
Introduction to R
R is a high level language especially designed for statistical calculations. R is free.

You can get it at:

http://www.cran.r-project.org/

There are versions for Unix, Linux, Windows and Mac. There is a similar program
called Splus. The commands in the two languages are virtually identical. Splus has more
stuff in it but R is free and it is faster. If you want to use Splus, you can purchase a copy
from Insightful at http://www.splus.mathsoft.com/.

1 Getting Started

In Unix or Linux, you start R by typing: R. In windows, click on the R icon. You can
now use R interactively. Just start typing commands.

You can also use R in Batch mode. To do this, store your R commands in a file, say,
file.r. In R type: source("file.r") which will execute the commands in file.r. In Unix
(or Linux), you can also do the following:

R BATCH file.r file.out &

which will execute the commands and store them in file.out.

NOTE: Use the command: q() to quit from R.

Use help(xxxx) to get help on command xxxx. Better yet, type help.start() to
open up a help window.

2 Basics

Here is a simple R session. The # symbol means “comment.” R ignores any command
after #. I have added lots of comments below to explain what is going on. You do not
need to type the comments.

x = 5 ### assign x the value 5

x ### print x

print(x) ### another way to print x

x <- 5 ### you can also use <- to make assignments

y = "Hello there"

y

y = sqrt(10)

z = x + y

1

z

q() ### Use this to quit

Scalars are treated by S-plus as vectors of length 1. That is why they print with a
leading “[1]” indicating that we are at the first element of a vector.

Vectors can be created using the c() command. c() stands for concatenate. Square
brackets are used to get subsets of a vector. The colon is used for sequences. Start up R
again then do this:

x = 1:5 ### the vector (1,2,3,4,5)

print(x)

x = seq(1,5,length=5) ### same thing

print(x)

x = seq(0,10,length=101) ### 0.0, 0.1, ..., 10.0

print(x)

x = 1:5

x[1] = 17

print(x)

x[1] = 1

x[3:5] = 0

print(x)

w = x[-3] ### everything except the third element of x

print(w)

y = c(1,5,2,4,7)

y

y[2]

y[-3]

y[c(1,4,5)]

i = (1:3)

z = c(9,10,11)

y[i] = z

print(y)

y = y^2

print(y)

y = 1:10

y = log(y)

y

y = exp(y)

y

x = c(5,4,3,2,1,5,4,3,2,1)

z = x + y

z ### R carries out operations on

2

vectors, element by element.

If you add vectors of different lengths then R automatically repeats the smaller vector
to make it bigger. This generates a warning if the length of the smaller vector is not the
same length as the longer vector.

x = 1

y = 1:10

x + y

x = 1:3

y = 1:4

x + y

x = 1:10

y = c(5,4,3,2,1,5,4,3,2,1)

x == 2 ### This is a logical vector.

z = (x == 2)

print(z)

z = (x<5); print(z) ### You can put two commands

on a line if you use a semi-colon.

x[x<5] = y[x<5] ### Do you see what this is doing?

print(x)

sort(y)

rank(y)

order(y)

o = order(y)

y[o]

Two expressions can be written on the same line if separated by a semicolon. One
expression can be written over several lines as long as a valid expression does not end a
line.

3 Matrices and Lists

To create a matrix, use the matrix() function as follows:

junk = c(1, 2, 3, 4, 5, 0.5, 2, 6, 0, 1, 1, 0)

m = matrix(junk,ncol=3)

print(m)

m = matrix(junk,ncol=3,byrow=T)

print(m) ### see the difference?

3

dim(m)

y = m[,1] ### y is column 1 of m

y

x = m[2,] ### x is row 2 of m

x

z = m[1,2]

print(z)

zz = t(z) ### take the transpose

zz

new = matrix(1:9, 3 , 3)

print(new)

hello = z + new

print(hello)

m[1,3]

subm = m[2:3, 2:4]

m[1,]

m[2,3] = 7

m[,c(2,3)]

m[-2,]

x1 = 1:3

x2 = c(7,6,6)

x3 = c(12,19,21)

A = cbind(x1,x2,x3) ### Bind vectors x1, x2, and x3 into a matrix.

Treats each as a column.

A = rbind(x1,x2,x3) ### Bind vectors x1, x2, and x3 into a matrix.

Treats each as a row.

x = 1:20

A = matrix(x,4,5) ### Change vector x

into a 4 by 5 matrix.

dim(A) ### get the dimensions of a matrix

nrow(A) ### number of rows

ncol(A) ### number of columns

apply(A,1,sum) ### apply the sum function to the rows of A

apply(A,2,sum) ### apply the sum function to the columns of A

B = matrix(rnorm(30),5,6)

A %*% B ### multiply matrices

t(A) ### transpose of A

4

x = 1:3

A = outer(x,x,FUN="*") ### outer product

print(A)

sum(diag(A)) ### trace of A

A = diag(1:3)

print(A)

solve(A) ### inverse of A

det(A) ### determinant of A

Lists are used to combine data of various types.

who = list(name="Joe", age=45, married=T)

print(who)

print(who$name)

print(who[[1]])

print(who$age)

print(who[[2]])

print(who$married)

print(who[[3]])

names(who)

who$name = c("Joe","Steve","Mary")

who$age = c(45,23)

who$married = c(T,F,T)

who

4 For Loops etc.

A for loop is done as follows.

for(i in 1:10){

print(i+1)

}

x = 101:200

y = 1:100

z = rep(0,100) ### rep means repeat

help(rep)

for(i in 1:100){

z[i] = x[i] + y[i]

}

w = x + y

5

print(w-z)

As this example shows, we can often avoid using loops since

R works directly with vectors.

Loops can be slow so avoid them if possible.

for(i in 1:10){

for(j in 1:5){

print(i+j)

}

}

if statements

for(i in 1:10){

if(i == 4)print(i)

}

for(i in 1:10){

if(i != 4)print(i) ### != means ‘‘not equal to’’

}

for(i in 1:10){

if(i < 4)print(i)

}

for(i in 1:10){

if(i <= 4)print(i)

}

for(i in 1:10){

if(i >= 4)print(i)

}

You can also use while loops.

i = 1

while(i < 10){

print(i)

i = i + 1

}

5 Functions

You can create your own functions in R. Here is an example.

my.fun = function(x,y){

6

This function takes x and y as input.

It returns the mean of x minus the mean of y

a = mean(x)-mean(y)

return(a)

}

x = runif(50,0,1)

y = runif(50,0,3)

output = my.fun(x,y)

print(output)

I like to call give functions names like xxxx.fun but this is not necessary. You can call
them anything you like. You can return more than one thing in a function. If you put
more than one thing in the return statement, the function returns a list. In the retrun
statement, you can attach names to the items in the list.

my.fun = function(x,y){

mx = mean(x)

my = mean(y)

d = mx-my

return(meanx=mx,meany=my,difference=d)

}

x = runif(50,0,1)

y = runif(50,0,3)

output = my.fun(x,y)

print(output)

names(output)

output$difference

output[[3]]

The following function will compute the square root of A:

sqrt.fun = function(A){

e = eigen(A,symmetric=TRUE)

sqrt.A = e$vectors %*% diag(sqrt(e$values)) %*% t(e$vectors)

return(sqrt.A)

}

A = diag(1:3)

B = sqrt.fun(A)

print(B)

B %*% B

7

6 Statistics

x = runif(100,0,1) ### generate 100 numbers randomly between 0 and 1

y = rnorm(10,0,1) ### 10 random Normals, mean 0, standard deviation 1

mean(y)

median(y)

range(y)

max(y)

min(y)

sqrt(var(y))

summary(y)

y = rpois(500,4) ### 500 random Poisson(4)

pnorm(2,0,1) ### P(Z < 2) where Z ~ N(0,1)

pnorm(2,1,4) ### P(Z < 2) where Z ~ N(1,4^2)

qnorm(.3,0,1) ### find x such that P(Z < x)=.3 where Z ~ N(0,1)

pchisq(3,6) ### P(X < 3) where X ~ chi-squared with 6 degrees

of freedom

7 Plots

There are many options related to plotting. You control them with the par command,
which stands for “plotting pararameters.” Type help(par).

x = 1:10

y = 1 + x + rnorm(10,0,1)

plot(x,y)

plot(x,y,type="h")

plot(x,y,type="l")

plot(x,y,type="l",lwd=3)

plot(x,y,type="l",lwd=3,col=6)

plot(x,y,type="l",lwd=3,col=6,xlab="x",ylab="y")

plot(1:20,1:20,pch=1:20)

plot(1:20,1:20,pch=20)

par(mfrow=c(3,2)) ### put 6 plots per page, in a 3 by 2 configuration

for(i in 1:6){

plot(x,y+i,type="l",lwd=3,col=6,xlab="x",ylab="y")

}

8

postscript("plot.ps") ### put the plots into a postscript file

you have to do this if you use BATCH

plot(x,y,type="l",lwd=3,col=6,xlab="x",ylab="y")

dev.off() ### This turns the printing device off.

This will close the postscript file so you

can print it.

Now you can print the file our view it with

a previewer such as ghostview.

par(mfrow=c(1,1)) ### return to 1 plot per page

y = rpois(500,4) ### 500 random Poisson(4)

hist(y) ### histogram

hist(y,nclass=50)

x = seq(-3,3,length=1000)

f = dnorm(x,0,1) ### normal density

plot(x,f,type="l",lwd=3,col=4)

x = rnorm(1000)

boxplot(x)

8 Data Frames and Reading Data From Files

To read in commands or functions from a file rather than typing them in, use source().
Put some R commands into a file called hello. Try source("hello").

If you have data in a file, you can read it into R using the read.table command.
Suppose file.txt looks like this:

2 4 17.2

3 8 12

3 3.4 19

2 52 101.2

1 1 3

Read the data as follows.

a = read.table("file.txt")

This places the data into a data frame. A data frame is like a matrix but is more
general. Each column can be a different type of data (character, numeric etc.) Read the
help file on data.frame and read.table for more information.

You can also read data into a vector using the scan command:

a = scan("file.txt") ### a is a vector

a = matrix(a,ncol=3,byrow=T)

print(a)

9

9 Regression

Here is how to do linear regression in R. First, you should read the help files on the
commands lm (linear models) and step (stepwise regression):

help(lm)

help(step)

Suppose you have three vectors y, x1 and x2 and you want to fit the model:

Y = β0 + β1x1 + β2x2 + ε

x1 = seq(1,10,length=25)

x2 = runif(25,3,7)

y = 4 + 2*x1 + 7*x2 + rnorm(25,0,1)

mydata = data.frame(y=y,x1=x1,x2=x2)

out = lm(y ~ x1 + x2, data = mydata)

names(out)

extractAIC(out)

s = summary(out)

print(s)

names(s)

par(mfrow=c(2,2))

plot(out,ask=F)

Another way to do linear regression is as follows:

X = cbind(x1,x2)

temp = lsfit(X,y)

ls.print(temp)

names(temp)

To do stepwise regression:

out = lm(y ~ x1 + x2,data = mydata)

forward = step(out,direction="forward")

backward = step(out,direction="backward")

summary(forward)

summary(backward)

Here are some more regression examples.

10

Cat example

heartweight versus brainweight.

library(MASS) ### This is the library from Modern Applied

Statistics in S (Venables and Ripley)

attach(cats)

names(cats)

summary(cats)

postscript("cat.ps",horizontal=F)

par(mfrow=c(2,2))

boxplot(cats[,2:3])

plot(Bwt,Hwt)

out = lm(Hwt ~ Bwt,data = cats)

summary(out)

abline(out,lwd=3)

names(out)

r = out$residuals

plot(Bwt,r,pch=19)

lines(Bwt,rep(0,length(Bwt)),lty=3,col=2,lwd=3)

qqnorm(r)

dev.off()

Now have a look at the file cats.ps.

Rats example

postscript("rats.ps",horizontal=F)

par(mfrow=c(2,2))

data = c(176,6.5,.88,.42,

176,9.5,.88,.25,

190,9.0,1.00,.56,

176,8.9,.88,.23,

200,7.2,1.00,.23,

167,8.9,.83,.32,

188,8.0,.94,.37,

195,10.0,.98,.41,

176,8.0,.88,.33,

165,7.9,.84,.38,

158,6.9,.80,.27,

148,7.3,.74,.36,

149,5.2,.75,.21,

163,8.4,.81,.28,

170,7.2,.85,.34,

186,6.8,.94,.28,

11

146,7.3,.73,.30,

181,9.0,.90,.37,

149,6.4,.75,.46)

data = matrix(data,ncol=4,byrow=T)

bwt = data[,1]

lwt = data[,2]

dose = data[,3]

y = data[,4]

n = length(y)

out = lm(y ~ bwt + lwt + dose)

summary(out)

plot(out)

infl = lm.influence(out) ### influence statistics

hii = infl$hat

delta.beta = round(infl$coef,3)

st.res = infl$wt.res ### residuals

for(i in 1:3){

plot(1:n,infl$coef[,i],pch=19,type="h")

lines(1:n,rep(0,n),lty=3,col=2)

}

plot(1:n,st.res,type="h")

lines(1:n,rep(0,n),lty=3,col=2)

print(data[3,])

par(mfrow=c(1,1))

remove third case

y = y[-3]

bwt = bwt[-3]

lwt = lwt[-3]

dose = dose[-3]

out = lm(y ~ bwt + lwt + dose)

summary(out)

dev.off()

12

10 C functions in R

In Unix and Linux, you can include a C function (or Fortran function) into R as follows
(the procedure in Windows is a bit different):

STEP (1): Write a C program. Here is an example:

#include "stdio.h"

#include "math.h"

#include "stdlib.h"

#define PI 3.14159

#define NMAX 100

double add(double *x, double *y, long *nn, double *out)

{

long n = *nn;

int i;

for(i=0;i<n;i++) out[i] = x[i] + y[i];

}

Note 1: All arguments must be pointers.
Note 2: Any variable that is integer in R must be long in C.

STEP (2): compile it. Assuming the file is called add.c, the compilation is done as
follows:

R CMD COMPILE add.c

R CMD SHLIB add.o

STEP (3): Go into R and type:

dyn.load("add.so")

is.loaded("add")

STEP (4): Write an R function as follows:

13

add.fun = function(x,y){

n = length(x)

out = as.double(rep(0,n))

z = .C("add",as.double(x),as.double(y),as.integer(n),

out=as.double(out))

z

}

Note: It is best to use as.double and as.integer to make sure that the variables
have the correct attributes.

Note: To return something, you must set aside a variable. For example, the variable
out is for that purpose. Make sure out is the right length.

Now you can use this function just like any other R function. It is also possible to call
R functions from C.

14

