
Psychological Rcncv 
2ooO. Vol. 107. No. 2. 358-367 

THEORETICAL NOTES 

Copynghr 2ooO by IIK Amencan Rycblogical Assooatlm Inc 
0 0 3 3 - 2 9 5 ~ 5 . 0 0  Do1 lO.1037110033-295X.107 i 358 

d 

L 

How Persuasive Is a Good Fit? A Comment on Theory Testing 
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Quantitative theories with free parameters often gain credence when they closely fit data. This is a 
mistake. A good fit reveals nothing about the flexibility of the theory (how much it cannot fit), the 
variability of the data (how firmly the data rule out what the theory cannot fit), or the likelihood of other 
outcomes (perhaps the theory could have fit any plausible result), and a reader needs all 3 pieces of 
information to decide how much the fit should increase belief in the theory. The use of good fits as 
evidence is not supported by philosophers of science nor by the history of psychology; there seem to be 
no examples of a theory supported mainly by good fits that has led to demonstrable progress. A berrer 
way to test a theory with free parameters is to determine how the theory constrains possible outcomes 
(Le., what it predicts), assess how firmly actual outcomes agree with those constraints, and determine if 
plausible alternative outcomes would have been inconsistent with the theory, allowing for the variability 
of the data. 

Many quantitative psychological theories with free parameters 
are supported mainly or entirely by demonstrations that they can fit  
data-that the parameters can be adjusted so that the output of the 
theory resembles actual results. The similarity is often shown by a 
graph with two functions: one labeled observed (or data) and the 
other labeled preficted (or theory or simulated). That the theory 
fits data is suppobed to show that the theory should be taken 
seriously-should ue published, for example. 

This type of argument is common; judging from a search of 
Psychological .4bsrructs (1 887-1999), the research literature prob- 
ably contains thousands of examples. Early instances involved 
sensory processes (Hecht, 1931) and animal learning (Hull, 1943). 
but this reasoning is now used in many areas. Here are three 
examples. 

1. Cohen, Dunbar, and McClelland (1990) proposed a parallel 
distributed processing model to explain the Stroop effect and 
related data. The model was meant to embody a “continuous” view 
of automaticity. in  contrast to an “all-or-none” view (Cohen et al., 
1990, p. 332). The model contained many adjustable parameters, 
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including number of units per nodule, ratio of training frequen- 
cies, learning rate, maximum resporx time, initial input weights, 
indirect pathway strengths, cascad~. m e ,  iroise, magnitude of at- 
tentional influence (two parameters). and response-mechanism 
parameters (three). The model was fit to six data sets. Some 
parameters (e.g., number of units per module) were separately 
adjusted for each data set; other parameters were adjusted on the 
basis of one data set and were held constant for the rest. The 
function relating cycle time (modell to average reaction time 
(observed) was always linear, but its slope and intercept varied 
from one data set to the next. That the model could fit  several data 
sets led Cohen et al. to conclude that, compared with the all-or- 
none view, “a more useful approach is to consider automaticity in 
terms of a continuum” (p. 357), although they did not try to fit a 
model based on the all-or-none view. 

2. Zhuikov, Couvillon, and Bitterman (1994) presented a theory 
to explain avoidance conditioning in goldfish. It is a quantitative 
version of Mowrer’s (1947) two-process theory, in which some 
responses are generated by fear, some by reinforcement. When 
some simplifying assumptions are made. the theory has three 
equations and six adjustable parameters. Zhuikov et al. fitted the 
theory to data from four experiments and concluded that “the good 
fit suggests that the theory is worth developing further” (p. 32). 

3. Rodgers and Rowe (1993) proposed a theory that explains 
how teenagers come to engage in various sexual behaviors for the 
first time. It emphasizes contact with other teenagers-a ‘‘conia- 
gion” (Rodgers & Rowe, 1993. p. 479) explanation. The theory has 
eight equations with 12 free parameters. Rodgers and Rowe fitted 
the theory to survey data about the prevalence of kissing, petting, 
and intercourse in boys and girls of different ages and races and 
concluded that the theory “appears to have successfully captured 
many of the patterns in two empirical data sets” (p. 505). This 
success was the main support for the theory. 
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Why the Use of Good Fits as Evidence Is Wrong 

This type of argument has three serious problems. First, what 
the theor) predicts-how much it constrains the fitted data-is 
unclear. Theorists who use good fits as evidence seem to reason as 
follows: If our theory is correct, it will be able to fit  the data; our 
theory tits the data; therefore it is more likely that our theory is 
correct. However, if a theory does not constrain possible outcomes, 
the fit is meaningless. 

A prediction is a statement of what a theory does and does not 
allow. When a theory has adjustable parameters, a particular fit is 
only one example of what it allows. To know what a theory 
predicts for a particular measurement, one needs to know all of 
what it  allows (what else it  can fit)  and all of what it does not allow 
(what it cannot fit). For example. suppose two measures are 
positively correlated, and it is shown that a certain theory can 
produce such a relation-that is. can fit  the data. This does not 
show that the theory predicts the correlation. A theory predicts 
such a relation only if it cannot fit other possible relations between 
the two measures (zero correlation or negative correlation), and 
this is not shown by fitting a positive correlation. 

When a theory does constrain possible outcomes, it is necessary 
to know by how much. The more constraint-the narrower the 
prediction-the more impressive a confirmation of the constraint 
(e.g., Meehl. 1997). Without knowing how much a theory con- 
strains possible outcomes, you cannot know how impressed to be 
when observation and theory are consistent. 

Second, zhe variability of the data (e.g., between-subject vari- 
ation) is unclear. How firmly do the data agree with the predictions 
,f the theory? Are they compatible with the outcomes that the 

Ltheory rules out? The more conclusively the data rule out what the 
theory rules out, the more impressive the confirmation. For exam- 
ple, suppose a theory predicts that a certain measure should be 
greater than zero. If the measure is greater than zero, the shorter 
the confidence interval, the more impressive the confmation. 
That a theory fits data does not show how firmly the data rule out 
outcomes inconsistent with the theory; without this information, 
you cannot know how impressed to be that theory and observation 
are consistent. 

Adding error bars may not solve this problem; it is variability on 
the constrained dimension or dimensions that matters. For exam- 
ple, suppose a theory predicts that several points will lie on a 
straight line. To judge the accuracy of this prediction, the reader 
needs to know the variability of a measure of curvature (or some 
other measure of nonlinearity). Adding vertical error bars to each 
point is a poor substitute (unless the answer, linear or nonlinear, is 
very clear); the vertical position of the points is not what the theory 
predicts. 

To further illustrate these points, Figure 1 shows four ways a 
“two-dimensional” prediction-a constraint involving two mea- 
sures at once-can be compatible with data. Measures A and B in 
Figure 1 are both derived from measurements of behavior. Either 
might be quite simple (e.g., trials to criterion) or relatively com- 
plex (the quadratic component of a fitted function); it does not 
matter. The axis of each measure covers the entire range of 
plausible values of the measure before the experiment is done (e.g., 
from 0 to 1, if the measure is a probability). The dotted area shows 

L . h e  predictions of the theory, the range of outcomes that are 
consistent with the theory. In the two upper panels of Figure 1, the 

Strong Support 

Consistent 
m m  Theory 

Measure A 

Figure 1. Four possible relationships between theory and data. Measures 
A and B are measures of behavior. For both measures, the axes cover the 
whole range of plausible values. The dotted areas indicate the range of 
outcomes that would be consistent with the theory. The error bars indicate 
standard errors. In every case, the theory can closely f i t  the data, but only 
when both theory and data provide substantial constraints does this provide 
significant evidence for the theory. 

theory tightly constrains possible outcome5; in the two lower 
panels, it does not. In each case, there is one data point. In the two 
left-hand panels, the observations tightly constrain the population 
value; in the two right-hand panels, they do not. In every case, the 
data are consistent with the theory (the data point is in the dotted 
area), which means that, in every case, the theory can closely fit  
the data. But only the situation in the upper left panel provides 
substantial evidence for the theory. 

Thud, the a priori likelihood that the thcciry will fit-the like- 
lihood that it will fit whether or not it is true -is ignored. Perhaps 
the theory could fit any plausible result. It is well-known that a 
theory gains more support from the correct prediction of an un- 
likely event than from the correct prediction of something that was 
expected anyway. Lakatos (1978) made this point vividly: “It is no 
success for Newtonian theory that stones, when dropped, fall 
towards the earth, no matter how often this is repeated. . . . What 
really count are [the confirmation of] dramatic, unexpected, stun- 
ning predictions” (p. 6), such as the return of Halley’s comet. “All 
the research programmes [Le., theories] I admire have one char- 
acteristic in common. They all predict novel facts, facts which had 
been either undreamt of, or have indeed been contradicted [Le., 
predicted to not occur] by previous or rival programmes” (Lakatos, 
1978, p. 5). 

Bayes’s theorem, interpreted as a statement about degrees of 
belief, is a quantitative version of this idea Bayes’s theorem is 
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where H (hypothesis) is a theory and E (event) is a particular 
outcome (Howson & Urbach, 1993, p. 28). P(H) is the plausibility 
of H before data collection, P(E) is the perceived likelihood of P 
before data collection, P(E/H) is the likelihood of E given that H 
is true, and P(HIE) is the plausibility of H after data collection- 
after E has been observed. When E is a prediction of H, 
P(E1H) = I .  Thus, according to this theorem, when P(E) is large- 
close to I-observation of E will have little effect on belief in H. 
“Strong inference” experiments (Platt, 1964), in which different 
theories make contradictory predictions, are a practical application 
of this idea. They embody the notion that the best evidence for a 
theory is evidence that would be otherwise unlikely. For more 
discussion of the importance of the a priori likelihood of a predic- 
tion, see Howson and Urbach (1993, especially pp. 123-126). 

This principle-predictions should be surprising-is relevant to 
psychology because psychological data are often not surprising. 
Therefore prediction of such data cannot provide much support for 
any theory. Quantitative theories are usually fit to functions: a 
measure of behavior (y) recorded at several values of a procedural 
variable (x ) ,  for example, probability of correct recall as a function 
of retention interval. It is never plausible that the points on the 
function are independent of each other, in the sense that knowing 
the y values of some of the points does not help you predict the y 
values of the rest of the points. And the lack of independence is not 
trivial; inevitably the plausible outcomes are a tiny fraction of the 
possible outcomes. 

The need to make predictions that are at least a little implausible 
seems to have been overlooked by quantitative theorists. When a 
theory with three free parameters is used to fit  a function with 20 
data points, 20 (x, y) pairs, it is obvious that the theory must 
somehow constrain the function; it could not fit all possible func- 
tions with 20 points (keeping the x values fixed but allowing the y 
values to vary). Plainly, some results would contradict the theory. 
This seems to have been the sort of reasoning, either implicit or 
explicit, that has convinced theorists and reviewers that the data 
provide a test of the theory. But whether any plausible results 
would contradict the theory is not so clear. 

An especially simple example of the problem involves asymp- 
totic behavior. Suppose a learning experiment measured percent 
correct as a function of trial number. Performance improved for 
several trials but eventually-say, after 15 trials-leveled off at a 
value less than 100% correct-say. 93%. To fit this data, a theory 
will presumably need a parameter that somehow corresponds to 
the asymptotic level of performance ( 9 3 8  correct) and a parameter 
that corresponds to when this level is reached (after 15 trials). It 
needs these two adjustable parameters because both aspects of the 
data, 15 trials and 93% correct. surely depend on procedural 
details. Yet once these two parameters are properly set the theory 
will accurately predict performance at an unlimited number of trial 
numbers: It will predict 93% correct on Trial 16. on Trial 17, and 
so forth. If the experiment measured asymptotic performance 
for 50 trials (Trials 16-65), a theory-any theory-could quite 
accurately predict 50 data points with only two free parameters. 
Yet this success would add nothing to the theory‘s credibility. 

A defender of the use of good fits as evidence might reply that 
fits are often judged by the percentage of variance explained, a 
measure that fitting the same data value (e.g., 93%) many times 
does not increase very much. However, the problem does not go 
away when the fitted data vary. The functions used to assess 

psychological theories are almost always “smooth,” in the sense 
that if you know, for example, the extreme y values and alternate 
interniediate values (e.g., if x = 1, 2. . . . , 9, the values of y for 
x = 1, 3,5, 7, and 9). you can quite closely estimate the remaining 
values of y by linear interpolation. This means that any theory that 
does a good job of fitting about half of the data will do a good job 
of fitting the other half, regardless of the theory’s correctness. 
Suppose, for example, the function consists of nine points at x = 1, 
2 , .  . . , 9. A theory with five orthogonal parameters is fit to the 
data for x = 1, 3, 5, 7, and 9, which it will fit perfectly. (The n 
parameters of a formula or theory are orthogonal if the function 
can fit exactly n data points. For example, a + bx has two 
orthogonal parameters, but ar + bx does not.) Then the fitted 
parameters are used to predict the values of y for x = 2,4 ,6 ,  and 8. 
The theory-any plausible theory-will do a very good job. Al- 
though it is standard practice to say there were four degrees of 
freedom with which to test the theory, this is misleading; the 
goodness of fit was inevitable and therefore provides no support 
for the theory. The smoothness of almost any psychological func- 
tion seems inevitable (i.e., is very plausible before measurement) 
because of both previous data (the number of smooth functions in 
that area of research is large and the number of jagged functions is 
zero or near zero) and extant theories (which predict smooth 
functions). If jagged functions began to be observed, or if plausible 
theories predicted jagged functions, then-and only then-would 
the prediction that a function will be smooth be interesting. 

But the heart of the problem is not using constant functions or 
smooth functions to test theories; it is using functions that have 
simple shapes. Most functions measured by psychologists, and 
most functions to which quantitative theories are fitted, are con- 
cave up, concave down, or indeterminate between the two (i.e., 
close to linear). For example, learning curves (performance as a 
function of number of training trials) and retention functions 
(memory as a function of time since learning) usually fit this 
description. With typical amounts of data, we suspect that several 
equations with three orthogonal parameters, such as a quadratic 
equation, will fi t  reasonably well. The residuals may appear sys- 
tematic, but the remaining structure (the structure in the residuals 
after the three-parameter fi t  is removed) will probably be impos- 
sible to detect reliably. The number of psychological research 
reports that have found a reliable cubic component, or reliable 
structure in the residuals after a three-parameter fit is removed, is 
very low (leaving aside psychophysical experiments and steady- 
state animal experiments). For indications of the typical precision 
of retention functions, see Rubin and Wenzel (1996) and Rubin, 
Hinton. and Wenzel ( 19991. 

The practical effect of these considerations is that such functions 
can usually provide only a little guidance in choosing a theory, 
regardless of how many points they contain. The “first-degree” 
structure (overall level) i s  uninteresting; the sign of the “second- 
degree” structure (slope) is usually obvious (e.g., memory decays 
with time, performance improves with practice), and its size is 
uninteresting (because it presumably depends on procedural details 
not covered by theory): and the “fourth-degree” and higher struc- 
tures cannot be made out. That leaves the “third-degree“ structure 
(curvature) as a source of guidance. If the data were remarkably 
close to linear on some scale (the original y or x scales or some 
transformation, such as logarithmic, of either or both). that would 
be quite useful because most two-parameter theories would fail to 
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predict it (they would produce only curved functions on that scale), 
’ut that is rare. If the data were convincingly concave up (say), and 

+his is not due to floor or ceiling effects, the best one can do is 
determine what sort of theories do not predict this, that is, what this 
finding rules out; perhaps i t  will cut the number of plausible 
candidate theories in half. That is progress, of course, but it cannot 
strongly favor any one theory. (The difficulty of extracting much 
information from the usual functions suggests that theorists should 
also look for predictions that relate two measures of behavior, as 
in Figure 2. presented later in this article.) 

It matters that the plausible outcomes are a small fraction of the 
possible outcomes, because the plausible theories are crowded into 
the same small space. in the sense that they can predict the 
plausible outcomes and no others (e.g., they can predict only 
smooth functions). In the early days of chemistry, it was repeatedly 
determined that when hydrogen gas and oxygen gas combined to 
form water, the volume of oxygen used up was very close to half 
the volume of the hydrogen used up (Ihde, 1964). After several 
repetitions of this result, it became the only plausible, in the sense 
of unsurpn’sing, outcome of those measurements. However, the 
predictions of plausible theories of the composition of water (HO? 
HO,? H,O?) remained scattered, that is, predicted a wide range of 
combining ratios. This is why the actual ratio could be used to 
choose between them. In contrast, the psychological results we 
have been discussing-behavior at asymptote, smooth functions, 
and functions with simple shapes-are both (a) likely on the basis 
of experience and (b) easily explained. When performance reaches 
asymptote and stays there (Le., no sudden drops), we are not only 
not surprised but also not puzzled. It is easy to think of a theory of 

,~ : y i n g  that predicts that after performance reaches asymptote it 
will stay there; indeed, it is hard to think of a theory that predicts 
anything else. When a function turns out to be smooth, it is not 
only unsurprising but unmysterious; it is hard to think of a theory 
that would not produce a smooth function. Likewise for functions 
with simple shapes: At the level of precision to which they are 
measured in most experiments, these results not only are unsur- 
prising but could be produced by many different plausible theories. 

Clearly, then, showing that a theory fits data is not enough. By 
itself, it is nearly meaningless. Because of the flexibility of many 
theories, the variability of measurements, and the simplicity of 
most psychological data functions, it is often quite possible that the 
theory could fit any plausible outcome to within the precision of 
the data. The reader has no way of knowing which panel of 
Figure 1 the evidence resembles. 

Similar Criticisms 

Criticisms of the use of good fits as evidence have been made by 
others, usually in the context of specific models (Coltheart & 
Coltheart, 1972; Hintzman, 1991; Johnston, van Santen, & Hale, 
1985; Massaro, 1988; Roberts & Sternberg, 1993; Roediger & 
Neely, 1982; Wexler, 1978). When discussing specific models, 
these critics have often shown, or pointed out, not only that this 
sort of evidence may be misleading-as we argue-but that it has 
been misleading. These demonstrations fall into three categories. 

I. A theory “jits too much ”-it can generate such a wide range 
3f outcomes that the fact that it can generate the actual results 
leans little. For example, Massaro (1988) showed that “a single 

connectionist model can simulate results that imply [i.e., were 

generated by] mutually exclusive psychological processes” (p. 
219). Wexler (1978). reviewing J. R. Anderson’s (1976) ACT 
theory, noted that “ACT can model not only the Sternberg result, 
but also its opposite, or anything else of the sort” (p. 338). This 
flexibility makes the theory “so weak that there is no way to find 
evidence either for or against it” (Wexler, 1978, p. 346). 

2. The same data can be closelyfir by a similarlyflexible theor?; 
making quite different assumptions. This means, of course, that the 
fits do not meaningfully support the assumptions of the theory. For 
example, Salasoo, Shiffrin, and Feustel (1985) found that a model 
with 14 free parameters could f i t  a variety of word-recognition 
data. Johnston et al. (1985), using Salasoo et al.’s data, showed that 
‘‘a large family of rather different models” (p. 507) with roughly 
the same number of free parameters could also fit the 
data. Johnston et al. concluded, “Because our models fit the data 
[equally well] assuming only one higher level memory represen- 
tation, there is no support for the assumption [of Salasoo et al.’s 
model] that two kinds of memories-episodic and permanent- 
underlie the effects of repetition on identification” (p. 507). 

3. Although a theory closelyjts  the data, at least one of its 
assumptions is wrong. For example, as pointed out by Coltheart 
and Coltheart (1972). the concept-learning model of Bower and 
Trabasso (1 964) “achieved extraordinary correspondences be- 
tween predicted and obtained results’’ (p. 294), yet one of the 
assumptions of the model (independence of path) turned out to be 
wrong (Trabasso & Bower, 1%6). In addition, Coltheart and 
Coltheart pointed out that four assumptions of Rumelhart’s (1970) 
model of tachistoscopic recognition were incompatible with ex- 
perimental evidence, yet the model quite closely fitted the data. 
Like us, Coltheart and Coltheart concluded that “it is poor strategy 
to evaluate a mathematical theory only by assessing how well” (p. 
294) it can fit  data. According to Hintzman (1991), Bower’s 
(1961) model of paired-associates learning fitted numerous data 
sets with “incredible precision” (p. 50). although its central as- 
sumption was evidently quite wrong. 

Although each critique (with the exception of Coltheart & 
Coltheart, 1972) focused on a particular theory, the diversity of the 
theories raises the possibility that the fundamental problem is not 
with any one theory or class of theories (e.g., connectionist theo- 
ries are too flexible) but something broader. We suggest that the 
fundamental problem, as Coltheart and Coltheart argued, is a 
method of theory evaluation (fitting theories to data) so inadequate 
that serious flaws go undetected. 

In the fields of statistics and computer science, a problem related 
to what we criticize here, called overjitting, has been familiar for 
many years (e.g., Anscombe, 1967; Leahy, 1994; Schaffer, 1993). 
The possibility of overfitting arises when a model that does a good 
job of fitting data performs poorly in other ways. For instance, a 
neural network program trained to classify fruit using one sample 
eventually achieved 90% accuracy but did much worse with a 
second sample from the same population (Donlin & Child, 1992). 
Overfitting occurs when the model is too flexible. Such experi- 
ences have taught statisticians and computer scientists that models 
should not be judged only by how well they fit a data set; there also 
must be assessment of, and penalty for, flexibility (e.g., C. M. 
Hurvich, 1997). 

Although the arguments against the use of good fits as evidence 
strike us as overwhelming, we nevertheless try to present the other 
side-arguments in favor of the practice. In what follows, we 
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consider several ways in which the use of good fits as evidence 
might conceivably be justified-by the philosophy of science, the 
history of psychology, and arguments that the practice is accept- 
able when certain conditions are met. 

Does the Philosophy of Science Support the Use of 
Good Fits as Evidence? 

Can the use of good fits to support theories be justified by some 
well-accepted doctrine in the philosophy of science? Philosophers 
of science do not seem to have considered this particular practice, 
but of course much has been written about the general question of 
how to test theories, with considerable consensus (Howson & 
Urbach, 1989; Kitcher, 1993). Suppose we have a theory that we 
want to test. According to this consensus, there are essentially two 
ways to do this. 

First, we can test a prediction of the theory. that is, make an 
observation that might yield results that would contradict the 
theory. Karl Popper, probably the most influential philosopher of 
science (Bondi, 1992), advocated “falsifiability” as the essential 
feature of scientific inquiry. According to Popper (1959). a theory 
must specify some possible observations that could falsify it, and 
a theory is supported by observations only if the observations 
might have had outcomes inconsistent with the theory. 

Second, if there are competing (incompatible) explanations of 
the facts that our theory explains, we can test a prediction of a 
competing theory. In many cases, alternative theories are incom- 
patible; that is, if one theory (To) is correct, other explanations (T,, 
T,, etc.) of the same facts must be wrong. In these cases, elimi- 
nation of alternatives supports T,. This approach was first sketched 
by Bacon (1620/1960; Urbach, 1987). 

If alternative theories exist and make differing predictions (e.g., 
one theory says a certain measurement should be zero, whereas 
another theory says it should be positive), we can combine the two 
approaches and test a prediction of the theory and a prediction of 
a competing theory ut the same time. When the two predictions are 
incompatible (nonoverlapping), this is what Platt (1964) called 
strong inference. (EfJicient inference may have been a better name. 
The results will not be decisive-“strong”-- unless several other 
conditions are met.) 

When it is claimed that a good fit supports a theory, what sort 
of test is this? Nothing is said about competing theories, eliminat- 
ing the second method. Perhaps theorists who support theories 
with good fits to data believe that they have tested a prediction of 
the theory (the prediction that the theory will fit the data), a 
Popperian test. But they have not shown that, given the precision 
of the data, there were any plausible outcomes that the theory 
could not have fit. 

Thus we did not find any support within the philosophy of 
science for the use of good fits to support theories. 

Does the History of Psychology Support the Use of 
Good Fits as Evidence? 

The use of close tits as evidence might be justified by showing 
that it has “worked-led to demonstrable progress. We searched 
the history of psychology for theories originally supported mainly 
or entirely by good fits to data that eventually found support from 
other sources (e.g., tests of specific assumptions, confirmation of 

new predictions). We were unable to find even one example. 
Although several reviewers of this article disagreed with OUT 

conclusions, they did not provide examples of such a theory. 
An early example of the use of close fits by themselves to 

support a theory is Hecht’s (1931) theory of color vision-a theory 
that is almost completely forgotten nowadays. In contrast, Her- 
ing’s (1878/1964) theory of color vision, based on quite different 
data, is still important (L. M. Hurvich, 1981). Another early 
example of the practice is Principles of Behavior (Hull, 1943), . 
which may have been cited more often than any other work in the 
experimental psychology literature of the 1940s and 1950s. In spite 
of numerous excellent fits, it seems fair to say that none of Hull’s 
theoretical ideas supported by fitted curves are still influential. 
Mackintosh (1983), for instance, referred to the “legacy” (p. 2) of 
Thorndike, Pavlov, Konorski, and Tolman, but not Hull. 

Later quantitative learning theories were much simpler than 
Hull’s (1943) but still relied on good fits for support. In what 
Jenkins (1979) called a “ground-breaking paper” (p. 206), Estes 
(1950) used the following equation, derived from a theory of 
learning, for the mean latency to fit some runway learning data, 
with L indicating the latency to leave the start box and T the trial 
number: 

The parameters 2.5, .9648, and -.12 were of course estimated 
from the data. According to Estes, the fit was “satisfactory” (p. 
101). Satisfactory or nof a reader could not know what to make of 
this evidence. The variability of the data was not shown, so it was 
unclear if the deviations were reliable. Nor was it clear whether 
any plausible results could have contradicted the theory. Although 
many theorists seemed to have been impressed at the time-as 
Jenkins said, Estes’s work led to many similar theories-later 
theorists were less impressed. A look at any recent text on animal 
learning suggests that the mathematical learning theorists of the 
1950s and 1960s, in spite of many successful tits, discovered 
nothing that formed the basis for current theories of learning. 

The use of good fits as evidence probably received a boost from 
the advent of cheap and powerful computers, which made it much 
easier to search a large parameter space for the best fit. Connec- 
tionist theorizing, in particular, took advantage of the new flexi- 
bility in model building that seemed to be available. An influential 
early article in this area (J. A. Anderson, 1973) proposed an 
explanation for some reaction time results with short memorized 
lists. Empirical support for the theory consisted almost entirely of 
demonstrations that it could fit  a variety of data. The fits involved 
five to eight free parameters. which changed from one data set to 
the next. It was unclear what the theory predicted, that is, what it 
could not tit: because the constraints were unclear, variability on 
the constrained dimensions was also unclear. Because the number 
of data points was much larger than the number of free parameters, 
the theory surely ruled out many possible outcomes, but whether it 
ruled out any plausible outcomes was not clear. 

An example of later research along these lines is Seidenberg and 
McClelland’s (1989) theory of visual word recognition and pro- 
nunciation. Their goal was a connectionist model “that exhibited 
many of the basic phenomena of word recognition and naming” 
(Seidenberg & McClelland, 1989, p. 529). The evidence for the 



THEORETICAL NOTES 363 

nodel consisted of numerous graphs that showed a close fit  
etween two measures: reaction time (observed in experiments) 

Land squared error (produced by the model). What the model could 
not fit was unclear. 

In Hinton and Anderson (1981) and Rumelhart, McClelland, 
and the PDP Research Group (1986), the first influential h k s  on 
connectionism. the issue of hou to test such flexible theories 
received almost no attention. In spite of the popularity of connec- 
tionist models. and numerous good fits. we have yet to encounter 
even one such model whose predictions have been determined, 
much less verified or shown to rule out plausible results. Massaro 
(1988) made similar points. Without accurate predictions in cases 
in which the prediction could have plausibly been wrong, the claim 
that connectionist theories have helped us understand the brain 
seems to rest entirely on belief in the assumptions of these theories. 

So we did not find any support in the history of psychology for 
the use of good fits to support theories. 

Defenses of the Use of Good Fits as Evidence 

Many psychologists, we suspect, realize that not a l l  good fits 
provide substantial support for a theory. Yet they believe that their 
example is sound because it satisfies certain conditions. Although 
the use of good fits as evidence may in general be flawed, they 
believe that in certain restricted situations it is helpful. Here we 
consider the arguments along these lines that we have encountered 
most frequently. 

Defense I :  A goodfit is impressive when there are more obser- 
vations in the data set than free parameters in the model. “A 

b t a n d a r d  rule of thumb states that a model has too many [free] 
parameters to be testable if and only if it has at least as many 
parameters as empirically observable quantities” (Bamber & Van 
Santen, 1985, p. 443). For example, if a model has five free 
parameters and there are 20 data points, there supposedly are 15 
degrees of freedom for assessing the fit. 

It is a generous rule of thumb. In fact, the number of free 
parameters in a theory provides an upper bound on its flexibility. 
If a theory has five orthogonal free parameters, then it will be able 
to fit exactly any five data points; if the parameters are not 
orthogonal, however, the number of data points the theory can fit 
exactly is less (as in the example given earlier, ax + bx, which has 
two parameters, a and b, but cannot fit any two data points). The 
more serious distortion, however, is the idea that the number of 
data points indicates the range of possible outcomes-that if there 
are I O  data points, the possible outcomes could have plausibly 
been anywhere in a 10-dimensional space. As we argued above, 
this is usually a great overstatement. A more realistic view is that 
most functions provide only one useful piece of information for 
testing theories: whether the function is concave up, nearly linear, 
or concave down (when the data are scaled so that all three 
possibilities are plausible). 

Defense 2; M y  model fits better than another model. Theorists 
often compare the fits produced by different models and assume 
that the best fitting one deserves belief because it has won a kind 
of competition (e.g., Ashby & Lee, 1991; Atkinson & Crothers, 
1964; Bush & Mosteller, 1959; Nosofsky, Kruschke, & McKinley, 
‘992). There are several problems with this approach. First, the 

L o e s t  fitting model may merely be the most flexible model rather 
than the best model (Collyer, 1985)--a lesson that statisticians and 

computer scientists learned long ago, as discussed above. To 
equate the flexibility of the theories being compared, psychologists 
sometimes adjust goodness-of-fit statistics according to a general 
formula (Akaike, 1974; Takane & Shibayarna, 1992). Unfortu- 
nately, this method is inadequate because the flexibility added by 
a free parameter depends on the details of the theory (cf. nr + bx 
with ax + b; both have two parameters, but the latter is more 
flexible). The only accurate way to “allow” for the flexibility of a 
theory, as far as we know, is to determine what the theory predicts. 
Second, assuming the best fitting model is best takes no account of 
the variability of the data. Suppose, for example, that Theory X 
predicts that a certain measurement should be 5 whereas Theory Y 
predicts that it should be 7. If the actual result is 5.5 2 10, Theory 
X will fit better, yet there is no good reason to prefer it. 

Fitting several plausible models to learn if any can be ruled out 
makes sense, especially when combined with an effort to find 
features of the data that are hard to fit. But this is not what is 
usually done. For example, Rodgers and Rowe (1993), in their 
study of teenagers’ sexual behavior, fitted two different models 
making somewhat different assumptions. Although “both models 
were consistent with the data according to chi-square tests” (p. 
495). Rodgers and Rowe favored one of them. 

Comparing the fit of several theories should not be confused 
with comparing their predictions, which is always worthwhile. In 
these fit-comparison situations, the predictions-that is, the con- 
straints-of the various theories are not even determined, much 
less compared, at least in the examples we have seen. 

Defense 3: The research and editorial processes protect readers 
from too flexible models. During the theory-building process, the 
argument goes, many models are rejected because they cannot fit 
the data. When the theorist finally finds a model that CUR fit the 
data, he or she hurries to publish it and does not describe in the 
publication all the failures. A problem with this argument is that a 
reader has no way of knowing if it is true; nor can the reader be 
sure that the published theory is no more flexible than the rejected 
theories. A similar argument is that reviewers can supposedly tell 
when a model is too flexible. Again, a reader has no way of 
knowing if this is true. The plausibility of contradictory outcomes, 
outcomes that the theory cannot fit, is crucial information that 
should be made explicit. 

Better Ways to Judge Theories With Free Parameters 

The problems described earlier have straightforward solutions. 
Problem 1: What the theory predicts is unclear. Solution: De- 

termine the predictions. To determine the predictions of a theory 
with free parameters requires varying each free parameter over its 
entire range, in all possible combinations (i.e., surveying the entire 
parameter space). For each combination of parameters (each point 
in the parameter space), the theory generates simulated behavior. 
The prediction of the theory, for any measure (any function of the 

theory can produce (Stemberg, 1963, pp. 89-90). For example, 
suppose a theory has two free parameters: a. which can range 
from 0 to 10, and b, which can range from 0 to 1. To determine 
what the theory predicts for, say, trials to criterion, one would vary 
both a and b over their entire ranges, in all possible combinations 
(i.e., over the whole two-dimensional parameter space), and de- 
termine the predicted trials to criterion for each combination of 

observations, real or Simulated), is the range of outcomes that the 
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parameter values (i.e.. for each point in the parameter space). The 
prediction of the theory for this dimension of data would be the 
entire range of trials to criterion that the theory could produce. 
Using intuition, experience, and trial and error, the theorist must 
search among the many predictions of a theory to find those 
narrow enough to plausibly be falsified. 

Problem 2: The variability of the data is unclear. Solution: 
Show the variability of the data. As discussed above, it is vari- 
ability on the constrained dimensions that is important. This means 
that Problem 1 (unclear predictions) must be solved first. 

Solutions to Problems 1 and 2 are illustrated by Roberts and 
Stemberg (1993), who tested Ashby’s (1982) version of McClel- 
land’s (1979) cascade model. The tested version of Ashby’s model 
had two free parameters: the time constants of two processes. 
Roberts and Sternberg varied those parameters over all plausible 
values they could have in a 2 X 2 experiment. Examination of 
simulated results covering the entire parameter space showed that 
a certain measure derived from reaction times (a main effect 
difference staristic) was constrained by the model and that this 
constraint varied with a second measure (a variance-change sra- 
risric). Both statistics vaguely resemble measures of interaction. 
Figure 2, from Roberts and Stemberg, shows this prediction and 
some data. Each small point represents the results of a simulated 
2 X 2 experiment; the area filled by these points is the prediction 
of the theory. The large points, with standard error bars based on 
between-subjects variation, represent data. Some of the points fall 
within the predicted area but none f d y ,  and several points fall 
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f d y  outside the predicted area, which is inconsistent with the 
model. Thus, the model fails the test. 

Problem 3: Perhaps the theory could f i t  any plausible r e d .  
Solution: Show that there are plausible results the theory cannot fit. 
It is not enough to show that there are some results the theory 
cannot fit. To meaningfully constrain the data, there must be some 
plausible results the theory cannot fit. 

Suppose we were to test a theory and discover that it accurately 
predicts the results, that is, theory and data are consistent. Which 
quadrant of Figure 1 does the evidence resemble? To find out, we 
would need to determine the range of plausible alternative re- 
sults-predictions different from the prediction of the theory being 
tested. How we decide what is plausible is a big subject (e.g., 
Hogarth, 1980). but everyone agrees that both theory (beliefs about 
how the world works) and data (actual observations) are important, 
that we use both to judge the likelihood of future events. For 
example, Lakatos (1978). in the statement quoted earlier, men- 
tioned both. It is important, he said, that predictions be surpris- 
ing-that they differ from “stones falling to earth when dropped” 
(expectations based on experience) or from expectations based on 
“rival programmes” (predictions of other theories). 

Determining what other theories predict needs no explanation. 
However, the idea of determining what experience (unexplained 
by any theory) predicts may be unfamiliar. Earlier measurements 
similar to the current measurement may have generated a range of 
outcomes, which would suggest that the current measurement 
could have a similar range. Or earlier measurements may have 
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Figure 2. A prediction of a version of Ashby’s (1982) cascade model and some data. Each of the many small 
points is derived from the results of a simulated 2 X 2 experiment. The large points, with standard e m r  bars, 
are from actual experiments. From “The Meaning of Additive Reaction-Time Effects: Tests of Three Alterna- 
tives,” by S. Roberts and S. Sternberg, 1993, in D. E. Meyer and S. Kornblum (Eds.). Anention and Performance 
XN: Synergies in Experimental Psychology. Artificial Intelligence, and Cognitive Neuroscience-A Silver 
Jubilee (p. 641). Cambridge, MA: MlT Press. Copyright 1993 by MIT Press. Adapted with permission. 
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suggested empirical generalizations that predict a specific value or 
ange of values in the current case. 

The range of plausible outcomes is the union of the predictions 
based on other plausible theories and expectations based on other 
data. For example, if other theories suggest the measurement might 
be 10 to 30, and other data suggest it might be 20 to 50, the 
plausible range is 10 to 50. For the observed consistency of theory 
and data to be meaningful, it is necessary only that some of this 
range falls outside of what the tested theory predicts. Of course, 
the more of this range that the tested theory cannot explain, the 
more impressive the observed consistency. Because pointing out 
plausible alternatives is rare, many theorists may not have realized 
that doing so would strengthen the case for the theory they favor. 

To compare plausible alternative outcomes with what the tested 
theory could explain, it is necessary to combine (a) the flexibility 
of the tested theory and (b) the variability of the actual results. As 
Figure 1 illustrates, the evidence will not be convincing if either is 
large compared with the range of plausible outcomes. 

In practice, this comparison requires four steps. First, determine 
whar the rheory of interest predicts. For example, suppose it 
predicts that the measurement will be between 40 and 50. Second, 
determine the 95% Confidence interval based on rhe data. Suppose 
the confidence interval is the average 2 10. Third, widen the 
prediction interval appropriately. In the example, the widened 
interval is 30 (40 - 10) to 60 (50 + 10). The new interval (30 to 
60) is the range of results (i.e., averages) consistent with the 
theory, given the variability of the data. Unlike familiar intervals, 
the actual result will probably not be in the middle of the interval. 
co:ourth, compare actual and plausible results with the widened 

u t e r v a l .  The results should increase belief in the theory only if the 
actual result is within the widened interval and at least one plau- 
sible alternative result is outside the widened interval. 

Figure 3 shows two examples. The solid line shows what the 
theory predicts; the dotted lines extend the prediction to allow for 
the variability of the data. In both cases, the tested theory could 
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Figure 3. How the plausibility of other results affects the interpretation of 
e observed results. The solid lines indicate the prediction of the tested 

Ldleory .  The dotted lines. which are based on the variability of the data, 
indicate 95% confidence intervals. 

closely fit the result, but only the left-hand pattern of results should 
increase belief in the theory. 

Sternberg’s (1966) memory-scanning data allow a simple real- 
life illustration. In the varied-set procedure, the participant saw a 
list of one to six digits. After a brief delay, the participant saw a 
test digit and indicated as quickly as possible whether it was on the 
list. The measure of interest was the reaction time to respond “yes” 
or “no.” Mean reaction time increased with list length. An inter- 
esting theoretical question is whether the results support a theory 
of serial memory scanning, a simple version of which implies that 
the increase should be linear with list length. 

All possible outcomes were not equally plausible, of course. On 
the basis of previous results, it was quite likely, before the exper- 
iment was done, that reaction time would change monotonically 
with list length-for example, that the reaction time for a list 
length of two would be between the reaction time for a list length 
of one and the reaction time for a list length of three (within 
experimental error). This restriction should be taken into account 
when one is deciding how impressed to be with observed linear- 
ity-or, more precisely, a failure to reject the hypothesis of lin- 
earity-because a large fraction of the results that would have 
rejected that hypothesis were implausible. To not take this into 
account would give the hypothesis of linearity an undeserved 
boost. 

A realistic assessment of the evidence for linearity thus requires 
a plausible alternative prediction (or range of predictions). One 
alternative is provided by the empirical generalization that reaction 
time is linear with the logarithm of the number of stimulus- 
response combinations (Hick, 1952; Hyrnan, 1953). Considering 
each stimulus-response combination as one item (or two items) to 
be remembered suggests the empirical generalization that reaction 
time is linear with the logarithm of the number of items to be 
remembered. This generalization might be wrong, of course, but 
before Stemberg (1966) collected his data, it was plausible and 
therefore could be used to generate plausible outcomes. In Stern- 
berg’s experiment-assuming that each digit to be remembered is 
an item-it implies that reaction time would be linear with the 
logarithm of list length (the number of digits to be remembered). 
Certain theories also suggest this relation (Sternberg, 1966). 

When at least one plausible alternative to linearity has been 
identified, it becomes possible to assess how much results consis- 
tent with linearity support a theory that predicts linearity. One way 
to test the prediction of linearity is to use the reaction times with 
lists of lengths one and six to predict by interpolation the average 
reaction time with lists of lengths three and four. The logarithmic 
prediction can be tested in a similar way. Figure 4 shows the 
results of this analysis. The results agree with the linear prediction 
but reliably differ from the logarithmic prediction. Because the 
results rule out a plausible alternative, the fact that they are 
consistent with a prediction of the serial-scanning theory provides 
real support for that theory. 

Why Has the Use of Good Fits as Evidence Persisted? 

Why has the practice of using good fits to support theories been 
so popular? Its flaws-it hides the flexibility of the theory and the 
variability of the data and ignores the plausible range of the 
data-are large and easy to understand. There are several possible 
reasons. 
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Figure 4. Assessment of a prediction of a serial-scanning theory (based 
on unpublished data from an experiment reported by Sternberg, 1966). 
Points are means; the dotted line shows a 95% confidence interval based on 
between-subject variance. The serial-scanning theory predicts that reaction 
time will be linear with list length. The alternative prediction is that 
reaction time will be linear with the logarithm of list length. 

1. A desire to imitate physics. This may have been important 
initially. In 1929, Clark Hull “purchased and became deeply fa- 
miliar with Newton’s Principia, a work which strongly influenced 
his thinking from that time on” (Beach, 1959, pp. 128-129). 
Presenting a graph with several data points and a line through the 
points makes it appear that the theory being fit makes narrow 
quantitative predictions, like many physical theories. 

2. Confirmation bias (J. Palmer, personal communication, No- 
vember 1, 1996). Confirmation bias is a tendency to test beliefs in 
ways likely to c o n f m  them. To regard a good fit as substantial 
evidence is of course to adopt a testing strategy that tends to 
confirm flexible theories. Nickerson (1998) concluded that “a great 
deal of empirical evidence supports the idea that the confirmation 
bias is extensive and strong and that it appears in many guises” (p. 
177); he described several examples involving scientific practice. 
In many theoretical publications, the authors test only one 
theory-a theory that they created and that, naturally. they wish to 
confirm. 

3. Repetition. Once a new result or method has appeared in 
print a few times, it gains a certain respect, and a certain momen- 
tum. unrelated to merit. Sheer repetition-if it is repetition of a 
mistake-can be strong enough to push whole scientific fields off 
track for many years, which is what we claim happened here. A 
famous example in physics involves the charge on the electron. In 
1909, when Millikan measured this quantity for the first time, he 
used ;1 wrong value for the viscosity of air. Subsequent measure- 
ments of the charge on the electron shifted only gradually from 
Millikan’s value to the correct value (Feynman, 1985). Biology 
provides another example. From the 1930s until 1955, mammalian 
cytologists were “virtually certain” (Kottler, 1974, p. 465) that 
human cells contained 48 chromosomes, although the correct 
number is 46. This conclusion was based on “chromosome counts 
made during the 1920s and 1930s by a number of esteemed 
cytologists all over the world” (Kottler, 1974, p. 465). By 1954, the 
existence of 48 human chromosomes was “an established fact” 

(Kottler, 1974, p. 466), according to one cytologist. The correct 
number was discovered only when improved techniques ma& 
counting chromosomes much less error-prone (Kottler, 1974). 
Similarly, the use of good fits as evidence in experimental psy- 
chology may have remained popular at least partly because of 
repetition and inertia. 

4. Theory complexity. As theories have grown in complexity, it 
has become no easy task to determine how they constrain possible 
outcomes. It is computationally much easier to fit them to data. 

5 .  Neglect of basic principles. The most basic principles of 
theory testing-the ideas that (a) to test a theory, you must collect 
data that could plausibly disprove it and (b) the more plausible the 
possibility of disproof, the stronger the test-receive little attention 
in psychology. They are far from obvious; as Lakatos (1978) 
pointed out, Popper himself failed to appreciate the crucial role of 
plausibility. 

A larger lesson of this article may be that these principles-and 
the related questions of “what would disprove my theory?’ and 
“what theories do these data rule ouP-deserve more emphasis. 
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