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Abstract

We describe a theory of quantitative representations and processes that makes novel predictions about
student problem-solving and learning during the transition from arithmetic to algebraic competence or
"early algebra".  Our Early Algebra Problem Solving (EAPS) theory comes in the form of a cognitive
model within the ACT-R cognitive architecture.  As a "pedagogical domain theory", our EAPS theory can
be used to make sense of the pattern of difficulties and successes students experience in early algebra
problem solving and learning.  In particular, the theory provides an explanation for the surprising result
that algebra students perform better on certain word problems than on equivalent equations (Koedinger &
Nathan, 2000; Nathan & Koedinger, 2000).  It also makes explicit the knowledge and knowledge
selection processes behind student strategies and errors and provides a theoretical tool for psychologists
and mathematics educators to both productively generate and accurately evaluate hypotheses about early
algebra learning and instruction.  We have abstracted our development process into six model-building
constraints that may be appropriate for creating cognitive models of problem solving in other domains.
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1 . INTRODUCTION
General cognitive architectures, like ACT-R  (Anderson and Lebiere, 1998), Soar (Newell, 1990), neural
network models (O'Reilly and Munakata, 2000), etc., can be important aids to cognitive engineering.
However, given the variety of different kinds of knowledge and strategies that are possible within such
cognitive architectures, a knowledge-specific layer of theory development is also necessary, particularly
for complex problem solving domains like those that are the subject of instructional design efforts.  While
cognitive architectures constrain the development of such theories, knowledge representation choices must
be made that are under-constrained by the architecture, but are critical to the explanations and predictions
generated from the theory.

The degrees of freedom in knowledge representation choices have less impact on applying
cognitive architectures in simpler domains employing more routine cognitive skills (e.g., the text-editing
models in Card, Moran, & Newell, 1983).  The need for additional knowledge-specific theoretical
generalizations, beyond the knowledge-neutral generalizations provided by the architecture, increases with
the cognitive complexity of the domain of concern. Knowledge-specific generalizations are particularly
critical when applications, like instructional design, depend on modeling multiple strategies and variations
in performance and errors due to learning.

We use the term “pedagogical domain theory” to refer to a theory that is constrained by cognitive
architecture but, more importantly, further captures relevant generalizations about the nature of knowledge
and learning in a domain of interest. This paper describes a pedagogical domain theory for “early algebra
problem solving” and illustrates specific ways in which the ACT-R architecture has constrained this theory
development. This theory specifies knowledge-specific generalizations about quantitative representations
and processes that yield explanations of and predictions about student problem-solving and learning
behavior during the transition from arithmetic to algebraic competence.  This transition phase is referred to
as “early algebra” (Kaput, 1999).  Our theory of early algebra problem solving (EAPS) comes in the form
of a computer simulation based on the ACT-R theory and written within the ACT-R cognitive modeling
software (Anderson and Lebiere, 1998).  We wanted a theory that not only explains and predicts the kinds
of steps students generate in successful problem solving, but also explains and predicts incorrect steps and
the frequency with which different kinds of correct and incorrect steps are generated.

We describe the approach we used to combine empirical data, mathematical modeling, and
cognitive task analysis to create our theory and cognitive model.  We have abstracted our theory
development process into six model building constraints that may be appropriate to building cognitive
models of problem solving in other domains.

From an applied research viewpoint, we wanted a theory that would make sense of the pattern of
difficulties and successes students experience in early algebra problem solving and learning.  In particular,
we wanted an explanation for the surprising result that algebra students perform better on certain word
problems than on equivalent equations (Koedinger & Nathan, 2000; Nathan & Koedinger, 2000).  Our
theory provides a detailed cognitive process explanation for this result that makes explicit the knowledge
and knowledge selection processes behind student strategies and errors.  It also provides a powerful
theoretical tool for psychologists and mathematics educators to both productively generate and accurately
evaluate hypotheses about early algebra learning and instruction.

From a basic research viewpoint, the development of this theory provides a test of the adequacy of
the ACT-R theory and an indication of what features of ACT-R can be used to model complex problem
solving choices in a realistic task domain.  These critical features may (or may not) be shared by other
unified theories of cognition and thus provide a basis for comparison.

The development of theories of domain knowledge, particularly for core knowledge domains like
quantitative reasoning, should be within the purview of basic research within cognitive science.  For any
domain of real consequence, predictions of problem-solving performance and learning are impossible
without a rich theory of knowledge within that domain.
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1.1. Constraints of a Cognitive Model of Problem Solving and Learning
There are two traditional methods for creating cognitive models: task analysis and verbal protocols (Newell
& Simon, 1972).  Task analysis is a highly subjective process, while verbal protocols rely on detailed
analysis of lengthy transcriptions of problem-solving episodes.  The approach we took relies less on the
task analyst's intuition, yet does not require verbalized descriptions of problem-solving behavior, that are
often difficult for students to produce and difficult for researchers to interpret.  Our theory development
progressed through a set of constraints we wanted the final model to satisfy.

We abstracted six constraints from the literature and from our experience in developing our theory of
early algebra problem solving (EAPS) shown in Table 1.

Table 1.  Constraints on Cognitive Model Development Relevant to Creating
Pedagogical Domain Theories.

C1. Solution Sufficiency.  At minimum, a cognitive model of problem solving should be able to successfully
solve problems in the domain being modeled.

C2. Step Sufficiency.  A cognitive model should compute steps in behavior that qualitatively match the kinds
of correct and incorrect steps in the solution traces of human problem solvers (Newell and Simon,
1972; Anderson, 1993). 1

C3. Choice Matching.  A model should be able to capture the statistical structure of subject choice behavior,
that is, a model should account for the frequency of alternative decisions, solution strategies, or errors
subjects may make.  This constraint reflects a measure of goodness of fit (Polk, VanLehn, & Kalp,
1995; Ritter, 1992; Ritter and Larkin, 1994; Salvucci, 1999).

C4.  Computational Parsimony. Explicit representation of skills that have no computational role and no
qualitative or quantitative predictive value should be eliminated.  In statistical terms, we prefer models
that minimize the number of parameters needed.

C5. Acquirability .  A model should not be considered complete if it only captures data about student
performance.  It must also reflect how students acquire knowledge in a domain,.  Components in the
model should be modified if it is not possible to tell a plausible story about how those components
might have been learned (c.f., Newell, 1990, p. 308; Anderson & Lebiere, 1998, p. 109, 343).

C6. Transfer.  The model should provide an account for how knowledge acquired in one context can apply
to other contexts where it is relevant.  Components of the model should be written at a small enough
grain size so that similarities in computation across different problem-solving contexts are captured by
overlap in the use of specific knowledge components.  These similarities should not be hidden within
aspects of larger encapsulated knowledge components (Singley and Anderson, 1989).

In this article we use these constraints as an organizing framework for describing the history of the
development of EAPS.  Before describing this development, the remainder of this section provides
relevant theoretical and empirical background.  Then, in section 2, we describe our initial EAPS model and
how it met the Solution and Step Sufficiency Constraints (C1 and C2).  In section 3, we describe how we
adapted the model to meet the Choice Matching and Computational Parsimony Constraints (C3 and C4).
In section 4, we describe further modifications to meet the Acquirability and Transfer Constraints (C5 and
C6).  At each stage different empirical and analytic approaches were brought to bear.  These approaches
include qualitative matching against student problem-solving behavior (to meet C1, C2 and C6),
quantitative data fitting (C3), and analytic inspection of computational characterizations of the production
rules (C4, C5, C6).  Section 5 provides a general discussion and section 6 concludes the paper.

                                                

1 Verbal protocols add information beyond solution traces when students verbalize intermediate mental steps like subgoal, so the
extent to which this step sufficiency constraint reflects students’ internal mental structures depends on the level of analysis being
done.
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1.2 Modeling Complex Problem-Solving Choices in ACT-R
Our modeling work is implemented in ACT-R, a rich and flexible cognitive architecture (Anderson, 1993).
ACT-R breaks knowledge into two main categories, a declarative knowledge base of facts, and a
procedural knowledge base of production rules.  A production rule is a simple condition-action or IF-
THEN statement that is used for creating new declarative facts or modifying existing ones.  Productions
have the following general form:  “If there is a goal G and some context C, then perform action X or set
goal Y.”

One central issue in production-based cognitive architectures like ACT-R is how to deal with
multiple productions that are simultaneously applicable to the same state of the world.  If the condition side
of several productions applies, there is a conflict that needs to be resolved.  To model these situations,
ACT-R includes a “rational” component for conflict resolution based on decision theory.  To determine
which production to fire if there is a conflict, the expected gain of each production is computed.  The
expected gain or utility of a production is defined as: Expected Gain = PG–C, where G is the estimated
value of the current goal, P is the estimated likelihood that executing the production will eventually satisfy
the current goal and C is the estimated cost (or cognitive effort) of executing the production.2  In ACT-R,
the production with the highest expected gain is not always chosen.  Rather there is a stochastic process,
implemented as a Gaussian noise parameter, that will sometimes cause a production to be selected other
than the one with the highest estimated utility.  Production rule utilities provide a useful approach to
modeling student choice behavior.

1.3 Review of Student Data: A Difficulty Factor Assessment of Problem-solving
As part of a broader research effort to provide a scientific basis for improved mathematics instruction
(e.g., Koedinger & Anderson, 1993; Koedinger, Anderson, Hadley, & Mark, 1995), we have been
performing detailed empirical and theoretical investigations of students' developing quantitative problem-
solving skills.  We have been performing experimental studies, called "difficulty factors assessments"
(Koedinger & Tabachneck, 1995), and are using the ACT-R theory and software (Anderson, 1993) to
create detailed models of algebraic competence and its development.

Our empirical studies of early algebra have established a striking contrast between students'
difficulties with symbolic algebra and their relative success with certain kinds of "intuitive" algebraic
reasoning.  Much to the surprise of most math teachers and educators (Nathan & Koedinger, 2000), high
school algebra students in our studies are better able to solve certain algebra word problems than the
corresponding algebra equation.

A "Difficulty Factor Assessment" (DFA) involves the systematic investigation of problem factors
that may lead to student difficulties in problem solving.  The ACT-R models we report here attempt to
account for the effects of three factors in data from two DFA studies (Koedinger & Nathan, 2000).  Two
of these factors are illustrated in Figure 1, unknown position and presentation type.  The pairs of problems
in each row of Figure 1 differ in where the problem unknown is positioned.  The problems in column 1
are called "result-unknown" problems because the unknown is the result of the process described.  The
problems in column 2 are "start-unknown" problems because the unknown is the start of the process
described.  Problems within the columns illustrate a second factor.  They require the same underlying
arithmetic, but differ in the manner in which they are presented.  The "Story Problems" in the first row are
presented verbally and include reference to a real world situation (e.g., wages).  The "Word Equations" in
the second row are also presented verbally but do not include a situation.  The "Equations" in the third row
are presented symbolically and have no situational information.  Other factors we have looked at that are
not illustrated in Figure 1 include number difficulty (integers versus decimals) and the cover story used in
different story problems (e.g., the "waiter” story in Figure 1).

                                                

2 ACT-R does not propose that people explicitly analyze their problem-solving choices using decision theory explicitly, but
rather that their choices conform with this analysis.



4

Result-Unknown Problems Start-Unknown Problems

Story
Problems

When Ted got home from his waiter job,
he multiplied his hourly wage, $2.65, by
the 6 hours he worked that day and added
the $66 he received in tips.  How much
money did Ted make that day?

When Ted got home from his waiter job, he
took the amount he made that day and
subtracted the $66 he made in tips.  He
divided the resulting amount by the six
hours he worked and got $2.65, his hourly
wage.  How much did Ted make that day?

Word
Equations

If I multiply 2.65 by 6 and then add 66, I
get a number.  What number do I get?

Starting with some number, if I subtract 66
and then divide by 6, I get 2.65.  What
number did I start with?

Equations 2.65 * 6 + 66 = X (X – 66) / 6 = 2.65

Fig. 1.  Example Combinations of Difficulty Factors

Two DFA studies of early algebra problem solving (DFA1 and DFA2) were performed with
students near the end of a yearlong high school algebra class.  The studies revealed large effects for
unknown position, problem presentation and number difficulty (integers vs. decimals).  Not surprisingly
students are significantly better at result-unknown (arithmetic) problems than start-unknown (algebra)
problems and are significantly better at problems with integer quantity values than problems with decimal
quantity values.  However, it comes as a surprise to many that these algebra students had the greatest
difficulty with the equations which were significantly harder than the word equations (p<.001 in both
studies) which in turn were only slightly harder than the story problems (p=.23 in DFA1 and p<.01 in
DFA2).  The effects of these three factors are for the most part independent and additive.

Prior models of algebra story problem solving (e.g., Bobrow 1968; Lewis 1981) have employed a
two-step process.  Story problems are converted into equations and the equations are then solved using
symbolic algebra.  Figure 2 shows a student from DFA1 using equation solving.  The student writes an
equation (25x + 10 = 1.10) and then explicitly manipulates it, subtracting ten from both sides, and then
dividing both sides by 25 to arrive at an answer.  Such a model predicts that performance on story
problems must be worse than performance on equations since equation solving is a subgoal of story
problem solving.  Most teachers and math educators share this same prediction (Nathan & Koedinger,
2000).  Students' greater success on word problems in DFA1 and DFA2 indicates they must not be
following this two step process. Our results showed that they are often using alternative informal methods
for finding answers. 

Fig. 2.  Formal algebra on Story Start-unknown Problem

Students translated verbal problems to algebra equations on only 13% of problems and 53% of
these attempts led to success.  More often students attempted to solve verbal start-unknowns using one of
two informal strategies, "guess-and-test" or "unwind."  In guess-and-test, a value for the unknown is
guessed at and that value is propagated through the known quantitative relationships.  The guess is then
adjusted and the process repeated until the correct answer is arrived at.  Guess and test was used about
20% of the time on the verbal start-unknown problems.
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By far the most common strategy, informal "unwind", was used almost 40% of the time.  Unwind
is a verbally mediated strategy, where students work backwards from the given result value, inverting
operators along the way, to produce the unknown start value.  Figure 3 shows an example of the unwind
strategy being used on a decimal story start-unknown problem.  The student skips past the algebraic
formulation and directly performs the required arithmetic operations.  The operations used in the solution
are the inverse of those described in the problem and are performed one operator at a time in the reverse
order of the problem description.

Fig. 3.  Unwind on a Decimal Start-unknown Problem

2 . EAPS1:  MEETING THE SOLUTION SUFFICENCY (C1) AND STEP
SUFFICENCY (C2) CONSTRAINTS

2.1 Overview of the Early Algebra Problem Solving Models
We have created a series of "Early Algebra Problem Solving" (EAPS) models of these data that have
involved both empirically and theoretically driven refinement.  In developing the first EAPS model,
EAPS1, our major goal was to satisfy constraints C1 and C2, Solution Sufficiency and Step Sufficiency.
In EAPS2 we focused on choice matching, on getting the model to make accurate quantitative predictions
about the frequency of student strategies and errors.

We chose ACT-R to address these goals because production rules provide a way to decompose the
problem-solving process and predict individual problem steps observed in student solution traces.  ACT-R
also provides a way to model how productions are selected and how selection between competing
productions leads to different strategies and errors.

One assumption in all of our modeling work is that a student represents the problem internally by a
set of quantitative relations between the quantities in the problem. The approach builds on prior cognitive
analyses of mathematical problem solving (Hall, Kibler, Wenger & Truxaw, 1989; Shalin & Bee, 1985;
Mayer, 1982; Paige and Simon, 1966).  Each quantitative relation has a pair of input quantities, a
mathematical operation, and an output quantity representing the result of that operation applied to the
inputs.  The output or any of the inputs can be unknown.  Example quantitative relation networks are
shown in Figure 4.  Quantities are displayed in boxes and quantitative relations are displayed by arrows
connecting them with a mathematical operation.  On the left we show the quantitative network for a result-
unknown story problem from Figure 1, where all of the inputs are known.  On the right is the quantitative
network for the analogous problem in equation form.  Notice that even though the problems have the same
underlying structure, the story problem on the left has more verbal and situational information associated
with it.  For example, quantities in the story representation on the left have situational labels (e.g., tips)
and units (e.g., dollars).
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Fig. 4. Quantitative networks for story and equation result-unknown problems in Fig 1.

In the ACT-R model, the network is made up of two kinds of "working memory elements"3:
Quantities, the rectangular nodes; and Quantitative Relations, the linking circles.   How are these constraint
networks created and processed?  A basic high level description of the control flow in our EAPS theory is
summarized in Figure 5.   The first major step (#1) describes the process of comprehending an external
representation to create internal representations of quantities and a quantitative relation connecting them.
This comprehension process includes identifying the arithmetic operation (add, subtract, multiply, divide)
and the inputs to and output of that operation.  The model can optionally translate the relation into algebraic
symbols (step #1c).

In step #2, if one of the inputs is unknown, EAPS deals with it in one of three ways.  It can guess
a value for the input, it can invert the operation in the relation using the informal unwind strategy, or, if the
representation is in equation form (either because it was translated into an equation or it was presented as
an equation) EAPS can solve the relation using formal algebra.  Finally, in step #3, once the quantitative
relation has been comprehended, and unknown inputs have been dealt with as needed, the model can
perform the resulting arithmetic subgoal.  The process is repeated for each quantitative relation in a
problem.

                                                

3 Samples of the actual ACT-R code that specifies working memory elements and production rules can be requested from the
authors.
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For each quantitative relation in the problem:

1. Comprehend the external representation and create the next quantitative relation (VC, SC)
     a.  Identify the arithmetic operation (add, subtract, multiply, divide)
     b.  Identify the inputs to and output of that operation
     c.  Optionally, translate relation to algebraic symbols  (TVS, PS)
     d.  If only the output is unknown, go to step 3

       Else if only one input is unknown go to step 2
       Else try another quantitative relationship and go to step 1

2.  Deal with unknown input quantity
     a. Invert the operation  (UC)
     b. Solve algebra (depends on having done 1c) (TSS, OB)
     c. Guess a value for the input

3. Perform arithmetic subgoal  (AP)

Fig. 5. Top-level description of model:  3 major choice points

2.2. Developing EAPS1
EAPS1 (MacLaren & Koedinger, 1996) was our first implementation of the general approach described
above.  EAPS1 was made up of about 30 ACT-R production rules.  An initial development goal was to
create a system that could solve problems like those in Figure 1, in other words, satisfy the Solution
Sufficiency Constraint (C1).  A second development goal was to have the model solve these problems in
steps like those of a student problem solver, in other words, satisfy the Step Sufficiency Constraint.

Fig. 6.  A decimal arithmetic start-unknown story problem

Figure 6 shows a student employing the unwind strategy to solve a story start-unknown problem.
In Table 2 we show a trace of EAPS1 solving this same problem using the same strategy. 4  This trace was
produced by “walking” EAPS1 through its space of possible choices in order to replicate the choices
reflected in the student solution.  Walking stops model execution any time when more than one production
can fire, and then presents the different alternatives.  The walk routine prompts the user for which
alternative should be taken, asking, “What should I do?” and then fires the production corresponding to
the user selection.

In step 1 of the trace, EAPS1 is considering which strategy to use or whether to give up.  The user
guides the model to fire the production SELECT-UNWIND-STRATEGY-ON-VERBAL.  At step 2, the
production VERBAL-COMPREHENSION-4 is the only one in the conflict set and so it is fired without
asking the user.  This production identifies the appropriate quantitative relation to focus on and identifies
the relevant operator and its inputs and output (corresponding with steps #1a and #1b in Figure 4).  At step
3 in Table 2, the model must deal with the unknown input quantity using the selected strategy
(corresponding with step #2a in Figure 4).  Doing this requires constructing a new goal that can be solved
                                                

4 In our simulations of early algebra problem solving, we did not create a complete model of the process of comprehending the
English language input.  Instead, at the start of a verbal problem, the simulation’s working memory contains the quantitative
network that results from the parsing of the English language input.
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with straight arithmetic.  In the student solution this corresponds to writing the down the arithmetic
problem "[$2.65 x 6]" in the middle of Figure 6.  Step 4 in Table 2 corresponds with the student solving
the resulting arithmetic problem.  Steps 5 through 7 are just like steps 2 through 4, comprehending a
constraint, inverting the arguments and operator, and performing the resulting arithmetic.

Note that the explicit strategy selection in Step 1 applies to both quantitative relations.  Thus, once
a strategy was selected in EAPS1 it was pursued throughout the problem.  EAPS1's explicit strategy
selection and strategy following will be contrasted in section 3.2, with the approach taken in future
models.

Table 2.  EAPS1 unwinding a verbal problem
--- Options ---
1. I could try verbal unwinding.

     2. I could try algebra.
3. I'll just give up on the problem.
     What should I do? 1
>>> Step 1: SELECT-UNWIND-STRATEGY-ON-VERBAL
  Let's try unwinding...
>>> Step 2: VERBAL-COMPREHENSION-4
    DIVIDED-BY 6 gives 2.65...
--- Options ---
1. The inverse of DIVIDED-BY is MULTIPLY. (Unwind Correct)

     2. The inverse of DIVIDED-BY is DIVIDED-BY. (Unwind Error)
     What should I do? 1
>>> Step 3: VERBAL-INVERT-OPERATOR
    I need to take 2.65 and MULTIPLY 6...

 --- Options ---
1. 2.65  *  6 = 15.90 (correct with situational support)
2. 2.65  *  6 = 159 (bug)
3. 2.65  *  6 = 0.16 (slip)
     What should I do? 1
>>> Step 4: SITUATED-ARITHMETIC
    2.65  *  6 = 15.90
>>> Step 5: VERBAL-COMPREHENSION-4
    MINUS 66 gives 15.90...
--- Options ---
1. The inverse of MINUS is PLUS. (Unwind Correct)

     2. The inverse of MINUS is MINUS. (Unwind Error)
     What should I do? 1
>>> Step 6: VERBAL-INVERT-OPERATOR
    I need to take 15.90 and PLUS 66...
--- Options ---
1. 15.9  +  66 = 81.90(correct with situational support)
2. 15.9  +  66 = 16.56(bug)
3. 15.9  +  66 = 67.59(slip)
     What should I do? 1
>>> Step 7: SITUATED-ARITHMETIC
    15.90  +  66 = 81.90
>>> Step 8: VERBAL-KNOW-EVERYTHING-DONE

To meet the Step Sufficiency Constraint, we designed EAPS1 to not only model steps in correct
strategies, but also common student errors.  We modeled two types of errors: arithmetic and conceptual.
Conceptual errors include forgetting to invert an operator sign in the verbal representation (see option 2
prior to Steps 3 and 6) or confusing the order of operations in the symbolic representation.  For arithmetic
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errors, we modeled the error of miss-aligning the decimal places in doing arithmetic (see option 2 before
Steps 4 and 7) and slips (e.g., 2 * 3 = 5).  Because arithmetic was not a focus of our modeling effort,
arithmetic bugs and slips are modeled by a single production each (abstracting over detailed arithmetic
errors, such as carry errors and borrowing from zero).  In EAPS1, each error was associated with a
specific "buggy" production (c.f., VanLehn, 1990).

EAPS1 met our first two modeling constraints reasonably well.  The Solution Sufficiency
Constraint was satisfied in that EAPS1 could solve all problems like those in Figure 1.  The Step
Sufficiency Constraint was satisfied in that EAPS1 produced the kinds of steps we see in the solutions of
human problem solvers, as illustrated in the example (MacLaren & Koedinger 1996 provides other
examples of the qualitative fit of EAPS1 traces with student solutions).

3.  MEETING THE CHOICE MATCHING (C3) AND COMPUTATIONAL
PARSIMONY (C4) CONSTRAINTS

The initial development of EAPS1 allowed us to match the model against the wide variety of student
solutions, both correct and incorrect, we had observed in the two DFA studies.  This initial work gave us
insight into the kinds of correct and incorrect knowledge students may have, but it not did give us insight
into the strength of students' correct and incorrect knowledge, nor did it explain how students (implicitly)
chose between competing strategies.  Thus we set out to model student choice processes and make
predictions about the frequencies of alternate strategy and error behaviors that result from these internal
choices.  In other words, we set out to satisfy the Choice Matching Constraint.

3.1 Fitting EAPS1 to Student Strategy and Error Frequencies
To aid in fitting our EAPS models to the DFA data, we segmented the data into a small number of coarse
error and strategy categories.  Student solutions for result-unknown problems were coded into 4
categories: correct, arithmetic error, conceptual error and no-answer (shown as the major columns in Table
3a).  Six types of result-unknown problems, shown in the rows of Table 3a, are determined by crossing
two factors: number difficulty (integer vs. decimal) and representation (story vs. word vs. equations).  For
of these problem types we computed the frequency of the error codes in students' solutions.  These
frequencies are shown as percentages in the sub-columns labeled "data" in Table 3 (the sub-columns
labeled "dif1" and "dif2" are model prediction deviations for EAPS1 and EAPS2, which will be described
later).  Note that the sum of the data frequencies in each row of Table 3a add to 100% since every solution
gets coded into one of these categories.  The coding of all but the conceptual error category is
straightforward.  The conceptual error category includes all solutions that were otherwise categorized.

For each of the six types of the more algebra-like start-unknown problems, we not only coded
correctness and the three broad error categories, but also a broad strategy coding.  This broad strategy
coding identifies when solutions involve a formal strategy, that is the use of an algebra equation, versus an
informal strategy, either guess-and-test or unwind.  The major columns of Table 3b show the combined
strategy-error categories for the two strategy codes and four error codes (correct, arithmetic error, and
conceptual error codes are separated into those occurring within an informal vs. formal strategy).  As in
Table 3a, the data frequencies in the rows of Table 3b sum to 100%.

We used ACT-R's utility-based conflict resolution mechanism to model student choice processes
and make predictions about consequent strategy and error frequencies.  Associated with each production
rule is a parameter for the estimated utility of that production.  With these parameters set, an ACT-R model
will make choices on its own, unlike the hand-selected choices illustrated in Table 2.  Productions with
higher estimated utilities are more likely to fire.  Utilities determine the probability that a production will
fire in a given circumstance.  When these probabilities are chained together they lead to predictions about
the frequencies of associated events (strategy selections or errors).  In fitting the model to data, the
challenge is to find utility values that yield frequency predictions that match student data.
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Table 3.  DFA Data, Model Predictions, and Differences for EAPS2.

a. Result-unknown (arithmetic) problems.

Representation
Correct

 data    dif1    dif2

Arithmetic
Errors

data    dif1     dif2

Conceptual
Errors

data       dif1     dif2

No
Answer

data       dif1      dif2
Integer Story 77 -2 3 1 9 3 17 -10 -9 5 0 3
Integer Word 84 -9 -4 5 5 -1 5 2 3 7 -2 1
Integer Equation 65 -1 -7 7 1 -4 12 -5 5 16 9 6
Decimal Story 63 5 2 17 -1 1 11 -4 -3 9 -4 -1
Decimal Word 42 4 6 36 2 0 21 -14 -13 0 5 8
Decimal Equation 33 7 2 24 8 2 9 -2 8 33 -9 -11

b. Start-unknown (algebra) problems.
Informal Strategy Formal Strategy No Answer

Correct Arithmetic
Errors

Conceptual
Errors

Correct Arithmetic
Errors

Conceptual
Errors

No
Answer

Rep. data d1 d2 data d1 d2 data d1 d2 data d1 d2 data d1 d2 data d1 d2 data d1 d2
 Integer St 64 -4 -6 2 6 1 14 -5 4 6 1 -4 0 1 0 2 -1 0 14 -1 4
 Integer Wd 70 -10 -12 0 8 3 19 -10 -1 0 7 2 0 1 0 2 -1 0 9 4 9
 Integer Eq 35 0 0 0 5 2 19 -16 -1 19 0 -17 0 2 0 9 -7 13 19 13 4
Decimal St 45 10 2 10 3 3 24 -16 -6 4 3 -3 0 2 0 1 0 1 15 -2 4
DecimalWd 27 10 8 9 21 17 30 -24 -12 6 -1 -5 0 4 1 9 -8 -8 18 -5 1
Decimal Eq 12 10 9 6 12 9 18 -15 0 6 6 -5 0 10 1 15 -13 -1 42 -10 -12

3.1.1 Setting Parameters in EAPS1
Parameter setting in mathematical models is typically done using an iterative gradient-descent algorithm
and depends on fast computations of model predictions given any vector of parameter values.  Parameter
setting with an ACT-R model is made more challenging because computations of ACT-R model
predictions are not as simple as evaluating mathematical expressions.  Rather, they involve interpretation
of production rules.  More importantly, the stochastic nature of ACT-R means the model has to be run
multiple times (e.g., 200) on each problem category in order to obtain an estimate of the model’s average
output under a given parameter setting.  Thus an iterative approach applied directly to an ACT-R model
may not be practically feasible in many cases.

In fitting parameters for EAPS1 we developed an alternative "incremental complexity" strategy.
We started by setting the parameters for the simplest problem category, in other words, the problem
category requiring the fewest productions.  The columns in Table 4 show the twelve problem categories
and the rows show the key productions in the model.5  The X’s in Table 4 indicate which productions are
relevant for which problem categories.  Note that only 3 productions are relevant to the first two problem
categories, “Arith Int Story” and “Arith Int Word.”  Thus, we started parameter fitting by finding utility
values for these three productions that yield choice predictions that best match the error frequencies in the
student data (rows 1 and 2 of Table 4). The parameter values selected resulted in frequency predictions of
75% correct, 10% arithmetic errors, 7% conceptual errors, and 5% no answer for the two problem
categories (the predictions are the same since the same three productions are involved).  These percentages
are inferable from Table 3 by adding the “data” and “dif1” columns in the first two rows (“Integer Story”
and “Integer Word”).

                                                

5 The productions in Table 2 are actually from EAPS2 not EAPS1, but the parameter fitting strategy is just as well illustrated.
Details of the EAPS1 productions can be found in MacLaren and Koedinger, 1996.
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Table 4.  A Skill Matrix, Showing Which EAPS Productions are Relevant to
Which Problem Categories.

Skills     Parameter
                    Names

Arith
Int

Story

Arith
Int

Word

Arith
Int
Eq

Arith
Dec

Story

Arith
Dec

Word

Arith
Dec
Eq

Alg
Int

Story

Alg
Int

Word

Alg
Int
Eq

Alg
Dec

Story

Alg
Dec

Word

Alg
Dec
Eq

Comprehend and represent problem    
  Verbal Comprehension VC X X - X X - X X - X X -
  Symbolic Comprehension SC - - X - - X X12 X12 X X12 X12 X
  Symbol Production (Write Equation)WE - - - - - - X12 X12 - X12 X12 -
  Operate on Adjacent Numbers OA - - - - - - O O O O O O
Deal with unknown input   
  Decide what to do to both sides WI - - - - - - X12 X12 X12 X12 X12 X12

  Invert operator  /  Invert IO UC - - - - - - X11 X11 X11 X11 X11 X11

 Unwind-Error UE - - - - - - O O O O O O
Perform arithmetic   
  Arithmetic Procedure AP X X X X11 X X X X X X21 X X
  Situated Arithmetic AS - - X12 - - - - - X22 - -
  Arithmetic Slip SL O O O O O O O O O O O O
  Arithmetic Bug BG - - - O O O - - - O O O

After setting these first three parameters, we next set the parameters for the new productions
introduced in each slightly more complex group of problems, introducing one new difficulty factor at a
time, moving roughly left to right in Table 4.  At each step the parameter settings determined at the prior
step were fixed and maintained.  New settings were determined only for the new parameters needed to
address the introduced difficulty.  This incremental complexity strategy does not guarantee an optimal fit of
the data overall as a better fit may be achieved on more complex problems by slightly reducing the fit to
simpler problems.  However, the strategy appears to work well; the fit we achieved is good.

In ACT-R, the probability of selecting a production from the conflict set of applicable productions
is determined by the relative expected gains of those productions.  As described above, expected gain is
determined by the expression PG–C, where P is the estimated probability of success if that production
fires, G is the estimated value of the current goal, and C is the estimated cost of that production.  For each
parameterized production, we decided on a cost value (C) and fixed it.  We then set the value of P by the
parameter fitting strategy described above.  These two values, P and C, were then fed into an equation that
determines the probability of selecting a production given the other productions in the conflict set.  The
probability of selecting a given production with expected gain gi from n possibilities is determined by the
Likelihood Ratio equation:

where the parameter t is sqrt(6)σ/Π, with σ being the standard deviation of the noise (Anderson &
Lebiere 1998, p. 65) and summation is across the n productions in the conflict set.

Our goal is to estimate the parameter P for the productions in the EAPS model to match our DFA
data.  EAPS1 had 13 parameters: six for strategy selection, three for formal algebra skills (one for solving
a verbal problem with a formal strategy (WE), one for manipulating an equation (WI), and one for order-
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of-operations errors (OA)), one for operator and argument inversion (UC), and three for arithmetic
(correct, correct arithmetic on story problems, and arithmetic bugs).6

The results of our parameter tuning can be seen in Table 3.  The comparison is presented as sets of
triples: first the DFA data (in the column labeled “data”), then the EAPS1–DFA difference (in the column
labeled “dif1” and “d1”).  Table 3a shows the results for arithmetic (result-unknown) problems.  Table 3b
shows the results for algebra (start-unknown) problems broken down into formal and informal strategies.
EAPS1 a good job of capturing the effects of the three difficulty factors on student error and strategy
selection behavior.  This is illustrated with the model predictions (shown as deviations from the data) for
66 data points in Table 3.  86% (57/66) of the data points for EAPS1 are within 10% of the DFA data.
The r2 value for EAPS1 was 0.92 using 13 parameters.

3.2 Limitations of EAPS1 and the Development of EAPS2
The major empirical weakness of EAPS1 was qualitative.  It under-predicted the frequency of conceptual
errors on algebra problems.  In Table 3, notice the negative values under the two columns labeled
"Conceptual Errors" and "d1".  As can be seen for both informal and formal strategies, the EAPS1 model
consistently predicted fewer conceptual errors than students made, often more than 10% fewer.  This
observation led us to more closely inspect how both our model and students produce conceptual errors.
EAPS1 only made conceptual errors when it fired specific "buggy" productions (e.g., performing addition
before multiplication).  However, now informed by the model-data mismatch, we hypothesized that
students may be making conceptual errors not just because of having buggy knowledge, but also because
of lacking correct knowledge.  Lack of knowledge might lead students to give up in the middle of a
problem when they do not know or are not confident about what to do next. We modified EAPS1 so that it
would give up in this way whenever it reached a choice point for which it lacked an appropriate production
of sufficient estimated utility (i.e., the gain for achieving the goal is lower than the cost of executing the
production).  We discuss below the positive consequences of this change on the model-data fit.

The process above illustrates how an effort to meet the Choice Matching Constraint led to a
significant change in the model.   A second change in EAPS1 resulted not from human data, but from an
analytic process of inspecting the computational characteristics of the model.  In working with the model,
we began to notice certain productions that did not seem necessary.  We made an effort to eliminate such
productions from the model.    Our Computational Parsimony Constraint suggests that eliminating
productions that have no computational role and no qualitative or quantitative predictive value leads a
simpler model, one that provides better explanations and is more likely to generalize.

In particular, we noticed that the explicit strategy selection productions in EAPS1 were not
computationally necessary.  Instead, it was possible to simply start the model with productions that
implement the first step in each strategy.  Thus, for instance, instead of having a first explicit strategy
selection production that, in essence, says, "I am going to do algebra" and then a second strategy
execution production that starts to translate words into symbol, we found it was possible to start directly
with the strategy execution.   Besides yielding a simpler model, this change also conformed with our sense
that students are not explicitly choosing strategies, particularly, the informal strategies like unwind and
guess-and-test, but instead are just responding to the demands of the problem.  We can code their
consistent behaviors with strategy labels, but it is not necessary that students be explicitly aware of these
strategies in order to behave in accord with them (c.f., Alibali & Koedinger, 1999).  In fact, students do
not easily articulate the steps they are taking and do not label them with strategy names.

The two changes to EAPS1 described above, allowing give ups at any choice point and eliminating
explicit strategy selection, led to the creation of EAPS2.  As shown in Table 4 to the right of the
production names, EAPS2 had 11 parameters corresponding with 11 key productions.  Four of the
parameterized productions (VC, SC, WE, OA) were for comprehending verbal or symbolic problem
statements and creating a quantitative network representation (internally or externally), three were for
                                                

6 In EAPS1 the Give-Up, Unwind-Error, and Arithmetic-Slip did not need to be parameterized because their likelihood was one
minus the other alternatives.
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dealing with an unknown input (WI, UC, UE), and four were for performing arithmetic (AP, AS, SL,
BG).

The change from 13 parameters in EAPS1 to 11 in EAPS2 involved some deletions and additions
of productions.  Six strategy selection productions in EAPS1 were replaced with two parameters (one for
verbal and one for symbolic representations) resulting in a decrease of parameters.  However, two
parameters were added – one for a unwind and one for arithmetic.  The additional parameter for arithmetic
and unwind in EAPS2 was due to the fact that EAPS2 could give up at every choice point.  In EAPS1,
p(Unwind-Error) = 1 – P(Unwind), because giving up was the only way to produce and error.  In
EAPS2, the probability of giving up was 1 – P(Unwind) – P(Unwind-Error).

3.3 Fitting EAPS2 to Student Strategy and Error Frequencies.
To set the parameters for the EAPS2 we created an explicit mathematical model in a Microsoft Excel
spreadsheet that corresponds to the behavior of the EAPS2 ACT-R model.  As with EAPS1, the inputs to
the model are the P values in the PG–C expected gain formula.  The resulting expected gains are then input
into the Likelihood Ratio equation that produces a set of choice-point percentages for the parameterized
productions.  These choice-point percentages are used in a set of equations that correspond to different
paths that the production rule model can take.  These equations predict the frequency percentages for the
broad error and strategy categories in Table 3.  For each of the 6 kinds of arithmetic problems, we used the
ACT-R model to guide us in writing 4 equations that compute the probability of each of 4 broad categories
of errors on arithmetic problems: no error, arithmetic errors, conceptual errors and no answer.  For each of
the 6 kinds of algebra problems we used the ACT-R model to guide us in writing 7 equations that compute
the probability of each of the 7 strategy and error categories (no error, arithmetic errors, and conceptual
errors for informal and formal strategies, and no answer).  We wrote a total of 66 equations, 6x4=24 for
arithmetic problems and 6x7=42 for algebra problems (these equations are shown in Appendix 1).

Each equation for a broad error category is in the form of a sum of products, where each product
term corresponds to a different path through the model that results in the same broad error category.  For
example, one of the terms in the equation for arithmetic errors for integer verbal arithmetic is
VC*AR*VC*SL.  This represents the path to perform the first verbal comprehension (VC) and arithmetic
operation (AR) correctly but after the second quantitative relation is comprehended (VC), the model
performs an arithmetic slip (SL). To find the utility parameters that best fit EAPS2 with the DFA data we
used Excel's Solver tool.

Because most of the productions had multiple contexts in which they could fire, determining the
utility values for each production was not simply a matter of determining the probability that that
production would fire.  For example, for arithmetic problems there are three different contexts for the
Arithmetic Procedure.  In all cases, the utility value of this production is 16.38 (out of a total of 20), but
the probability that this production will fire depends on the context (i.e., what other productions are
competing with it).  As can be seen in Table 4, for integer arithmetic problems (column 1-3) there is one
production that competes with Arithmetic Procedure, namely Arithmetic-Slip.  In this case, the probability
of Arithmetic Procedure (APe) is 97% (computed by plugging 16.38 and Arithmetic-Slip’s expected gain
of 14.36 into the choice formula in section 3.1.1).  For decimal arithmetic word problems and equations,
there are two productions that compete with Arithmetic Procedure: Arithmetic-Slip and Arithmetic-Bug.  In
this case the probability of Arithmetic Procedure (APh) is 76%.  For decimal arithmetic story problems, in
contrast, there are three productions that compete with Arithmetic Procedure: Situated-Arithmetic,
Arithmetic-Slip, and Arithmetic-Bug.  In this case, the probability of Arithmetic Procedure (APs) is 37%.

Table 5 shows the eighteen math model equations that correspond with alternative paths to correct
answers to the 6 main problem categories.  The first math model equation is for integer arithmetic on
result-unknown story problems and involves two applications of verbal comprehension (VC1) (one for
each quantitative relation) and two of arithmetic for integer problems (APe).  For integer arithmetic word
problems (see the second equation) we can see that the math model predicts the same performance as
integer arithmetic story problems, but for the integer arithmetic equations (see the third math model
equation) the comprehension component is different: symbol comprehension (SC) replaces verbal
comprehension (VC).  For the decimal arithmetic problems there is a difference between story and word
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problems.  For the story problems, a situated arithmetic process (AS) also applies, models the cognitive
process involved of using situated knowledge of the money units to support the appropriate alignment of
decimal points in performing arithmetic (i.e., AS models knowing not to add dollars to cents).

For correct performance of the informal unwind strategy the only additional skill that is required is
the ability to unwind correctly (UC), which is implemented at the productions Invert-Operator and Invert-
Input-Output.  This example illustrates how parameters in the math model represent the aggregation of sets
of productions in the ACT-R model that always fire together.

For more details on how the cognitive model was used to create the math model see Appendix 1.

Table 5.  Math Model Equations for Paths Leading to Correct Performance.
Integer Result-unknown:
 Story VC1(.92) * APe(.97)* VC1(.92) * APe(.97) (resulting percent correct)= 80%
 Word VC1(.92) * APe(.97)* VC1(.92) * APe(.97) = 80%
 Equation SC1(.78) * APe(.97)* SC1(.78) * APe(.97) = 58%

Decimal Result-unknown:
 Story VC1(.92) * (APs(.37) + AS(.52)) * VC1(.92) * (APs(.37) + AS(.52)) = 65%
 Word VC1(.92) *  APh(.76) * VC1(.92) * APh(.76) = 48%
 Equation SC1(.78) *  APh(.76) * SC1(.78) * APh(.76) = 35%

Integer Start-unknown (Informal Strategy):
 Story VC2(.88) * UC(.87) * APe(.97) * VC1(.92) * UC(.87) * APe(.97) = 58%
 Word VC2(.88) * UC(.87) * APe(.97) * VC1(.92) * UC(.87) * APe(.97) = 58%
 Equation SC2(.61) * UC(.87) * APe(.97) * SC1(.78) * UC(.87) * APe(.97) = 35%

Decimal Start-unknown (Informal Strategy):
 Story VC2(.88) * UC(.87) * (APs(.37) + AS(.52)) * VC1(.92) * UC(.87) * (APs(.37) + AS(.52)) = 47%
 Word VC2(.88) * UC(.87) * APh(.76) * VC1(.92) * UC(.87) * APh(.76) = 35%
 Equation SC2(.61) * UC(.87) * APh(.76) * SC1(.78) * UC(.87) * APh(.76) = 21%

Integer Start-unknown (Formal Strategy):
 Story WE(.04) * SC2(.61) * UC(.87) * APe(.97)  * SC1(.78) * UC(.87) * APe(.97) +

WE(.04) * WI 2(.18) * SC2(.61) * APe(.97)  * WI1(.52) * SC1(.78) * APe(.97) = 1.6%
 Word WE(.04) * SC2(.61) * UC(.87) * APe(.97)  * SC1(.78) * UC(.87) * APe(.97) +

WE(.04) * WI 2(.18) * SC2(.61) * APe(.97)  * WI1(.52) * SC1(.78) * APe(.97) = 1.6%
 Equation              WI2(.18) * SC2(.61) * APe(.97)  * WI1(.52) * SC1(.78) * APe(.97) = 1.5%

Decimal Start-unknown (Formal Strategy):
 Story WE(.04) * SC2(.61) * UC(.87)  * (APs(.37)+AS(.52)) * SC1(.78) * UC(.87) * (APs(.37)+AS(.52)) +

WE(.04) *WI 2(.18) * SC2(.61) * (APs(.37)+AS(.52)) *WI1(.52) * SC1(.78) * (APs(.37)+AS(.52)) = 1.3%
 Word WE(.04) * SC2(.61) * UC(.87)  * APh(.76) * SC1(.78) * UC(.87) * APh(.76) +

WE(.04) * WI2(.18) * SC2(.61) * APh(.76) * WI 1(.52) * SC1(.78) * APh(.76) = 0.9%
 Equation  WI2(.18) * SC2 (.61) * APh(.76) * WI 1(.52) * SC1(.78) * APh(.76) = 0.9%

Model-Data Fit for EAPS2
The results of our parameter tuning using the math model for EAPS2 can be seen in Table 3.  The
comparison is presented as sets of triples: first the DFA data, then the EAPS1–DFA difference, and then
the EAPS2–DFA difference.

Both models do a good job of capturing the effects of the three difficulty factors on student error
and strategy selection behavior.  88% (58/66) of the data points for EAPS2 are within 10% of the DFA
data (compared with 86% of the data points for EAPS1).  The r2 value for EAPS2 was 0.95 using 11
parameters (compared with 0.92 for EAPS1 using 13 parameters).

Because EAPS2 could give up at any choice point in the solution it was possible to improve the
under-prediction of conceptual errors in EAPS1.  Unlike EAPS1, the predictions of EAPS2 are not
systematically different from the data (see the informal conceptual error column in Table 3b).
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In summary, EAPS2 achieved an equivalent quantitative fit as EAPS1 with fewer parameters, in a
more intuitive fashion, and without the systematic deviations from the error data.  The difference between
the two models yielded two important lessons for our theory of early algebra problem solving.  First, we
do not need to assume that students are making explicit strategy choice and, in fact, it is more
parsimonious to assume that their strategy choices are implicit.  Second, in contrast to accounting for all
student errors as systematic bugs, we found that a large proportion of student errors can be accounted for
by lack of knowledge.

4.  MEETING ACQUIRABILITY (C5) AND TRANSFERABILITY (C6) CONSTRAINTS
EAPS2 eliminated the requirement for explicit strategies and bugs while actually improving the fit with our
DFA data, but it was still a fairly coarse grained model.  For example, complex skills were sometimes
represented as single productions.  After developing EAPS2, we asked: Does the model make sense on a
finer production rule level?  What predictions does it make about the learning process?  We wanted to
focus more intently on the plausibility of the production rules, and to provide a sound qualitative account
of how these productions could be acquired and tuned. Our aim is to not only create a model that describes
the quantitative character of problem solving, but also provides a process explanation, a mechanism, for
individual steps in problem solving behavior (c.f., Newell & Simon, 1972, p. 9).  We also wanted the
model to characterize different states of learning and be able to make predictions about the learning
process.

We start our description of EAPS3 with examples of it in operation.  Next we describe how we
applied the Acquirability and Transfer constraints in developing EAPS3.  We end this section with some
predictions of our theory of early algebra problem solving that follow from the changes made to create
EAPS3.

4.1. An Example-Based Overview of EAPS3
Table 6 shows a trace of EAPS3 using Unwind on the Decimal Start-Unknown Story problem

shown in Figure 3.  At the first choice point, the model considers three possibilities: 1) focusing on the last
relation in a verbal representation (which has a 99.8% chance of being selected), 2) translating the verbal
representation into a symbolic form (WE), that is, writing an equation (which has a 0.2% chance of being
selected), and 3) giving up, returning no answer (NA) (which has a 0% chance of being selected).  The
most likely alternative is chosen, and in Step 1 the model begins by focusing on the relation All-Donuts-
Price7 Divided-by Donut-Price gives Donut-Number.

Next, in Step 2, EAPS3 forms an arithmetic goal using the numbers in the relation it is focused on,
in this case 0.37 and 7.  After deciding which relation and which arguments to act on, in Step 3 the model
decides how to reason with a relation with an unknown input, in this case setting a goal to unwind the
operator.  In steps 4 and 5, this goal is achieved by inverting the operator (divide becomes multiply) and
inverting the output and the second input.  The resulting arithmetic problem is performed in Step 6.  Here
the model writes down 7 TIMES 0.37, and produces 2.59 as an answer.  This corresponds to the first part
of the student’s column arithmetic in Figure 3.  Producing the value 2.59 for All-Donuts-Price completes
the processing for the first relation.  The second relation is processed in steps 7-12 as the model works
backwards though the “subtracts $0.22 for the box they came in” relation.  After solving the second
relation a production recognizes the problem is done (Step 13).

                                                

7 The label “All-Donuts-Price” is for our purposes in reading and understanding the model.  It does not imply that students have
labels for such intermediate quantities.
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Table 6.  EAPS3 unwinding a story problem
--- Options ---
     1. 99.8% Focus On (All-Donuts-Price Divided-by Donut-Price -> Donut-Number)
     2.  0.2% WE: X - 0.22 / 0.37 = 7 (Write an equation)

          3.  0.0% NA:  I'll just give up.
What should I do? 1
>>> Step 1: Focus-On-Last-Relation

          1. 88.8% VC: All-Donuts-Price Divided-by 0.37 is 7..(Form an arithmetic goal)
     2.   4.2% WE: X - 0.22 / 0.37 = 7 (Write an equation)
     3.   7.0% NA:  I'll just give up.
What should I do? 1
>>> Step 2: Form-Arithmetic-Goal-For-Verbal VC
>>> Step 3: Set-Goals-To-Unwind UC

     1. 86.6% UC:  So DIVIDED-BY becomes TIMES. (Invert operator)
     2. 13.4% UE:  So DIVIDED-BY ... (Operator Inversion Error)
What should I do? 1
>>> Step 4: Invert-Operator UC
      So DIVIDED-BY becomes TIMES
>>> Step 5: Invert-Input-Output UC
     Some number ... 0.37 =7 ... 7 TIMES 0.37

     1. 96.6% AP:  7  TIMES  0.37 = 2.59 (Normal Arithmetic)
     2.  2.0% SL:  7  TIMES  0.37 = 25.9 (Arithmetic Slip)
     3.  1.4% AP:  I can't do this...
What should I do? 1
>>> Step 6: Perform-Arithmetic AP
     7  TIMES  0.37 is 2.59

          1. 100% FoR: Focus On (Total-Amount Minus Box-Price -> All-Donuts-Price)
     2. 0.0% WE: X - 0.22 = 2.59 (Write an equation)
     3.  0.0% NA:  I'll just give up.
What should I do? 1
>>> Step 7: Focus-On-Last-Relation

     1. 88.8% VC: TOTAL-AMOUNT MINUS 0.22 is 2.59. (Form an arithmetic goal)
     2.  4.2% WE: X - 0.22 = 2.59 (Write an equation)
     3.  7.0% NA:  I'll just give up.
>>> Step  8: Form-Arithmetic-Goal-For-Verbal VC
>>> Step  9: Set-Goals-To-Unwind UC

          1. 86.6% UC:  So MINUS becomes PLUS.(Invert operator)
     2. 13.4% UE:  So MINUS ... (Operator Inversion Error)
What should I do? 1
>>> Step 10: Invert-Operator UC
     So MINUS becomes PLUS
>>> Step 11: Invert-Input-Output UC
     Some number ... 0.22 =2.59 ... 2.59 PLUS 0.22

          1. 96.6% AP:  2.59  PLUS  0.22 = 2.81  (Normal Arithmetic)
     2.  2.0% SL:  2.59  PLUS  0.22 = 28.1 (Arithmetic Slip)

          3.  1.4% AP:  I can't do this...
What should I do? 1
>>> Step 12: Perform-Arithmetic AP
     2.59  PLUS  0.22 is 2.81
>>> Step 13: Vrb*Have-Answer*Know-Everything-Correct
     So the answer is 2.81.  (Correct)
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Now let’s look at EAPS3 using formal algebra to solve the story problem in Figure 2.  A trace of
this problem being solved using formal algebra is shown in the trace in Table 7.8  The model starts off by
writing an equation and then focusing on the last relation in the problem, in which Laura adds 10 cents to
get the total price.  The production Write-Inverse-On-Both-Sides (WI) then inverts that last operation and
sets a goal to write a new equation.  It then writes an equation and re-parses it (i.e., it produces an internal
network of relations reflecting the external representation of the equation).

The part of the model that parses an equation (Steps 5 through 14) consists of productions that
comprehend numbers, operators, and variables, as well as productions that recognize that two terms
connected by an operator produce a new quantity which can then serve as the input to another relation.

Table 7.  EAPS3 performing formal algebra on a story problem (Fig 2)

>>> Step  1: Write-Equation-For-A-Verbal-Problem WE
    Write equation: (X * 25 + 10 = 110)
>>> Step  2: Focus-On-Last-Relation
    Focus on ALL-DONUTS-PRICE PLUS BOX-PRICE TOTAL-PRICE
>>> Step 3: Write-Inverse-On-Both-Sides WI
    So write … 10 on both sides…
>>> Step 4: Invert-Operator SC/VC
     So PLUS becomes MINUS
>>> Step  5: Write-Equation WE
    Write new equation:  (X * 25 + 10 – 10 = 110 - 10)
>>> Step  6: Comprehend-Variable SC  
>>> Step  7: Comprehend-Operator SC
>>> Step  8: Comprehend-Number SC
>>> Step  9: Comprehend-Quantity-Operator-Quantity-High-PrecedenceSC
    [X * 25 -> Q1  (Relation1) In  (X * 25)
>>> Step 10: Comprehend-Equals-Sign SC
>>> Step 11: Comprehend-Number SC
>>> Step 12: Comprehend-Operator SC
>>> Step 13: Comprehend-Number SC
>>> Step 14: Comprehend-Quantity-Operator-Quantity-Low-PrecedenceSC
    [110 - 10 -> Q2  (Relation2) in  (X * 25 = 110 - 10)
>>> Step 15: Comprehend-Lefthand-Side-Equals-Righthand-Side SC

         Q1 = Q2  In  (X * 25 = 110 - 10)
>>> Step 16: Focus-On-Last-Relation SC
>>> Step 17: Form-Arithmetic-Goal-for-Equation SC
    Simplify - 10 = Q1  in:  (X * 25 = 110 - 10)
>>> Step 18: Interpret-Operator
    So - ... is ... minus
>>> Step 19: Perform-Arithmetic AP
    110  minus  10 is 100
>>> Step 20: Update-Equation
>>> Step 21: Focus-On-Last-Relation
>>> Step 22: Write-Inverse-On-Both-Sides WI
    So write … 25 on both sides…
>>> Step 23: Invert-Operator SC/VC
    So TIMES becomes MULTIPLY
>>> Step 24: Write-Equation WE
    Write new equation:  (X * 25 / 25  = 100 / 25)
>>> Step 25: Comprehend-Variable SC
…
>>> Step 29:Comprehend-Quantity-Operator-Quantity-High-PrecedenceSC
    [100 / 25 -> Q3  (Relation3) In  (X = 100 / 25)

                                                

8 In these traces the model is “run” rather than walked; other options are not shown, the model just selects the most likely
production and fires it.
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>>> Step 30.: Comprehend-Lefthand-Side-Equals-Righthand-Side SC
    X = Q3  In  (X = 100 / 25)
>>> Step 31: Focus-On-Last-Relation SC
>>> Step 32: Form-Arithmetic-Goal-for-Equation SC
    Simplify / 25 = X  In:  (X = 100 / 25)
>>> Step 33: Interpret-Operator1
    So / ... is ... divide
>>> Step 34: Perform-Arithmetic AP
    100  Divide  25 Is 4
>>> Step 35: Have-Answer-For-Equation-Correct
         So the answer is 4.  (Correct)

Finally, let’s look at an example of EAPS3 making an Order-of-Operations error.  An example of
an order of operations error is shown in Figure 7, and the model’s solution is shown in Table 8.

Fig. 7.  An Order-of-Operations Error

Order-of-Operations bugs in EAPS3 are modeled by an overly general production that simply acts
on two integers side by side.  EAPS3 parses the equation in Step 6, immediately operating on the adjacent
numbers “4 + 25,” instead of completely comprehending the entire equation.  The model then finishes
comprehending the rest of the equation and performs the second algebra step correctly in Step 14.  It then
finishes the problem with the incorrect answer.

Table 8.  EAPS3 making an order-of-operations error on an equation:  X*4+25=68.36

>>> Step  1: Comprehend-Variable
>>> Step  2: Comprehend-Operator
>>> Step  3: Comprehend-Number
>>> Step  4: Comprehend-Operator
>>> Step  5: Comprehend-Number
>>> Step  6: Operate-On-Adjacent-Numbers-Then-Subtract OA
    OO:  Simplify 4 + 25  In S4E-Eq:  (X + Result$1695)
>>> Step  7: Interpret-Operator
    So + ... Is ... Plus
>>> Step  8: Perform-Arithmetic AP
    4  Plus  25 Is 29
>>> Step  9: Comprehend-Equals-Sign
>>> Step 10: Comprehend-Number
>>> Step 11: Comprehend-Quantity-Operator-Quantity-Low

         [X + 29 -> Res$1696  (Rel$1694) In  (X + 29 = 68.36)
>>> Step 12: Comprehend-Lefthand-Side-Equals-Righthand-Side
    68.36 = 68.36  In  (X + 29 = 68.36)
>>> Step 13: Focus-On-Last-Relation
>>> Step 14: Write-Inverse-On-Both-Sides
>>> Step 15: Write-Equation1 WE
    New-Eq:  (X "=" 68.36 - 29)
>>> Step 16: Comprehend-Variable
>>> Step 17: Comprehend-Equals-Sign
>>> Step 18: Comprehend-Number
>>> Step 19: Comprehend-Operator
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>>> Step 20: Comprehend-Number
>>> Step 21: Comprehend-Quantity-Operator-Quantity-Low

         [68.36 - 29 -> Res$1698  (Rel$1697) In  (X = 68.36 - 29)
>>> Step 22: Comprehend-Lefthand-Side-Equals-Righthand-Side

         X = Res$1698  In  (X = 68.36 - 29)
>>> Step 22: Focus-On-Last-Relation
>>> Step 23: Form-Arithmetic-Goal-for-Equation SC
    Simplify - 29 = X  In:  (X = 68.36 - 29)
>>> Step 24: Interpret-Operator1
    So - ... Is ... Minus
>>> Step 25: Perform-Arithmetic AP

68.36 Minus  29 Is 39.36
>>> Step 26: Sym*Have-Answer* Wrong

4.2 How we developed EAPS3

4.2.1 How we met the Acquirability Constraint
The development of EAPS3 was constrained not only by the first four constraints (C1-C4), but also by the
final two constraints (C5, C6) regarding learning, Acquirability and Transfer.  We discuss how we
modified EAPS2 to meet these constraints.

The Acquirability Constraint asks whether the productions in a model could be plausibly acquired.
The sole mechanism for acquiring new productions in ACT-R is analogy.  Productions acquired through
analogy may or may not be correct.  However, such productions are always correct at least in contexts like
those in which they are acquired.  This Acquirability Constraint was not met in EAPS2.  For instance, the
buggy Order-of-Operations production in EAPS2 specifically looked for instances where operator
precedence rules could be explicitly violated, for example choosing to operate on “4+3” in the expression
“5*4+3” because “*” has higher precedence than “+.”  This production violates the Acquirability
Constraint because there is no context in which this production produces correct behavior.

The old productions that implemented order of operations bugs in EAPS2 were never correct under
any circumstances.  In EAPS3, order of operations errors have been implemented by the production
Operate-on-Adjacent-Numbers9 that sometimes generates correct behavior but sometimes does not.
Operate-on-Adjacent-Numbers can fire when two numbers with an operator in between are seen in an
equation.  For instance, in the equation “X + 4 * 25 = 115” it could fire and correctly produce “X + 100 =
115.”  However, in the equation “X * 4 + 25 = 115” it can also fire, but it incorrectly produces “X * 29 =
115.”  This production is overly-general, working correctly in some circumstances, but missing conditions
in its left-hand-side that prevent it from incorrectly applying in other situations.

We modified EAPS3 to meet the Acquirability Constraint by modifying or eliminating any
production that could not produce a correct result (and thus could not be learned by analogy).  As
illustrated above, some error-producing productions were modified to be overly-general.  Below we
illustrate another way to model errors that meets the Acquirability Constraint, namely, the forgetting of
intermediate goals.

4.2.2 How we met the Transfer Constraint
Besides Acquirability, we also wanted EAPS3 to meet the Transfer Constraint (C6).  The Transfer
Constraint asks whether the model predicts sufficient transfer between problem categories.  Upon
inspection, it seemed that the transfer predictions for EAPS2 were inadequate.  For example, it seems

                                                

9 Actually, there is also a simple variant of Operate-on-Adjacent-Numbers, Operate-On-Adjacent-Numbers-Then-Subtract,
shown in the last trace, which performs a normal order-of-operations error, and then subtracts that result from the unknown.
This bug was surprisingly common in DFA1, and may result from the high frequency in textbooks of mx+b form problems
that reinforce a shallow subtract-divide procedure.
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possible that if a student learns to solve equations informally, that some of that acquired knowledge could
transfer to solving equations using formal algebra.  Some of the skills that might transfer are deciding what
part of the equation to operate on and what new operation needs to be performed.  EAPS2 did not have an
underlying representation that was common to both equations and verbal problems.  Thus, such transfer
was not possible.

Examining the productions in EAPS2, we noticed a number of similarities between pieces of
different processes that were not apparent in our initial coarser grain modeling – they were hidden within
long complex production rules.  For example, different productions were used to model the unwind (UC)
and equation solving (WI) strategies even though there are significant similarities in their key steps.  In
both cases, students need to 1) find the last operation in a procedure or expression, the one that needs to be
inverted, and 2) to invert that operation.  The difference is in the representation that gets manipulated.  In
Equation Solving, students are applying the inverted operation (e.g., subtract 10) to both sides of an
equation (e.g., 3x + 10 = 70).  In Unwind, students are applying the inverted operation  (e.g., subtract
10) to the result quantity (e.g., 70).  This difference is seen in what is written down as illustrated in the
contrast between the Equation Solving solution in Figure 2 and the Unwind solution in Figure 3.  Despite
this difference, both strategies involve finding the operation to invert (e.g., adding ten) and finding the
inverse of an arithmetic operator (e.g., subtraction is the inverse of addition).

EAPS2 did not meet the Transfer Constraint because these similarities in processing were not
apparent in the model, or more precisely, they were not represented as productions common to the two
strategies.  Certainly similar processes were being performed but this similarity was buried in two complex
productions, Unwind (UC) and Write-Inverse-on-Both-Sides (WI) that implemented the key steps in the
Unwind and Equation Solving strategies.  To meet the Transfer Constraint in EAPS3, we broke up these
single complex productions into several smaller and simpler productions.  Table 9 shows the four smaller
EAPS3 productions that perform essentially the same process as the single Unwind production in EAPS2.
Table 10 shows the four smaller EAPS3 productions (two of which are common to Unwind) that perform
essentially the same process as the single Write-Inverse-on-Both-Sides production in EAPS2.   The
Transfer Constraint is thus met in EAPS3 because now the common steps in these strategies are
implemented by the same productions, Focus-on-Last-Relation and Invert-Operator.

Table 9.  Productions for Unwind Strategy

1. FOCUS-ON-LAST-RELATION
IF the goal is to solve a problem
  and there is a quantitative relationship with an operation
      involving an unknown input, and a known input quantity
  that produces a known output quantity.
THEN focus on that quantitative relationship.

2. SET-GOALS-TO-UNWIND
IF the focus is on a quantitative relation, and the first input is unknown,
     And the second input and the output are known
THEN set goals to invert the operator and to

     invert the second input and output.

3. INVERT-OPERATOR
IF there is a goal to invert an operator,
    and you know what the inverse of the operator is,
THEN invert the operator and pop the goal.

4. INVERT-INPUT-OUTPUT
IF there is a goal to invert the second input and output of a quantitative relation,
    and you know what the output and second input are but not the first input,
THEN combine the output and second input using the operator inverted to get the second.
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Table 10.  Productions for Interpretive Equation Solving
1. FOCUS-ON-LAST-RELATION  (Same as in Table 9)

2. WRITE-INVERSE-ON-BOTH-SIDES
IF the focus of attention is on the last operation in one side of an equation
    and that operation involves a known number,
THEN set goals to invert the operator and to
   write a new equation with the inverse of the operator and the number on both sides.

3. INVERT-OPERATOR (Same as in Table 9)

4.WRITE-EQUATION
IF there is a goal to write a new equation with an operator and number to add to each side,
THEN write a new equation with that operator and number added to each side.

In order to implement this change in EAPS3, we needed to make some significant changes in our
assumptions (and the model’s code) about how equation solving is performed.  In EAPS2, we modeled
equation solving as a largely perceptual-motor process that operated fairly directly on the external
representation of equations on paper.  The idea is that students “see” what change to make and then rewrite
the equation to implement that change.  In this approach the model is operating on visual representations of
the equation (c.f., Kirshner, 1989).  The informal unwind strategy, in contrast, operates on the
quantitative network, a verbal representation.  To have productions in common between equation solving
and informal unwind, we needed these processes to be operating on the same internal representation.

In addition to this computational clue, we were also led to a common internal representation for
equation solving and unwind, by our data analysis.  Recall the large discrepancy between students’ lack of
success with formal equation solving (19% no answer for integer start-unknowns see Table 3) versus their
relative success with informal strategies on equations (35% correct for integer start-unknowns) and even
greater success with informal strategies on word equations (70% correct for integer start-unknowns).   If
only students “read” and understood an equation just as they read the analogous word equation, they
should be able to solve equations much more effectively.

Thus, for both computational and empirical reasons we implemented an alternative approach to
equation solving in EAPS3.  In addition to the “Visual Equation Solving” strategy of EAPS2, we also
implemented an “Interpretive Equation Solving” strategy in EAPS3.  This strategy begins by translating
the equation into the same quantitative network representation that is created to model the reading of a
word-equation – this models the student who is “reading” and “understanding” the equation.   In addition
to the production changes shown in Tables 9 and 10, we also added productions in EAPS3 to parse
external symbolic expressions and create quantities and quantitative relations.  Once the quantitative
network representation is created, in addition to Visual Equation Solving, EAPS3 can solve the equation
either via Unwind or via Interpretive Equation Solving.

Let us consider in more detail the similarities and differences between the productions for Unwind
(Table 9) and for Interpretive Equation Solving (Table 10).  Both strategies use the productions Focus-on-
Last-Relation and Invert-Operator.  After Focus-on-Last-Relation, the productions Set-Goals-to-Unwind
and Write-Inverse-On-Both-Sides play analogous but different roles in the respective strategies, setting
goals for the next two productions to achieve.  The Invert-Operator production achieves one of these goals
in both strategies. The key difference between these strategies is in the final productions, Invert-Input-
Output and Write-Equation.  Invert-Input-Output operates on the quantitative network, an internal mental
representation, while Write-Equation generates a new equation on paper, an external representation. This
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difference between internal and external processing is important precisely because a major advantage of
equation solving is the ability to off-load working memory by using paper as an external memory store.

The addition of Interpretive Equation Solving leads to the following prediction in EAPS:
Successful equation solvers learn to first comprehend the equation and “make sense” of the formal
operations in terms of the quantitative relations expressed.  Less successful learners only acquire shallow
rules that operate more directly on a visual representation of equations (c.f. Kirshner, 1989).

Interpretive Equation Solving uses a deeper verbal representation of the equation (the quantitative
network) in addition to the external visual representation.  Visual Equation Solving is cued only by the
external visual representation, without complete comprehension of the quantitative relations.  Thus, this
strategy is more error prone, susceptible for instance to faulty inferences based on visual proximity, like
incorrectly adding 4 and 25 in “x * 4 + 25” (see Figure 7).   Even though Interpretive Equation Solving
requires more complex processing than the Visual Equation Solving, it builds on existing skills from more
familiar verbal problems.  Thus, it provides an avenue for students to more quickly and easily acquire
robust equation solving with understanding.

Given the efficiencies of direct visual processing, it is likely that expert equation solvers use a
process closer to Visual Equation Solving, however, we suspect such productions are acquired through
the automization of an earlier interpretive process performed with understanding rather than acquired
through direct visual analogies.

4.3 Predictions Resulting from EAPS3 Changes
The central motivation for developing EAPS3 was to better explain the transfer of skills learned in simpler
problems to more complex ones.  EAPS3 makes some novel predictions about skill transfer.  Consider the
problem types in our DFA studies (Figure 1).  Table 11 shows the main skill sets that apply to these
different problem types.  The main skills (productions) are listed on the left as rows and different strategies
and problem types that these apply to are listed across the top.  Moving left to right, each column
introduces new skills for the model to acquire.

The skill sets in Table 11 provide a hypothesized developmental sequence for learning early
algebra, where new skills are acquired incrementally through careful sequencing of problems (from left to
right in the table).  In this sequence, according to EAPS3, learning to identify the last operation that
produces the result (Focus-on-Last-Relation) would take place during informal algebra on verbal problems
(Table 11) and would then transfer to the more complex problems.  This Focus-on-Last-Relation skill
implies that, once a student can comprehend the meaning of a problem, whether given verbally or
symbolically, he or she can then identify the similar operation to undo, either informally or through
equation solving.  The Invert-Operator skill is useful for both verbal and symbolic problems.  In EAPS2,
there was no common representation for these productions to apply to, and so this transfer was not
possible.

The third column in Table 11 (Set 3) shows the needed skills (and parameter estimate) for an
informal strategy applied to a verbal problem (as shown in Table 6).  We can see that the main skills for
this strategy/problem type combination are Focus-on-Last-Relation, Form-Arithmetic-Goal-for-Verbal
(VC), Invert-Input/Output, and Invert-Operator (UC).  If the model were then to attempt to solve Verbal
problems using formal algebra (Set 4, the fourth column in Table 11), it would be exercising those skills
in the context of the symbolic representation, along with productions for equation generation (WE) and
manipulation (WI).  As shown at the bottom of Table 11, problems in Set 3 are correct 58% of the time,
while problems in Set 4 are correct only 35% of the time.  This analysis yields the following prediction:
informal algebra skills on verbal problems should be practiced to sufficiently strengthen those skills that
transfer to informal algebra on equations before moving on to algebra equations.  The same is true of skills
in Set 4 before moving on to Set 5 and Set 6.
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Table 11.  Coarse-Grain “Skill Sets” for EAPS3

Productions
Verbal
Arith

(Set1)

Symbol
Arith

(Set2)

Informal
Algebra

on Verbal
(Set3)

Informal
Algebra
on Eq
(Set4)

Formal
Algebra

on Verbal
(Set5)

Formal
Algebra
on Eq
(Set6)

Comprehension    
  Comprehend verbal representation (VC) 92% - 92% - 92% -
  Comprehend symbolic rep. (SC) - 78% - 78% 78% 78%
  Focus on last relation - - 100% 100% 100% 100%
Operator Interpretation/Inversion    
  Invert input/output (UC) - - 94% 94% - -
  Invert operator (UC) - - 94% 94% 94% 94%
Formal Algebra
 Write inverse on both sides (WI) - - - - 11% 11%
  Write equation (WE) - - - - 4% -
Arithmetic
  Integer Arithmetic (APe) 97% 97% 97% 97% 97% 97%

Performance        on        Two        Operator        Problems 80% 58% 58% 35% 1.6% 1.5%

The implication of this transfer prediction is significant.  According to the math model, the skills
for doing formal equation solving (WI) were executed correctly only 11% of the time, while skills
implementing unwind (UC) were executed correctly 90% (94% * 94%) of the time for the average student.
Because the formal algebra skill is initially very weak, it is important to strengthen the other skills required
for implementing it.  If our hypothesis about Focus-on-Last-Relation and Invert-Operator transferring to
formal algebra is correct, it should be possible to enhance readiness to learn equation solving by practicing
the Unwind strategy prior to introducing formal algebra.  Testing this prediction is on our agenda of future
work, which will be discussed next, in section 5.2.

5. DISCUSSION AND CONCLUSIONS

Like any theory, the EAPS theory is useful for a number of reasons: to provide explanations, to make
predictions, and to evaluate novel hypotheses and alternative designs.  EAPS provides explanations and
predictions about multiple aspects of early algebra problem-solving performance, learning, and instruction.
We discuss EAPS explanations of problem difficulty effects and the nature and frequency of student
strategies and errors (section 5.1).  We also discuss (section 5.2) predictions of the theory regarding early
algebra learning and instruction.

5.1 Using EAPS to Explain Prior Results
Theories are appropriately judged by their ability to make novel predictions beyond the scope of the
empirical data that drove their creation.  However, the ability of a theory to explain prior empirical results
is also important and particularly so when the prior results are surprising or counter to common belief.
For instance, Einstein's theory of relativity was important not just for its predictions but because it
provided an explanation for Michelson and Morley’s surprising data on the constancy of the speed of light.

5.1.1 Explanations of Problem Difficulty

The EAPS theory was motivated by the surprising result that word problems are easier than equations for a
class of early algebra problems.  In addition to statements in the cognitive literature regarding the
"notorious difficulty of story problems" (Cummins, Kintsch, Reusser & Weimer, 1988), we confirmed
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the prevalence of this common belief in formal surveys of mathematics teachers and education researchers
(Nathan & Koedinger, 2000).  Of course, "surprise" is in the eye of the beholder.  Some observers of our
results have hypothesized that story problems may be easier because the situational context of the story
problem cues relevant real world knowledge.  Indeed other studies have shown advantages for story
problems under certain circumstances (Carraher, Carraher & Schlieman, 1987; Baranes, Perry & Stigler,
1989) and have hypothesized that the situational cues in these problems support problem solving.
However, this explanation is contradicted by our results --students did just as well or better on integer
word equation problems (77%) as integer story problems (74%) whereas integer equations were harder
(60%).  In other words, it is not the story context that makes story problems easier than equations.

So what is the explanation for this verbal advantage?  A careful inspection of the EAPS model
provides an explanation.  Two reasons account for the difference in performance: differences in problem
comprehension and differences in strategy selection.  By problem comprehension we mean the translation
of an external problem representation, whether story, verbal or symbolic, into the internal quantitative
network representation of the quantities and relations (see Figure 4).  The importance of problem
comprehension to explaining the performance difference between word problems and equations is
highlighted by the fact that this difference is present even for result-unknown problems.

EAPS accounts for this verbal advantage by differences in the acquired utility of verbal
comprehension versus symbolic comprehension productions.  This explanation can be derived from the
parameter values shown in Table 5. (For simplicity we report the parameters for the integer problems – the
results are analogous using the parameters for the real number problems.)  For result-unknowns, correct
verbal comprehension (VC1) productions fire 92% of the time while correct symbolic comprehension
(SC1) productions fire only 78% of the time.  This difference in comprehension also plays a role in
explaining why verbal start-unknowns are easier than symbolic start-unknowns (VC2 = 88% versus SC2 =
61%). However, the model suggests a second reason for the verbal advantage on start-unknowns.  For
both symbolic and verbal start-unknowns, students perform better using informal strategies (35% and
58%, respectively) than formal strategies (2% and 2%, respectively). However, students are more likely to
use the formal strategy on symbolic start-unknowns (WI = 18%) than on verbal start-unknowns (WE =
4%).  Thus, this greater use of the still fragile equation solving strategy on symbolic problems results in
poorer performance.  The EAPS model predicts that if students were to more frequently use informal
strategies on symbolic start-unknowns, their performance would be substantially enhanced.

While strategy differences play a role in the relative difficulty of equations over verbal problems, it
is differences in comprehension productions, not computational productions, that are the major source of
the verbal advantage.  Algebra equation solving is hard, at least initially, more because of the “reading of
algebra” rather than the “doing of algebra.”

In general EAPS explains differences in problem difficulty in terms of differences in the
productions involved (at Newell’s (1990) knowledge level) or differences in utility estimates (at Newell’s
symbol level) or both.  The verbal advantage explanation above illustrates how these two factors may
combine to produce an explanation of relative problem difficulty.  In some cases, explanations (or
predictions) of problem difficulty derive simply from differences in productions involved.  For instance,
the effect that result-unknowns are easier than start-unknowns is explained in EAPS by the fact that
solving result-unknowns involves a proper subset of the productions involved in solving start-unknowns.
Although this effect is not surprising to most educators (Nathan & Koedinger, 2000), this explanation
pattern is useful as it provides an example for generating explanations and predictions of similar results.

5.1.2 Explanations of Student Strategy Use

In addition to explanations of problem difficulty, the EAPS theory provides explanations for the
nature and frequency of student strategy use.  As we applied model development constraints, such as
Choice Matching and Parsimony, the EAPS explanation of strategy use evolved.  In EAPS1 we modeled
student's informal solutions to start-unknown algebra problems as strategies that were explicitly selected
and globally applied.  Inspecting the resulting model, we noticed that the productions doing strategy
selection were not playing any significant computational role.  We found we could eliminate them without
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substantially changing the model's behavior.  Instead of doing explicit global strategy selection and
application, EAPS2 allows any production that applies to the current task demand to fire.  Thus EAPS2
hypothesizes that students are not explicitly selecting these strategies but are simply behaving in reaction to
local task demands.  Students need not be aware of these strategies – they are a part of many students’
implicit knowledge (Dienes & Perner, 1999).

5.1.3 Explanations of Student Errors

Besides insights into strategy use, our model development led to insights into the origin of student
errors.  A second weakness of EAPS1, besides explicit strategy selection, was a qualitative deviation from
the data whereby it systematically under-predicted the frequency of students’ conceptual errors on start-
unknown problems.  This deviation was the consequence of EAPS1 having explicit bugs (e.g., order of
operations) as its only way of producing conceptual errors.  In EAPS2, we added the possibility that the
model might fail to find anything to do at any particular choice point.  In this way, it produced conceptual
errors not through explicit buggy knowledge but implicitly through the failure to have any productions
with a sufficient estimated utility.  By this account, while some student errors are systematic, a larger
proportion of student errors are caused by a lack of knowledge.  This explanation derived from the
application of the Choice Matching Constraint.

We gained insight into the source of systematic errors by application of the Acquirability
Constraint.  In general in ACT-R, systematic errors are produced by production rules that yield incorrect
results.  In EAPS1&2, we simply wrote productions that produced the kinds of systematic errors we
observed in student data.  For instance, the EAPS2 production for order of operations essentially
implemented the opposite of the order-of-operations rules – it added and subtracted before multiplying or
dividing.  In applying the Acquirability Constraint, we further pushed on the question of the source of
systematic errors.  How could a production like this one be learned?  In ACT-R production rules are
acquired by analogy to successful problem-solving episodes.  While this does not require the resulting
production will be guaranteed to be correct in all situations, it does necessitate that the production be
correct in some situations.  Thus, in EAPS3 we modified the order-of-operation production as well as
other error producing productions, so that they are correct in some situations.

This change predicts that student performance on certain test items may over-estimate their true
competence as student can get some types of problems correct for the wrong reason (c.f., Aleven,
Koedinger, & Cross, 1999).  EAPS3 (and theories like it) can predict the specific problem categories for
which this over-estimation is possible and guide the design of assessments (and instructional activities)
that better address true competence.

5.1.4 Explanations of Strategy and Error Frequencies

EAPS explains the frequency and stochastic nature of student strategies and errors through a
combination of ACT-R production rules and production rule utility parameters.  Different possible paths
through the production rules yield different strategies and errors.  The frequency of a particular strategy or
error is determined by the number of paths that produce it and the probability of each path as computed
from utility values of competing productions along that path.  Any particular strategy or error frequency
can be determined by following the production path or paths that lead to it and computing the
corresponding probabilities as we have illustrated in the math model equations in Table 5 and Appendix 1.

5.2 Predictions: Using EAPS to Generate and Test Hypotheses about Learning
In addition to providing explanations of problem difficulty and student strategy and error behavior, the
EAPS theory can be used for generating and evaluating hypotheses about student performance and
learning.  One class of predictions EAPS can make is about ordering the problems in a curriculum to better
enhance learning.  These predictions are based on three different features of EAPS: 1) production
differences between problem categories, 2) utility differences between problem categories, 3) acquisition
and competition of buggy versus correct productions.
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5.2.1 Comprehension of equations translated from verbal problems:

One prediction EAPS makes has to do with comprehending equations.  Our efforts to write
transferable productions for EAPS3 led to a very similar underlying representation between verbal
problems and equations.  An implication of this commonality is the novel prediction that solving an
equation a student produces from a word problem is easier than solving an equation they are given.  When
writing the productions, we noticed that parsing the first equation produced from a verbal problem is
computationally redundant.  The model has production rules for comprehending equations that create the
verbal procedural representation, but when a verbal problem is translated into an equation the verbal
procedural representation (the quantitative network) already exists.  Therefore the production rules for
comprehending equations do not need to fire.10  This can be seen in the trace of equation solving on a
story problem (Step 2 in Table 7), where EAPS3 moves immediately to focus on the last relation.  In
contrast to equation solving on story problems, for equation solving on symbolic problems EAPS3 must
fire the equation comprehension productions to begin solving the problem (Table 8).  Thus, a prediction
of the model is that equation solving should be more successful in the context of doing a verbal problem
than when it is done in isolation.

Post-hoc analysis of the DFA data are consistent with this prediction – even when we factor out
possible selection biases in students or problems, for example, because it might be the better students who
use formal algebra on verbal problems.  Further research should test this prediction directly.

5.2.2 Predictions based on Production Utilities

ACT-R models, like EAPS, which have utilities attached to production rules, can make a general
class of predictions about student learning and optimal instruction.  One of these predictions is that
instructional sequences should present problem categories that involve the use of a subset of productions
before problems that use more.  A related but more general prediction is before presenting a hard problem
category identify the weakest component skill involved and present first a problem category that employs
this skill and as few others as possible.  The first of these instructional hypotheses is a common one (e.g.,
Gagne, 1985; VanLehn 1987) and predicts, for instance, that result-unknowns should be presented before
start-unknowns.  In fact, all textbooks we know of do present result-unknowns before start unknowns.
The second instructional hypothesis is more subtle.  Sometimes it is not possible to find a slightly easier
problem category that has a subset of the productions involved in the target category.  However, in such
cases it may be possible to identify easier problem categories that contain a key difficult production in the
target category, but the other productions involved are well practiced.

Consider the following example, which illustrates an instructional design strategy we call “bad-
apple isolation”.  Our model predicts that start-unknown word problems should be presented before start-
unknown equations.  As can be seen in Table 5, verbal start-unknown problems require verbal
comprehension (VC), operator and argument inversion (UC), and arithmetic (AP).  Symbolic start-
unknown problems require symbolic comprehension (SC), operator and argument inversion (UC) and
arithmetic (AP).  However, premature practice on symbolic problems could lead to a negative outcome.
SC may fail to fire, or worse a buggy production (like OA) may fire.  In the latter case, negative feedback
will yield a reduction in utility for all productions that produced the result (Anderson & Lebiere, 1998, p.
255).  Reducing the utility of buggy productions (UE) is appropriate, but other correct productions (like
AP) will also be penalized if there is no way to assign blame to the real bug.  We suspect that some cases
of student motivation problems can be accounted for in this way, that is, by instruction beyond students’
current preparation.

It is better to start with a representation the students are familiar with, the verbal representation.
Because the utility of the verbal comprehension production (VC2, 88%) is greater than that of symbol
comprehension (SC2, 61%) the new productions required to solve start-unknown word problems, Invert-

                                                

10 Another possibility is that the symbolic comprehension productions do fire again, but only serve to strengthen the existing
representation.
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Operator and Invert-Argument (UC), can be strengthened independently of symbol comprehension (SC).
This approach reduces the possibility of errors on more complex problems that build on them.  After the
student masters the Invert-Operator and Invert-Arguments productions, they can more easily go on to
solve symbolic start-unknown problems.

Often multiple productions fire to produce an external action or solution that a student can get
feedback on.  If that feedback is negative, the learner has a difficult credit/blame assignment problem.
Although the student’s error may result because just one of these productions is bad, the brain does not
know which one.  Like other credit assignment algorithms (e.g., backpropagation (Rumelhart &
McCllelland, 1986) or bucket brigade (Holland, Holyoak, Nisbett & Thagard, 1986)), in ACT-R some
blame gets distributed to all knowledge elements involved.  In such situations, “one bad apple spoils the
whole bunch.”  In other words, correct productions that fire in a chain with an incorrect production will
have their utility estimates decreased in such situations.  If students are given premature practice on an
overly difficult problem category, they may not only fail to learn.  Worse yet, their performance may
decline on easier problems as the utility of correct productions is reduced.  To reduce the negative
consequences of this “bad-apple effect” instruction should not only avoid such premature practice, but also
provide prior practice that boosts the utility of productions that are later used in conjunction with difficult
new skills.

In other words, in the example above prior practice on start-unknown problems helps boost Invert-
Operator and Invert-Arguments (UC) and Arithmetic-Procedure (AP), so that when students later
encounter start-unknown equations, credit/blame assignment can better isolate symbolic comprehension
productions (SC).   In some circumstances it is possible to identify simple problem categories that isolate
the “bad apple” as the only the skill that needs to be applied.  Often however, such problem categories
cannot be created because skills, like symbol comprehension, do not produce any external behavior.  In
other words, it is not possible to create a problem where only symbol comprehension applies because that
production does not yield any external behavior that can be checked.

5.2.3 Selecting and ordering instructional activities to reduce utility of overly-general productions

Another set of EAPS predictions is based on how EAPS models systematic errors as overgeneralizations.
Like other learning mechanisms, ACT-R’s analogy and utility learning mechanisms yield learning
outcomes that are sensitive to the order in which problems are presented.  In particular, some presentation
orders can lead to a greater likelihood of over-general productions than others.  In poorly designed
instruction, the sequences of examples and practice problems may be such that students can initially learn
and be successful with an overly general production.  Continued practice on such problems will yield
increasing utility estimates for the overly general productions.  It will be then necessary to distinguish the
overly general production from the correct one.  This potential confusion suggests that curricula should
have problems early on that will cause overly general rules to fail.  In such cases, more specific correct
productions increase in utility and with further practice will replace the over-general production.

An example problem that will cause an over-general production to fail is “800 – 40 x 4”.  Here,
students often start by incorrectly subtracting 40 from 800. Problems like “800 – 40 x 4” should be
introduced early so that overly general productions can receive negative feedback.  Early error feedback
can effectively eliminate such productions before they have a chance to accumulate a significant utility
value.

Instructional prescriptions like this one may obvious, however, not only are they often violated in
textbooks and classroom instruction, they are subtle because they seem in conflict with general (and
worthwhile) prescription to start with easier problems and build to more difficult ones.  Identifying the
difference between the right kind of “easier” (e.g., as discussed in prior section on “bad apples”) and the
wrong kind of “easier” (as discussed above) is something that should not be left to intuition, but can be
informed by detailed pedagogical domain theories like EAPS.
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6. CONCLUSION
We have described a theory of early algebra problem solving, based on ACT-R, that predicts the kinds of
correct and incorrect steps and the probability with which they are generated.  The theory sheds light on
the knowledge and knowledge selection processes behind student strategies and errors.  It was developed
not only based on ACT-R principles, but further guided by six model-building constraints that combine
empirical data, mathematical modeling, and cognitive task analysis methods to create a pedagogical domain
theory.  This theory provides a powerful theoretical tool for educational psychologists and mathematics
educators to both productively generate and accurately evaluate hypotheses about learning and instruction
of quantitative reasoning and early algebra problem solving.
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APPENDIX 1.  COMPLETE MATH MODEL

To get a sense of the derivations of the equations in the math model of EAPS2 it is useful to work
through some examples.  For the simplest case, story integer result-unknowns, each quantitative relation is
first comprehended (VC) and then arithmetic applies (AP), so the resulting equation for two quantitative
relations is: VC * AP * VC * AP.

For a more complex example, formal algebra on a word integer start-unknown, there are two
paths.  In one path each relation is translated to an equation (WE), the equation is transformed
symbolically (WI), comprehended (SC) and the arithmetic is performed (AP).  In the second path the
verbal problem is again translated into an equation, however, the equation is solved informally (because a
student writes down an equation in this case, we coded this sequence in the data and model as a formal
strategy).  This path corresponds to translation (WE) followed by comprehending the equation (SC) and
unwinding the relation (UC) and then performing the arithmetic (AP).  These two possible paths are added
together, resulting in the following expression: WE * WI * SC * AP * WI * SC * AP + WE * SC * UC *
AP * SC * UC * AP.

Let us look at how probability values are calculated and propagated for the simplest case, Word
Integer Result-unknown problems, which only use VC1 and APe.  VC competes only with the give-up
production; APe competes with the give-up and the Arithmetic-Slip production (SL).  The P and C values
for VC, APe, SL and GU are, respectively, 6.6% and 3, 96.9% and 3, 86.8% and 3, and 25% and 0.11

First, we compute the expected gains for each production using PG–C. This leads to expected gain
values for VC, AP, SL, and GU of 6.3, 16.4, 14.4 and 5 respectively.  Next, we determine choice-point
percentages for each production in each context in which it appears.  Entering the expected gain values for
VC and GU into the Likelihood Ratio equation yields the expression e6.3

 
/0.55 /(e6.3

 
/0.55   + e5

 
/0.55  ), which

results in a value for VC1 of 92%. Doing the same for APe and its competitors SL and GU yields 97%.
Following the equation from Table 5 yields 80% correct performance on integer verbal result-unknown
problems.

Below we show the complete math model for EAPS2, grouped by representation type and number
difficulty (the six rows in Tables 1 & 2), with 11 equations for each (the eleven major columns across
Tables 1 & 2).  These 11 equations correspond with 4 solution codes for result-unknown problems
(correct, arithmetic errors, conceptual errors, no answers), 3 for the start-unknowns solved informally
(correct, arithmetic errors, conceptual errors), 3 for start-unknowns solved informally (correct, arithmetic
errors, conceptual errors), and 1 more for no answer on start-unknowns.

A. Integer Story and Word Problems (separate rows in Tables 1 & 2 but they have the same equations)

1. VC1 * APe * VC1 * APe Correct Result-Unknown

2. VC1 * ( SLe * VC1 * (APe + SLe) + Arithmetic Errors

APe * VC1* SLe +

(APe + SLe) * VC1 * (1 - APe - SLe))

3.  VC1 * (APe + SLe) * (1 - VC1) Conceptual Errors

4.  (1 - VC1) + VC1 * (1 - APe - SLe) No Answer

5.  VC2* UC * APe * VC1* UC * APe Correct Start-Unknown (Informal Strategy)

6.  VC2* UC * (APe * VC1 * UC * SLe + Arithmetic Errors

SLe * VC1 * UC * (APe + SLe) +

(APe + SLe) * VC1 * UC * (1 - APe - SLe) )

                                                

11 For the production costs we used 3 for most productions, 4 for the formal algebra, and 0 for the give-up production.  The P values
are determined by fitting the DFA data and the math model.
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7. VC2* UE + Conceptual Errors

 VC2* UC * (APe + SLe) * ((1 - VC1) + VC1 * (1 - UC ))

8. WE * SC2 * UC * APe * SC1 * UC * APe + Correct Start-Unknown (Formal Strategy)

WE * WI2 * SC2 * APe * WI2 * SC1 * APe

9. WE * SC2* UC * ( APe * WE * UC * SLe + Arithmetic Errors

 SLe * SC1 * UC * (APe + SLe) +
(1 - APe - SLe) +

(APe + SLe) * SC1 * UC * (1 - APe - SLe)) +

 WE * WI2 * SC2* ((1 - APe - SLe) + (APe + SLe) * WI1 * SC1 * (1 - APe - SLe))

10. WE  * (1 - SC2- OA  - WI2)   + Conceptual Errors

 WE * SC2 * (1 - UC -UE)   +   WE * SC2* UE +

 WE * SC2 * UC * (APe + SLe) * (1 - SC1) +

 WE * SC2 * UC * (APe + SLe) * SC1 * (1 - UC - UE) +

WE * WI2 * (1 - SC2) +

WE * WI2 * SC2 * (APe + SLe) * (1 - WI1) +

WE * WI2 * SC2 * (APe + SLe) * WI1 * (1 - SC1) +
 WE * OA

11. (1 - VC2- WE)  + No Answer

VC2* (1 - UC - UE) +

VC2 * UC * (1 - APe - SLe)

B.  Integer Equation
1. SC1 * APe * SC1 * APe Correct Result-Unknown

2. SC1 * ( SLe * SC1 * (APe + SLe) +  Arithmetic Errors

APe * SC1 * SLe +

(APe + SLe) * SC1 * (1 - APe - SLe) )

3. SC1 * (APe + SLe) * (1 - SC1) Conceptual Errors

4. (1 -  SC1 ) + No Answer

SC1 * (1 - APe - SLe))

5. SC2 * UC * APe * SC1 * UC * APe Correct Start-Unknown (Informal)

6. SC2 * UC * ( APe * SC1 * UC * SLe + Arithmetic Errors

  SLe * SC1 * UC * (APe + SLe))

7. SC2 * UE + Conceptual Errors

SC2 * UC * (APe + SLe) * ((1 - SC1) + SC1 * (1 - UC))

8. WI2 * SC2 * APe * WI2 * SC1 * APe Correct Start-Unknown (Formal)

9. WI2 * SC2 * (APe * WI2 * SC1 * SLe + Arithmetic Errors

    SLe * WI2 * SC1 * (APe + SLe) +
     (1 - APe - SLe) +

          WI2 * (APe + SLe) * WI1 * SC1 * (1 - APe - SLe) )

10. WI2 * (1 - SC2) + Conceptual Errors

WI2 * (APe + SLe) * ((1 - WI1) + WI1* (1 - SC1)) + OA
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11. (1 - SC2 - WI2 – OA)  + No Answer

SC2 * (1 - UC - UE)  +

SC2 * (UC + UE) * (1 - APe - SLe)

C. Decimal Story
 1. VC1 * (AS + APs) * VC1 * (AS + APs) Correct Result-Unknown

 2. VC1 * ( (SLs + BGs)*VC1* ((AS + APs)+SLs + BGs) + Arithmetic Errors

(AS + APs) * VC1 * (SLs + BGs) +

 ((AS + APs)+SLs + BGs)*VC1* (1 - (AS + APs)-SLs-BGs))

 3. VC1 * ((AS + APs) + SLs + BGs) * (1 - VC1) Conceptual Errors

  4. (1 - VC1)  + No Answer

VC1 *  (1 - (AS + APs) - SLs - BGs)

 5. VC2* UC * (AS + APs) * VC1 * UC * (AS + APs) Correct Start-Unknown (Informal)

 6. VC2* UC * ( (AS + APs)* VC1 * UC*(SLs + BGs) + Arithmetic Errors

 (SLs +BGs)*VC1* UC * ((AS + APs) + SLs + BGs) +

((AS + APs) + SLs + BGs) * VC1 * UC * (1 - (AS + APs) – SLs - BGs) )

 7. VC2 * (1 - UC - UE) + VC2* UE + Conceptual Errors

VC2* UC * ((AS + APs) + SLs + BGs) * ((1 - VC1)+VC1*(1 - UC) )

8. WE*SC2*UC*(AS + APs) * SC1* UC * (AS + APs) Correct Start-Unknown (Formal)

9. WE * WI2 * SC2 * (AS + APs) * WI2 * SC1 * (AS + APs) Arithmetic Errors

10. WE * SC2 * UC * ( (AS + APs) * SC1 * UC * (SLs + BGs) + Conceptual Errors

(SLs + BGs)* SC1 *UC* ((AS + APs) + SLs + BGs) +
(1 - (AS + APs) - SLs - BGs) +

((AS + APs) + SLs + BGs) * SC1 * UC * (1 - (AS + APs) - SLs - BGs)) +

WE * SC2 * (1 - UC -UE) +

WE * SC2 * UE +

WE * SC2 * UC * ((AS + APs) + SLs + BGs) * (1 - SC1) +

WE * SC2 * UC * ((AS + APs) + SLs + BGs) * SC1 * (1 - UC - UE) +

WE * WI2 * ( (1 - (AS + APs) - SLs - BGs) +

((AS + APs) + SLs + BGs) * WI1 * SC1 * (1 - (AS + APs) - SLs - BGs) )

WE * WI2 * ( 1 -  SC2) + WE * WI2 * ((AS + APs) + SLs + BGs) * (1 - WI1) +

WE * WI2 * ((AS + APs) + SLs + BGs) * WI1 * (1 - SC1) +
WE * OA +

WE  * (1 - SC2  - OA  - WI2)

11. (1 - VC2 - WE )   +   VC2* (1 – UC) + No Answer

VC2* UC * (1 - (AS + APs) - SLs - BGs)

D. Decimal Word
 1. VC1 * APh * VC1 * APh Correct Result-Unknown

 2. VC1 * ( (SLh + BGh) * VC1 * (APh + SLh + BGh) + Arithmetic Errors

APh * VC1 * (SLh + BGh) +
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 (APh + SLh + BGh) * VC1 * (1 - APh - SLh - BGh))

 3. VC1 * (APh + SLh + BGh) * (1 - VC1) Conceptual Errors

 4. (1 - VC1) + No Answer

VC1 * (1 - APh - SLh - BGh)

5. VC2 * UC * APh * VC1 * UC * APh Correct Start-Unknown (Informal Strategy)

 6. VC2 * UC * ( APh * VC1 * UC * (SLh + BGh) + Arithmetic Errors

(SLh + BGh) * VC1 * UC * (APh + SLh + BGh) +

(APh + SLh + BGh) * VC1 * UC * (1 - APh - SLh - BGh) )

 7. VC2 * UE + Conceptual Errors

VC2 * UC * (APh + SLh + BGh) * ((1 - VC1) + VC1 * (1 - UC) )

8. WE * SC2  * UC * APh * SC1 * UC * APh + Correct Start-Unknown (Formal Strategy)

WE * WI2 * SC2 * APh * WI2 * SC1 * APh

 9. WE * SC2  * UC * ( APh * SC1 * UC * (SLh + BGh) + Arithmetic Errors

(SLh + BGh) * SC1 * UC * (APh + SLh + BGh) +
(1 - APh - SLh - BGh) +

(APh + SLh + BGh) * SC1 * UC * (1 - APh - SLh - BGh))  +

 WE * WI2 * SC2 * ( (1 - APh - SLh - BGh) +

(APh + SLh + BGh) * WI1 * SC1 * (1 - APh - SLh - BGh) )

10. WE  * (1 - SC2 - OA  - WI2) + Conceptual Errors

WE * SC2 * (UE +
(1 – UC - UE) +

 UC * (APh + SLh + BGh) * (1 - SC1) +

 UC * (APh + SLh + BGh) * SC1 * (1 - UC - UE)) +

WE * WI2 * (1 - SC2) +

WE * WI2 * (APh + SLh + BGh) * ( (1 - WI1) + WI1 * (1 - SC1) ) +
WE * OA

11. (1 -  VC2  - WE) + No Answer

VC2 * (1 – UC - UE) +

VC2 * UC * (1 - APh - SLh - BGh)
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E. Decimal Equation
1.  SC1 * APh * SC1 * APh Correct Result-Unknown

2. SC1 * ( (SLh + BGh) * SC1 * (APh + SLh + BGh) + Arithmetic Errors

       APh * SC1 * (SLh + BGh) +

 (APh + SLh + BGh) * SC1 * (1 - APh - SLh - BGh))

3.  SC1 * (APh + SLh + BGh) * (1 - SC1) Conceptual Errors

4. (1 - SC1) + No Answer

SC1 * (1 - APh - SLh - BGh)

5.  SC2 * UC * APh * SC1 * UC * APh Correct Start-Unknown (Informal Strategy)

6. SC2 * UC * ( APh * SC1 * UC * (SLh + BGh) + Arithmetic Errors

(SLh + BGh) * SC1 * UC * (APh + SLh + BGh) +

 (APh + SLh + BGh) * SC1 * UC * (1 - APh - SLh - BGh) )

7. SC2 * UE + Conceptual Errors

SC2 * UC * (APh + SLh + BGh) * ((1 - SC1) + SC1 * (1 - UC) )

 8. WI2 * SC2 * APh * WI2 * SC1 * APh Correct Start-Unknown (Formal Strategy)

9. WI2 * SC2 * (APh * WI2 * SC1 * (SLh + BGh) + Arithmetic Errors

 (SLh + BGh) * WI2 * SC1 * (APh + SLh + BGh) + (1 - APh - SLh - BGh)) +

WI2 * (APh + SLh + BGh) * WI1 * SC1 * (1 - APh - SLh - BGh)

10. WI2 * (1 - SC2) + Conceptual Errors

WI2 * (APh + SLh + BGh) * ((1 - WI1) + WI1 * (1 - SC1)) + OA

 11.(1 - SC2 - WI2 – OA) + No Answer

SC2 * (1 - UC - UE) +

SC2 * UC * (1 - APh - SLh - BGh)
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APPENDIX 2.  SAMPLE OF ACT-R PRODUCTIONS AND WORKING MEMORY
ELEMENTS FOR EAPS3

For those readers interested in more details in the model, we illustrate the code of a number of key
productions in EAPS3 and key elements of the working memory state before and after the application of
those productions.

Comprehension of External Representation

Working Memory 1A shows the essential portion of working memory as EAPS3 begins solving
“X * 25 + 10 = 110” in Trace 3 and Figure 2.  As EAPS3 performs symbolic comprehension, productions
fire to interpret the symbols in the equation one by one.12  The productions that model this process remove
terms from the list in the contents slot of the Equation WME and interprets them by creating corresponding
*Quantity and *Relation working memory elements, shown in Working Memory 1B.  The model’s
interpretation of the equation is stored in the interpretation slot of the Equation WME.

Working Memory 1:  Equation working memory representation
A. Equation prior to comprehension

(Equation1 isa Equation
contents (X * 25 + 10 = 110))

B. Equation and internal representations after partial comprehension13

(Equation1 isa Equation
contents ( =  110)

      interpretation  (Variable1  Op1  Number1  Op2  Number2) )
(Variable1 isa *Quantity   trans-to-alg X status Unknown )
(Op1 isa *Relation   op Times )
(Number1 isa *Quantity   value 25 status Known  )
(Op2 isa *Relation   op Plus )
(Number2 isa *Quantity   value 10 status Known  )

EAPS3 models correct equation comprehension using Comprehend-Quantity-Operator-Quantity
productions, which pay attention to operator precedence, and build quantitative relations with the correct
structure, instead of directly creating an arithmetic goal.

As the process of symbolic comprehension takes place, terms are removed from the “contents” list,
interpreted (i.e., converted into *Quantity WMEs by the productions Comprehend-Variable, Comprehend-
Operator, and Comprehend-Number) and placed in the “interpretation” slot.  Normally, productions like
Comprehend-Quantity-Operator-Quantity take a series of a *Quantity, *Relation, and *Quantity in the
“interpretation” slot and build a node in the quantitative network, replacing the series in the “interpretation”
with a *Quantity created to represent the result of that operation being performed.

                                                

12 For example, Comprehend-Number, Comprehend-Variable, Comprehend-Operator.  These productions are shown firing in Trace
4 in Appendix 1.

13 This representation corresponds to the boxes in Figure 4, but the arrows connecting the quantities haven’t been created yet.
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Dealing with Unknown Input Quantities
Once the quantitative network has been built up, EAPS3 needs to focus on a quantitative relation to

process.  Production 1 shows one of the focusing productions, which simply marks the top-level
Problem-Goal with the current focus of attention.

Production 1:  Focus-on-Last-Relation Production

(p  Focus-on-Last-Relation
=Goal> isa Problem-Goal
      focus NIL
      context =Equation

=REL>   isa *Relation
      equation =Equation
      arg2 =Arg2
      result =Res3
=Arg2> isa *Quantity status Known
=Res3> isa *Quantity status Known

==>
=Goal>  focus =REL)

Once a quantitative relation has been focussed on, FORM-ARITHMETIC-GOAL-FOR-VERBAL
begins processing by creating an arithmetic-goal, shown in Working Memory 2.  It is basically a node in
the relation network with the structure flattened.  It contains the information in a quantitative relation, along
with the information of the quantities contained in that relation.

Working Memory 2:  Arithmetic Goal

(AG-1 isa Arithmetic-Goal
arg1 Base-Wage
op     Plus
arg2  Tips
arg2-status Known
arg2-value 66
arg2-units  Dollars
result   Gross-Salary
result-status Known
result-value 81.90
result-units Dollars)

This arithmetic goal cannot be solved directly by straight arithmetic, because only the second
argument value and the result value are known.  There are two strategies for dealing with an unknown
input quantity, Unwind (Table 9) and Interpretive Equation Solving (Table 10).

Productions that Implement the Unwind Strategy
Unwinding converts this arithmetic goal into one that can be solved using direct arithmetic.  The

first step in the Unwind strategy is to create goals to trigger the productions that implement it.  This step is
implemented by Set-Goals-to-Unwind, shown in Production 2 below.

Production 2:  Set-Goals-To-Unwind Production

IF you have an arithmetic goal,
    and you know what the second input and result are but not the first,
THEN create goals to invert the operator and invert the inputs and output and push them on the stack.

(p  Set-Goals-to-Unwind
=goal>  isa Arithmetic-Goal

object-status Unknown
op        =Op
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object2 =Obj2
object2-status Known
result    =Res
result-statusKnown

==>
=Inv-Op> isa Invert-Operator

op     =Op
new-op =Op
new-op =New-Op

=Inv-Args> isa Invert-Arguments
object  =Res
op       =New-Op
parent =goal

!push! =Inv-Args
!push! =Inv-Op)

The goals Set-Goals-to-Unwind creates, goals to invert the arguments and the operator used in the
relation, are shown in Working Memory 3 below.

Working Memory 3: Goals that trigger Invert-Arguments and Invert-Operator

Inv-Args-1>
isa             Invert-Arguments
object         Base-Wage
object2       tips
object2-value 66
result          Total-Wage
result-value 81.9
parent         pgoal-1

Inv-Op-1>
isa            Invert-Operator
op            plus

After these two goals are created, the productions Invert-Input-Output and Invert-Operator, shown
in Production 3, fire.14

Production 3: Productions that implement Unwind strategy

A. Invert-Input-Output

IF you have an arithmetic goal,
    and you know what the output and second input are but not the first input,
THEN combine the output and second input using the operator inverted to get the first input.
(p  Invert-Input-Output

=Goal>     isa Invert-Arguments
      object     =Term1
      object2   =Term2
      result     =Term3
      parent    =Arithmetic-Goal
=Term1> isa *Quantity status Unknown
=Term2> isa *Quantity status Known
=Term3> isa *Quantity status Known
=Arithmetic-Goal> isa Arithmetic-Goal

                                                

14 When a goal is created to invert an operator there are two slots, one for the old operator and one for the new.  The slot for the
inverted operator is initialized as the old one so if the goal is popped the operator remains the same, resulting in an unwind error.
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==>
=Arithmetic-Goal>
      object   =Term3
      object2 =Term2
      result    =Term1
!pop!)

B. Invert-Operator
IF you have a goal to invert an operator,
    and you know what the inverse of the operator is,
THEN invert the operator and pop the goal.

 (p  Invert-Operator
   =Goal>  isa  Invert-Operator
      op     =Plus
      new-op =Plus
   =Plus> isa  Op
      inverse  =Minus
      natural  =Plus
==>
   !output! ("So ~S becomes ~S" =Plus =Minus)
   =Goal>  new-op      =Minus
   !pop!)

After Invert-Input-Output and Invert-Operator fire and their associated goals are popped, the
Arithmetic-Goal has been converted into one, shown in Working Memory 4, which can be solved using
the standard arithmetic production, shown in Production 4.

Working Memory 4: Arithmetic Goal after Unwind

 (AG-1 isa Arithmetic-Goal
object       base-wage
object-value 15.9
op              minus
object2       tips
object2-value 66
result          total-wage
result-value NIL

Production 4: The Arithmetic Procedure

(p  Arithmetic
   =Goal>  isa Arithmetic-Goal
      object =Obj
      op        =Nat
      object2 =Obj2
      result =Res

=Obj>   isa *Quantity value =ObjV status Known
=Obj2> isa *Quantity value =Obj2V status Known
=Res>   isa *Quantity value=ResV - status Known

=Opr>   isa Op
 natural =Nat

op =Op

!bind! =Result (!eval! (Perform-Arith-Op =ObjV =Op =Obj2V))
==>
 =Goal>
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    result-value =Result
!pop!)

Main Production in the Interpretive Equation Solving Strategy
The second strategy for dealing with an unknown input quantity is formal algebra.  The most

reliable means for implementing this strategy was shown in Table 10.  The main production that
implements in is shown in Production 5.

Production 5:  Write-Inverse-On-Both-Sides

IF you are focusing on the last operation in a side of an equation
    and that operation involves a known number,
THEN set goals to invert that operation
   And to write a new equation, with the inverse of that operation on both sides.

(p  Write-Inverse-On-Both-Sides
   =PG> isa Problem-Goal
    focus =Operation
    context =Equation
   =Operation> isa *Relation
     sem =Op
     arg2 =Known-Number
     result =RHS
   =Equation> isa  Equation

contents-read  ($LHS  =Operation =Known-Number =Equal-Sign  $RHS)
   =Equal-Sign> isa *Object   sem          Equals
   =Known-Number> isa *Quantity  status Known

==>
=Write-Eq> isa Write-Equation
     parent =PG
     old    =Equation
     add-num =Known-Number
     add-op  =Natural-Op
=Inv-Op>  isa  Invert-Operator
     op     =Natural-Op
     new-op =Natural-Op
  !push! =Write-Eq
  !push! =Inv-Op)

When it fires, the two goals created:  one that inverts the operator using the Invert-Operator
production shown in Production 3, and one that writes a new equation concatenating an operator and
number to each side.  The processing of this equation then starts from the beginning.
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Visual Equation Solving and Order-of-Operations Errors
Finally, let us look at the production that implements the order-of-operations error in Production 6.

Because we view these errors being caused in part by Visual Equation Solving, it operates during parsing
on the external Equation WME rather than on the quantitative network.

Production 6:  Operate-on-Adjacent-Numbers

IF  there is a problem goal with an equation,
and the equation has two numbers connected with an operator

THEN create an arithmetic goal to perform that operation and push it on the stack.

(p  Operate-on-Adjacent-Numbers
=Goal> isa Problem-Goal
     context =Equation

=Equation> isa Equation problem =Prob
      interpretation ($LHS1 =Number1 =Op =Number2)
=Number1>isa *Quantity status Known
=Number2>isa *Quantity status Known
=Op> isa *Relation   op    =Op-op

==>
=RESULT> isa *Quantity status Unknown
=Equation>
      interpretation ($LHS1 =RESULT)
=OO-Arith> isa Arithmetic-Goal

object  =Number1
      op      =Op-op  
      object2 =Number2  
      result =RESULT
!push! =OO-Arith)


