated in Figure 1, 
this particular path is just one of the 63 that 
could be traversed in this instructional design 
space. 

Intervention timing 
The number of instructional options is 

further increased given evidence that the op-
timal choice may not be the same early in 
learning as it is later in learning.  Research 
on the use of worked examples during prob-
lem solving has demonstrated that, for novice 
students, extensive use of worked examples, 
in place of many problems, enhances learn-
ing.  However, as students develop expertise, 
shifting to pure problem solving practice is 
more effective (30).  Another example from 
research on the spacing effect is that more 
narrow spacing is optimal for beginning 
learning, but gradually wider spacing is op-
timal as the learner advances (31). More gen-
erally, many researchers have suggested that 
effective instruction should provide more 
structure or support early in learning or for 
more difficult or complex ideas and fade that 
assistance as the learner advances (32-35). 

Quantifying	
  the	
  Complexity	
  of	
  Instruc-­‐
tional	
  Design	
  
The three factors described above—
instructional techniques, dosage and imple-
mentation choices, and timing of interven-
tion—can be combined to estimate the size 
of the space of instructional choices.  With 
30 instructional techniques and three levels 
of dosage, we estimate 330 or over 205 tril-
lion instructional choices.  If we consider 
only 15 instructional techniques (because 
some are similar to each other), but include a 
simple intervention-timing factor, namely 
that the optimal choice may be different early 
than late in instruction, we get 315*2 or 205 
trillion once again. 

To the extent that some of the combina-
tions are not possible (36), or may not make 
sense in a particular content area (e.g., what 
would faded practice of abstract problems 
look like in a History class?), this formula-
tion may appear to over-estimate the size of 
the choice space. However, we believe that, 
in fact, it under-estimates for three reasons.  
First, many dimensions have more than three 
possible values such as the time between 
spaced practices or the ratio of worked ex-
amples to problems.  Second, there may be 
more than two time points where the instruc-
tional optimum changes. Third, different 
knowledge needs in different domains often 
require a different optimal combination.  For 
example, the optimal practice scheduler used 
by Pavlik and Anderson (31) continually ad-
justs the spacing interval for each student on 
each practice of each knowledge component. 
As another example, when the target knowl-
edge is simple facts (or students are more ad-

vanced), requiring recall and use of knowl-
edge produces more robust learning, but for 
complex problem-solving skills, a significant 
amount of worked example study is better (3; 
see rows 2 and 3 in Table S1).  Considering 
these additional factors, it is likely that the 
size and complexity of the full space of in-
structional choices is much greater than our 
estimate suggests.   

The vast size of this space sheds light on 
the research-practice gap. Our analysis re-
veals that the all-too-common binary debates 
about educational policy choices -- in the sci-
entific literature as well as in the public fo-
rum -- tend to ignore and obscure the com-
plexity that a productive science and 
engineering effort must address.  

Five	
  Scientific	
  Recommendations	
  for	
  
Taming	
  Instructional	
  Complexity	
  
What can be done to address instructional 
complexity? We make five recommendations 
to advance instructional theory and to maxi-
mize its relevance to educational practice.   

1. Searching in the function space.  Our 
first recommendation takes us back to the 
analogy between educational systems and 
modern transportation systems, in this case to 
the invention of the airplane. In a cogent 
analysis of how the Wright brothers managed 
to win the race to construct the first powered, 
controllable, and human-carrying flying ma-
chine, Gary Bradshaw (37) identified a cru-
cial difference between the Wrights’ strategy 
and those of their competitors.  Most of the 
inventors of that time were working in what 
Bradshaw calls the “design space”, in which 
each new design represented a choice of one 
of the several values from each of the poten-
tially relevant variables.  As he puts it  “… to 
these men, the airplane consisted of a set of 
structures, such as wings, fuselage, propul-
sion plant, etc. Developing an airplane meant 
exploring the set of possible designs.” (p 
247).  However, as Bradshaw insightfully 
notes, “Design-space search is inherently in-
efficient for two reasons: The design space is 
large, and global measurements (time and 
distance in flight) provide little guidance in 
moving through the space.” (p 247).  Rather 
than searching this huge space, the Wrights 
used what Bradshaw calls a “function-space 
search”.  They hypothesized that the key 
functions were relatively independent, and 
could be studied successfully without simul-
taneously varying all the other factors.  “Lift 
could be addressed without regard for lateral 
control, and vice versa.” (p 248).  Function 
space search is much more tractable. 

Are the Learning Sciences poised to ap-
proach the challenge of instructional com-



 

	
   www.sciencemag.org      SCIENCE    VOL. xxx  • galley printed 10 October, 2014  • •  For Issue: ???? 4 
 

plexity by following a strategy analogous to 
the Wrights’ function space search?  If so, 
what would the analogous function space be?  
We suggest that a recently developed con-
ceptualization, organized around a three part 
taxonomy of knowledge, learning processes, 
and instructional methods – called the “KLI 
framework” (21) -- provides a powerful an-
swer to this question. The KLI framework 
specifies three layers of functions of instruc-
tion from the more distal and observable to 
the more proximal and hidden:  1) Instruction 
is intended, ultimately, to yield better as-
sessment outcomes, that is, enhanced learner 
performance in activities and tasks in future 
work or academics.  2) To do so, instruction 
must change learners’ knowledge base in 
ways that produce enhanced future perform-
ance.  3) For the knowledge base to change, 
the learners’ minds must execute learning 
processes or mechanisms that implement 
these changes.  Using KLI, we can specify 
different functions to be achieved at each 
layer.  The most distal, but observable, func-
tions of instruction are assessment outcomes: 
long-term retention, transfer to new contexts, 
or desire for future learning. More proximal, 
but unobservable, functions of instruction are 
to change different kinds of knowledge (mal-
leable mental structures or processes): facts, 
procedural skills, principles, learning skills, 
or learning beliefs and dispositions. The most 
immediate and unobservable functions of in-
struction are to support different kinds of 
learning processes or mechanisms: memory 
and fluency building, induction and refine-
ment, or understanding and sense making 
(38).  

Using these distinctions, we can create a 
function space that reduces the instructional 
design space. For instance, instead of asking 
what instructional choices optimize learning 
in general, the functions of instruction at 
each layer suggest more focused questions: 
Which instructional choices best support 
memory to increase long-term retention of 
facts? Which are best for induction of general 
skills that produce transfer of learning to new 
situations? Which are best for sense making 
processes that produce learning skills and 
higher learner self-efficacy toward better fu-
ture learning? 

Indeed, we can associate different subsets 
of the instructional design dimensions with 
individual learning functions.  For example: 
spacing enhances memory, worked examples 
enhance induction, and self-explanation en-
hances sense making (see External Database 
S1 for more examples of mappings of in-
structional methods to learning functions). 
We do not pretend to have solved the instruc-

tional complexity problem with this function 
space proposal. Nevertheless, we offer it as a 
productive path forward. The success of the 
approach depends on partial decomposability 
(39), that is, on some independence of effects 
of instructional variables: Design configura-
tions that are optimal for one function (e.g., 
memory) should not be detrimental to an-
other function (e.g., induction). To illustrate 
the plausibility of (conditional) independ-
ence, consider that facts (or skills later in ac-
quisition) require memory but not induction, 
thus a designer can focus on the subset of in-
structional variables facilitating memory, in-
dependent of other variables. 

We need theoretical work to better under-
stand the possibility of this kind of 
decomposability and to gain insight for when 
main effects of instructional methods can be 
combined without concern for interaction ef-
fects.  One powerful method for theory de-
velopment is creating computational models 
of learning that can engage in learning like 
human students do (31, 40-42).  Such com-
putational theories not only provide precise, 
replicable predictions, but can also be used to 
compare alternative instructional methods – 
essentially as instructional crash test dum-
mies. Examples include a computational 
learning study showing that providing a cur-
riculum that separates instruction into “bite 
size” pieces (“one subgoal at a time”) en-
hances learning (40) over one that does not, 
or another that shows that interleaving prob-
lems of different kinds enhances learning 
(41). 

2. Experimental tests of instructional 
function decomposability.  In addition to 
theoretical investigations of instructional 
function decomposability, there is an urgent 
need for empirical tests of decomposability.  
One important case is multi-factor studies of 
how the nature of the to-be-acquired knowl-
edge can change the optimal instructional 
choice.  For example, we have noted (21) 
how the contradiction between the testing ef-
fect (43) recommendation--that instruction 
should include more questions to answer-- 
and the worked example effect (32, 44, 45) 
recommendation--that instruction should in-
clude more question-answer pairs to study--
may be resolved by distinguishing the nature 
of the targeted knowledge (i.e., specific facts 
or general problem-solving skills).  If the in-
structional goal is long-term retention (an 
outcome function) of a fact (a knowledge 
function), then better memory processes (a 
learning function) are required and more test-
ing than study will optimize these functions. 
However, if the instructional goal is transfer 
(a different outcome function) of a general 

skill (a different knowledge function), then 
better induction processes (a different learn-
ing function) are required and more worked 
example study will optimize these functions. 
The ideal experiment to test this hypothesis 
is a two-factor study that varies both the 
knowledge content (fact learning vs. general 
skill) and the instructional strategy (example 
study vs. testing). That other optimal instruc-
tional choices may be function-specific is 
suggested by conflicting results across stud-
ies of other instructional methods where dif-
ferent results appear dependent on the nature 
of the knowledge goals. These include stud-
ies of prompting for self-explanations (18, 
46), spaced practice (47), and blocked vs. 
random practice schedules (48).  We need 
more experiments that directly test these pos-
sible function-specific outcomes.  

3. Massive online multi-factor studies.  It 
is now possible to run massive learning ex-
periments online that can involve thousands 
of participants and can vary many factors at 
once.  For example, a recent experiment with 
a fraction numberline game involved 7000 
students and varied five factors (with 2 to 25 
levels each) (49). Such studies (49, 50) can 
accelerate the accumulation of empirical 
facts that can drive instructional theory de-
velopment. The point is not to build up to 
multi-factor experiments to address the full 
instructional complexity space discussed 
above. Instead, the point is to test hypotheses 
suggested by the function space -- in particu-
lar, to identify in context of a particular in-
structional function, what instructional di-
mensions can or cannot be treated 
independently of each other.  

So far, these studies have emphasized ex-
perimenting with system features (usually 
elements of the graphical user interface) 
rather than with instructional methods (51). 
Designing such studies to vary instructional 
methods would not be hard, but there is a 
major unsolved problem in convenient and 
consistent access to ideal outcome variables 
in such studies.  Proximal variables measur-
ing student engagement and local perform-
ance are easy to collect (e.g., how long/much 
a game or technology is played or used, pro-
portion correct within game context); how-
ever, measures of students’ local perform-
ance and their judgments of learning are 
sometimes not only unrelated, but even nega-
tively correlated with desired robust learning 
outcomes (52).  

 Solutions to this robust learning metric 
problem would open this methodology to a 
huge potential for productivity.  For example, 
if data from multi-factored instructional al-
ternatives within widely used online tutors or 
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games (e.g., for learning scientific inquiry in 
6th grade) were tied to downstream data on 
relevant student performance of students 
(e.g., science achievement in the 7th grade 
common Core assessment), data-driven deci-
sion theoretic methods (e.g., 53) could be 
used to select these alternatives based on ro-
bust learning outcomes.   

4. Learning data infrastructure.  A huge 
opportunity exists to develop an infrastruc-
ture to support more and better course-based 
data collection and experimentation. Massive 
instructional experiments are essentially go-
ing on all the time in schools and colleges 
across the country. Because collecting data 
on such activities has historically been ex-
pensive, all but a very few are not monitored 
(i.e., by tracking variations in instruction and 
the resulting changes in student computes).  
However, technology is increasingly provid-
ing low cost ways to instrument the learning 
experience for data collection.  These tech-
nologies include both ever-better video and 
audio recording methods and software and 
web-based environments in which students 
interact, such as online courses, educational 
simulation games and simulations, online 
homework systems, intelligent tutoring sys-
tems, and discussion boards.   

More broadly, investment is needed in in-
frastructure to facilitate large-scale data col-
lection efforts in schools, particularly in ur-
ban and low-income school districts.  Such 
efforts require improved technology for 
managing and delivering large databases, so 
that data collected in the real world can be 
accessed by decision-makers and researchers 
and analyzed in a user-friendly way.  Two 
such current efforts include LearnLab’s huge 
educational technology data repository (54) 
and the Gates Foundation’s Shared Learning 
Infrastructure (55).    

5. School-researcher partnerships. To 
make effective use of a learning data infra-
structure, we need a corresponding collabora-
tive problem-solving infrastructure that can 
facilitate interaction between researchers, 
practitioners, and school administrators. 
When school cooperation is well-managed 
and most or all of an experiment is computer-
based, large well-controlled experiments can 
be run in courses with substantially less ef-
fort than an analogous lab study. For exam-
ple, LearnLab’s school-collaboration support 
led to many, large in vivo experiments, which 
are principle-testing controlled studies in the 
context of classrooms or online courses.   

We need more in vivo experimentation to 
better address issues of context, including the 
knowledge content being taught, differences 
in student prior knowledge, in student cul-

tural background, in teachers, and in school 
environment. Testing instructional principles 
in different course contexts benefits theory 
development. Cross-context comparison of 
studies of prompting students to self-explain 
indicate that verbal, reflective reasoning en-
hances learning in contexts involving more 
discrete rule-like generalizations, which tend 
to occur in math and science domains (56, 
57). However, more implicit, non-verbal 
learning mechanisms are better for more dif-
fuse, probabilistic categories, which tend to 
occur in language and perceptual domains 
(18, 58).  

More practically, a lab-derived principle 
may not scale to real courses because non-
manipulated variables may change in moving 
from the lab to a real course and the change 
in the background conditions may change 
learning results. In an in vivo experiment 
these background conditions are not arbitrar-
ily chosen by the researchers, but instead de-
termined by the existing context. Thus, they 
detect limits to generalization more quickly 
before moving to long, expensive random-
ized field trials.  

School-researcher partnerships are useful 
not only for facilitating experimentation in 
real learning contexts, but also for designing 
and implementing new studies that address 
practitioner needs. One such effort, the Stra-
tegic Education Research Partnership 
(SERP), establishes long-term research rela-
tionships with school systems. 
 Interdisciplinary teams of researchers are re-
cruited to work with practitioners on projects 
to solve “use-inspired” problems in educa-
tion (59).  More generally, the Institute of 
Education Sciences at the U.S. Department 
of Education has recently released a call for 
researcher-practitioner partnerships (60).  

In addition to school administrators and 
practitioners, effective partnerships must be 
comprised of a variety of critical research 
perspectives, including a combination of do-
main specialists (e.g., Biologists, Physicists, 
etc.) who bring a deep understanding of the 
content to be taught, Learning Scientists 
(Psychologists, HCI experts), who bring an 
understanding of the nature and development 
of learning and cognition, and education re-
searchers (Physics and Math educators), who 
bring an understanding of teaching practices, 
standards, teacher professional development, 
and constraints evident in the education sys-
tem.   As part of these partnerships, it will be 
important to forge compromises between the 
control desired by social science and STEM 
domain researchers (61) and the flexibility 
demanded by the realities of real-world class-
rooms. One such opportunity may come from 

practitioners and education researchers in-
volving more domain specialists and psy-
chologists in ongoing design-based research 
(DBR) efforts, in which iterative changes are 
made to instruction in a closely observed, 
natural learning environment in order to ex-
amine the effects of multiple factors within 
the classroom context (62).     

A	
  Call	
  to	
  Action	
  
The endeavors laid out in our recommenda-
tions are no small charge, and would require 
the necessary stakeholders (schools, practi-
tioners, education researchers, cognitive sci-
entists/psychologists, domain specialists) to 
devote time and energy and to seriously re-
examine their assumptions about the types of 
research that are useful. However, we believe 
these efforts are necessary in order to con-
strain the challenge of instructional complex-
ity. We see great signs of promise including 
sustained science-practice infrastructure 
funding programs, creation of new learning 
science programs at universities, and emer-
gence of new fields and associated confer-
ences, such as Society for Research on Edu-
cational Effectiveness (63) and Educational 
Data Mining (64), that bring science and 
technology to bear on the challenge of opti-
mizing educational outcomes. 

To be sure, today's air transportation sys-
tem was created not by a single key insight 
but rather by a long period of accumulated 
science and engineering, in disciplines rang-
ing from from physics to chemical engineer-
ing to human factors. Analogously, for sci-
ence and technology to have a major impact 
on our vast and complex educational system, 
we need to recognize the tremendous scien-
tific challenge inherent in that goal, and con-
tinue to bring together influences from mul-
tiple disciplines in the learning and education 
sciences.  
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Table	
   1.	
   List	
   of	
   principles	
   for	
   Instructional	
  
Design.	
   	
   Principles	
   address	
   three	
   different	
  
functions	
  of	
  instruction:	
  A)	
  Memory/Fluency,	
  
B)	
   Induction/Refinement,	
   and	
   C)	
   Under-­‐
standing/Sensemaking	
  
	
  
Figure	
   1.	
   Different	
   choices	
   along	
   different	
  
instructional	
   dimensions	
   can	
   be	
   combined	
  
and	
   produce	
   a	
   vast	
   set	
   of	
   instructional	
   op-­‐
tions.	
   	
   The	
   path	
   with	
   thicker	
   arrows	
   illus-­‐
trates	
  one	
  set	
  of	
  choices	
  for	
  six	
  dimensions	
  of	
  
choice	
   among	
   the	
   729	
   different	
   paths	
   that	
  
could	
  be	
  selected	
  among	
  the	
  six	
  three-­‐valued	
  
instructional	
  dimensions	
  shown	
  here.	
  We	
  es-­‐
timate	
   trillions	
  of	
   such	
  options	
   given	
   the	
  30	
  
instructional	
  choice	
  dimensions	
  that	
  learning	
  
research	
  has	
  identified.	
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Table 1. List of principles for Instructional Design.  Principles address three different 

functions of instruction: A) Memory/Fluency, B) Induction/Refinement, and C) 

Understanding/Sensemaking 

    Principle Description 
1 Spacing principle Spaced practice > massed practice 
2 Scaffolding principle sequence instruction towards higher goals > no sequencing 
3 Exam Expectations principle students expect to be tested > no testing expected 
4 Testing principle Quizzing > no quizzing 

5 
Segmenting principle 

lesson presented in learner-paced segments >  as a continuous 
unit. 

A
. M

em
or

y/
Fl

ue
nc

y 

6 Feedback principle provide feedback during learning > no feedback provided 

7 Pre-Training principle 
students know main concepts prior to lesson > don't know main 
concepts 

8 Worked example principle Worked examples + problem solving > problem solving alone 
9 Concrete grounding principle grounded representations > abstract representations 

10 Guided attention principle words include cues about organization > no organization cues 
11 Linking principle integration of instructional components > no integration 
12 Goldilocks principle 

instruction at appropriate level > instruction that is too hard or 
too easy 

13 Activating Pre-Conceptions 
principle 

student's prior knowledge activated for lesson > no connection 
to prior knowledge 

14 Corrective feedback principle immediate feedback  on errors > delayed feedback 
15 Interleaving principle 

content spread out through lesson > blocked presentation of 
content 

16 Application principle practice applying new knowledge > no application 
17 Comparison principle comparing multiple instances > only one instance 

B
. I

nd
uc

tio
n/

R
ef

in
em

en
t 

18 Variability principle comparing varied instances > comparing similar instances 
19 Coherence principle extraneous words, pics, sounds excluded > included 
20 Redundancy Principle 

verbal descriptions presented in audio or  written > both 
together 

21 Temporal contiguity principle 
corresponding information presented close together in time > 
far apart 

22 Spatial contiguity principle 
corresponding information presented close together in space > 
far apart 

23 Multimedia principle Graphics + verbal descriptions > verbal descriptions alone 
24 Modality principle 

verbal descriptions presented in audio > written verbal 
descriptions 

25 Anchored learning principle real world problems > abstract problems 
26 Metacognition principle metacognition supported > no support for metacognition 
27 Explanation principle Prompt for self-explanation > no prompting 
28 Questioning principle time for reflection & questioning >  instruction alone 
29 Cognitive Dissonance principle 

considering incorrect/alt. perspectives as part of instruction >  
only correct instances 

C
. U

nd
er

st
an

di
ng

/S
en

se
m

ak
in

g 

30 Interest principle 
instruction that is relevant to the student>instruction that isn't 
relevant 
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Figure 1. Different choices along different instructional dimensions can be combined and produce a vast set of instructional options.  
The path with thicker arrows illustrates one set of choices for six dimensions of choice	
  among the 729 different paths that could be 
selected among the six three-valued instructional dimensions shown here. We estimate trillions of such options given the 30 
instructional choice dimensions that learning research has identified.    
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Supplementary Materials: 

 

Table S1. Sample dichotomous educational debates.  Italicized entries indicate the 

condition has experimental support.  

 

More 

instructional 

assistance 

More challenge 

during instruction 
Sources 

Massed practice Spaced practice See recommendation 1 in (15) for a review.  Some 

exemplary studies include (72-74).  Note that despite the 

overall evidence for spaced practice enhancing long-term 

retention, more massed practice is warranted early in 

learning of particular knowledge components (75). 
Study (recognition 

practice) 
Tests (retrieval 

practice) 
See recommendation 5 in (15). Some exemplary studies 

include (43, 76, 77).  Although the consensus of the 

literature on this so-called “testing effect” is in favor of 

testing (asking students to answer questions) over study 

(giving students example answers to questions), this 

dimension is essentially the same as the next one (21), but 

makes the opposing recommendation (i.e., substantial 

example study is beneficial). 
Examples to study Problems to solve See recommendation 2 in (15). Some exemplary studies 

include (32, 44, 45).  This dimension is essentially the 

same the testing effect above, but the consensus of the 

literature on the so-called “worked example effect” is in 

the opposite direction. A content-based resolution of this 

contradiction has been proposed (21). Note research 

indicating a “reversal” (all problem solving practice is 



better) for learners who have become to develop expertise 

(30). 
Direct instruction Discovery learning See (9) and (78).  But note, some researchers argue for 

discovery learning (79) or an intermediate level of 

“guided discovery” (80). 
Re-explain Prompt for self-

explanation 
See recommendation 7 in (15). Some exemplary studies 

include (81-83).  Note, however, indicating a 

disadvantage of self-explanation for grammar learning 

(17).  
Immediate 

feedback 
Delayed feedback Some researchers have produced credible experimental 

evidence for learning benefits of immediate feedback (11, 

84) whereas others have done the same for delayed 

feedback (12).    
Concrete materials Abstract materials Controversy exists with data supporting the use of 

concrete materials (13) vs. abstract materials (14) to 

promote transfer of learning.  See also (33, 85). 

 

 


