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Abstract: Poor instruction has been cited as a primary cause of attrition from STEMmajors and a major obstacle to

learning for those who stay [Seymour and Hewitt [1997]. Talking about leaving: Why undergraduates leave the sciences.

Boulder, CO: Westview]. Using a double-blind design, this study tests the hypothesis that the lack of explicit instructions

in scientific inquiry skills is a major factor in both low STEM retention and academic underperformance. This project

delivered supplemental instruction to students in a laboratory-based undergraduate biology course (n¼ 314) that was

derived either from cognitive task analyses (CTAs) conducted with expert biologists (treatment) or was authored and

delivered by an award-winning biology instructor (control). Students receiving traditional instruction were almost six

times more likely to withdraw from the course than students in the treatment condition (8.1% vs. 1.4% of initial

enrollment). Of the students who completed the course, those who received the CTA-based instruction demonstrated

significantly higher levels of performance in the discussion section of their written laboratory reports. Significantly

higher performances were seen specifically in the areas of analyzing data to formulate valid conclusions, considering

alternative explanations, consideration for the limitations of the experimental design and implications of the research.
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Nationally, undergraduate majors in the biological sciences have high rates of attrition. The average

dropout rate is approximately 50% (Astin &Astin, 1993; Seymour, 2001). Although a broad range of factors

influence student retention in the sciences, one that is almost universally cited by exiting students is poor

instruction. In a national study of college freshmen who initially declared STEM (Science, Technology,

Engineering, Mathematics) majors, 90% of students who switched to non-science majors cited ineffective

instruction as a primary reason. Of those who successfully completed degrees in STEM programs, 74%

indicated that poor instruction was a major problem (Seymour &Hewitt, 1997). In addition, 55% of students

report that they fail to see how the concepts and skills they are taught apply to the problems that they are asked

to solve (Seymour, 2001).

Classes inwhich students learn researchmethods and scientific inquiry skills (defined here as the logical

tools and frameworks used by scientists to collect, analyze, and interpret data within the context of scholarly

discoursewithin their disciplines1) are especially problematic formany students. Such courses typically yield

great variation in students’ skill mastery and self-efficacy at the postsecondary level (Bianchini, Whitney,

Breton, & Hilton-Brown, 2001; Onwuegbuzie, Slate, Paterson, Watson, & Schwartz, 2000). Such courses

typically present their content through assigned readings and instructors’ lectures. In each case, the

explanation of how to do research is often dependent upon the ‘‘armchair reflections’’ of a researcher
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describing his or her own problem-solving practices (Schunn & Anderson, 2001, p. 87) or outmoded linear

descriptions of the ‘‘scientificmethod’’ (Hodson, 1996; Lederman, 1998). In other instances, messages about

the nature and mechanisms of inquiry are left mostly or entirely implicit (e.g., Delamont & Atkinson, 2001;

Leckie, 1996; Palmquist & Finley, 1997). However, even when the instructor provides personalized

descriptions of authentic research procedures, research on knowledge elicitation and STEM experts’

cognition indicates that self-reports of problem-solving processes are usually incomplete or inaccurate (Chao

& Salvendy, 1994; Cooke & Breedin, 1994; Dunbar, 2000; Feldon, 2007, in press).

These inaccuracies occur chiefly through two mechanisms that stem from the development of expert

cognition. First, experts develop very sophisticated and extensive schemas in their domains of expertise,

which serve as templates for rapidly organizing relevant information (Cooke, 1992). As a result, they are able

to assess and approach problems with a greater degree of complexity than a non-expert could manage. These

schemas efficiently support information encoding by guiding attention and governing the interpretation of

events (Gobet, 1998), but they can do so at the expense of the ability to ‘‘unpack’’ the schema and verbalize

the relationships between elements with a high level of specificity (Rikers, Schmidt, & Boshuizen, 2000).

Robust schemas can also inhibit the recollection of information that does not readily fit the templates that they

provide (Wigboldus, Dijksterhuis, & van Knippenberg, 2003). Consequently, if an expert holds an a priori

causal theory regarding either the mechanisms of his own problem-solving processes or the nature of the

phenomena he is researching, information which conforms to that theory will be attended towhile discrepant

information is likely to be disregarded or misremembered in a manner similar to the confirmation bias effect

(Chinn & Brewer, 1993; Koslowski & Maqueda, 1993). This is true not only of the theoretical frameworks

that govern research efforts, but also of scientists’ ideas about how they perform their work. Therefore,

explanations are highly likely to be based on the generic properties of their schemas rather than the actual

basis of their problem solving in a specific instance (cf. Nisbett & Wilson, 1977).

The second element of expert cognition that leads to the inaccuracy of self-report is automaticity

(Blessing & Anderson, 1996; Feldon, 2007). Automaticity results from the extensive practice of specific

skills and decision-making processes. As individuals acquire expertise, they require significantly less

conscious monitoring of the procedures they employ to solve problems in their field. When a given skill has

been applied often enough, it can be deployed without conscious effort. Goals and strategy selection can also

occur without conscious intent (Aarts & Dijksterhuis, 2000; Bargh, Gollwitzer, Lee-Chai, Barndollar, &

Trotschel, 2001). This ‘‘step-skipping behavior’’ (Koedinger & Anderson, 1990, p. 511) of experts leads to

omissions in the articulation of their problem-solving processes, because they do not consciously select or

engage themost familiar aspects of their respective approaches. Consequently, themost frequently employed

elements—presumably those of greatest utility within a domain of expertise—are the most difficult to

articulate through recall and the least likely to be included in instruction (Feldon, 2007, in press).

Examples of incorrect and incomplete explanations from scientists occur both in laboratory experiments

and in authentic environments. Cooke andBreedin (1994) asked expert physicists to predict the trajectories of

a variety of thrown objects and providewritten explanations of their reasoning processes. However, when the

written explanations were used as instructions to replicate the predictions, the results were completely

uncorrelated with the experts’ original estimates, suggesting that they unintentionally fabricated aspects of

their self-reported reasoning processes. Similarly, Dunbar (2000) found extensive omissions by

microbiologists in his study of eight prestigious laboratories when describing the reasoning processes that

led to important discoveries and solutions to research problems. He recorded and transcribed the weekly

meetings inwhich the results of experimentswere discussed and later asked the participants in themeetings to

recount how specific conclusions were reached. The participants (professors, postdoctoral fellows, and

graduate students) were unable to recall accurately the strategies, collective reasoning processes, or relevant

analogies that led to either solutions tomundane problems or groundbreaking insights in the field. ‘‘It appears

that the scientists remember the results of their reasoning rather than the small steps that they made [to

produce them]’’ (Dunbar, 2000, p. 55).

Cognitive Task Analysis

Cognitive task analysis (CTA) is emerging as a valuable tool to overcome this challenge (Clark &Estes,

1996; Schraagen, Chipman, & Shute, 2000). CTA encompasses a range of knowledge elicitation techniques
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to help experts accurately and completely articulate their problem-solving processes. Empirical studies

suggest that CTA can enhance the completeness of information obtained between 12% (Chao & Salvendy,

1994) and 43% (Crandall & Getchell-Reiter, 1993; see also Clark & Estes, 1996) when compared with

unguided knowledge elicitation (i.e., think aloud, free recall, or reflection). When the CTA-elicited

knowledge is used as the content basis for instruction, it often yields very large gains over ‘‘current best

practice’’ comparison conditions (seeClark, Feldon, vanMerriënboer,Yates,&Early, 2008 and Feldon, 2007

for reviews of these studies), but CTA has yet to be significantly incorporated into instructional design in

academic settings.

The purpose of this study is to test the effectiveness ofCTA-based instruction for teaching undergraduate

biology students to engage in the scientific process (i.e., conduct scientific observations, frame research

questions, generate testable hypotheses, design experiments, and interpret results). In the past, CTA has been

applied to instruction in specialized fields that typically deliver training outside the standard university class

format. Examples include the training of medical residents in surgical procedures, military officers in radar

system troubleshooting, and patent clerks in the process of validating patent applications. Here we report the

first application of CTA-based instruction in a traditional university context and the first to address scientific

skills.

There are many types of CTA performed by various practitioners. However, most follow a five-stage

process (Clark et al., 2008). First, practitioners collect preliminary knowledge to orient them to the general

parameters of the target task. Second, they identify major subtasks and the types of knowledge necessary to

perform them. Third, they apply focused knowledge elicitation methods that can include combinations of

interview techniques, direct observations, and simulations.Multiple experts are generally used as informants

in this process, because they are unlikely to each omit the same pieces of information. By synthesizing their

separate accounts, a more complete picture of experts’ cognitive processes can emerge (Chao & Salvendy,

1994; Lee & Reigeluth, 2003). Fourth, they analyze and verify the data acquired from the elicitation. Lastly,

they format the results for the intended application.

Frequently, the formatted outcome consists of a set of action steps and decision rules that represent a

viable way to solve a class of authentic problems. The resulting protocol articulates the effective steps and

branching decision points that experts navigate during their problem-solving processes, including the

relevant cues that guide these decisions, even when experts are not fully aware of which cues influence their

decisions.

CTA-based training systems that have explicitly accommodated the tacit nature of experts’ knowledge

have proven to be significantly more effective than those that have not (e.g., Merrill, 2002; Schaafstal,

Schraagen, & van Berlo, 2000; Velmahos et al., 2004). Lee’s (2003; see also Clark et al., 2008) meta-analysis

found a mean effect size of d¼ 1.72 (d > 0.8 is considered large; Cohen, 1988) for CTA-based instructional

interventions. Further, there is substantial evidence that gaps in instructional content resulting from the

omission of necessary steps in problem-solving procedures induce higher levels of cognitive load in learners,

which interferes with learning and can lower motivation (Britt, 2005; Chandler & Sweller, 1991; Kirschner,

Sweller, & Clark, 2006; Paas, Tuovinen, van Merriënboer, & Darabi, 2005; Sweller, Chandler, Tierney, &

Cooper, 1990; Tuovinen & Sweller, 1999).

Biology as an Ill-Structured Domain

One of the key differences between the domains in which CTA has been used for training and the current

application is that the above procedures have definitive outcomes that can be discussed in terms of success and

failure. Surgeries can result in patients’ recovery, radar systems can function accurately, and the originality

and legality of patents can be independently verified. However, scientific endeavors do not have definitive

outcomes that can be easily linked to the processes employed. There are nearly an infinite number of ways to

approach the study of a scientific problem that can yield valid and productive scientific knowledge.

With highly structured domains, problems can be solved to a large extent using skills that are learned and

applied algorithmically. However, scientific problems do not have single correct solutions or standardized

processes and each one inherently requires the development of a new solution or configuration to fit the

problem’s unique parameters. In other words, scientific inquiry is an ill-structured domain that ‘‘possess[es]

multiple solutions, solution paths, fewer parameters which are less manipulable, and contain[s] uncertainty
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aboutwhich concepts, rules, and principles are necessary for the solution or how they are organized andwhich

solution is best’’ (Jonassen, 1997, p. 65). This poses a significant instructional problem, because there is little

consensus about themost effectivemeans to successfully promote the development of problem-solving skills

for domains of this kind (Anderson, Reder & Simon, 1997; Barnett & Ceci, 2002; Bransford & Schwartz,

1999).

The major debate centers on identifying the optimal amount, type, and timing of instructional guidance

provided to students to best prepare them to succeed in complex, ill-structured domains (Clark, 2009). One

end of the spectrum advocates maximizing the amount of information provided to students prior to problem-

solving opportunities (Lederman, 1998). This provides learners with effective problem-solving procedures

and opportunities to practice them in increasingly complex ways (e.g., Eilam, 2002; Klahr & Nigam, 2004).

Therefore, this type of instruction tends to emphasize procedural knowledge that is explicitly conveyed

through the explanation of worked examples followed by opportunities to practice applying the skills to a

variety of problems that gradually increase in complexity and/or authenticity (Renkl & Atkinson, 2003).

In contrast, other approaches to instruction provide learners with greater opportunities to discover for

themselves the strategies for solving domain problems through problem-based learning or case-based

approaches. Information is then disseminated through scaffolding during problem-solving efforts (e.g.,

Hmelo-Silver, Duncan, & Chinn, 2007; Sadeh & Zion, 2009). In this way, learners will not simply

‘‘execute . . . procedure as dictated—but rather . . . engage in scientific problem solving’’ where they are able

to practice generating their own solution strategies (Savery & Duffy, 2001, p. 4; see also Roth, 1994).

Consequently, theoretical knowledge about the domain is taught prior to problem-solving activities, but

specific procedures are not (Schwartz & Martin, 2004).

Although in a general sense CTA-derived content can be incorporated into either instructional strategy

(see Feldon & Stowe, 2009 for a discussion of this relationship), it is typically used to provide an explicit

procedural approach to problem solving at the outset of instruction that learners are able to apply during

problem-solving efforts. Thus, resulting instruction may bear similarity to other highly explicit instructional

designs (e.g., Eilam, 2002).However, the content taught is derived directly from the knowledge and strategies

of practicing experts rather than through a rational analysis of idealized procedures. To address the impact of

CTA-based explanations on undergraduate biology students (treatment) compared to traditional explanations

by an award-winning professor (control), the following hypotheses were tested:

(1) CTA-based instruction leads to increased performance in scientific problem solving asmeasured by

the quality of biology laboratory reports.

(2) CTA-based instruction reduces the rate of attrition in an introductory level biology course.

Methods
Course and Student Population

In this study, we examined the effects of CTA-based scientific problem-solving instruction on students’

retention and performance inBIOL101—Biological Principles I. This 1-semester course consists of 3 lecture

hours and 3 laboratory hours per week providing an introductory survey of macromolecules, cell structure

and function, genetics, and molecular biology. The course primarily serves biology and allied health majors,

so the students (mostly freshmen) typically perceive the course material as relevant and necessary for their

future goals. Data were collected from all enrolled students in the Spring semester of 2008 (n¼ 314). All

participants were blind to experimental conditions and to the existence of the study. Participants did not need

to provide consent for data collection, because the study was granted exempt status by the university’s

institutional review board. Its activities occur as part of normal educational practice using instruments typical

of the university classroom environment.

To ensure that the treatment and control populationswere equivalent in both, general scientific reasoning

ability and motivation Lawson’s Test of Scientific Reasoning (Lawson, 1978, 2000) and the Motivated

Strategies for LearningQuestionnaire (MSLQ;Pintrich, Smith,Garcı́a,&McKeachie, 1991, 1993)were both

administered at the beginning of the course. Lawson’s Test for ScientificReasoning (Lawson, 1978, 2000) is a

24 multiple-choice items assesses participants’ abilities to distinguish between discrete sources of variance,
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use proportional logic, apply combinational reasoning, and interpret correlations. Satisfactory performance

on test items is dependent on participants’ abilities to draw correct deductive inferences from presented data

and evaluate the effectiveness of strategies to control variables in presented scenarios. The instrument has

been validated with high reliability for undergraduates taking science classes (Lawson et al., 2000). The

MSLQ is an 81-item, Likert self-report instrument with strong reliability and validity (alpha� 0.90 for

undergraduate populations; Spitzer, 2000). Themotivation items assess students’ goals and value beliefs for a

course, their beliefs about their skills to succeed, and their anxiety about tests in a course. The learning

strategy items assess students’ use of various cognitive and metacognitive strategies.

Neither measure found significant differences between treatment and control samples. Mean Lawson’s

scores for the control and treatment conditions were 14.61 (SD¼ 4.69) and 14.88 (SD¼ 4.38) out of

24, respectively (p¼ 0.614, ns). Mean scores for MSLQ subscales used were as follows: task value

(control: 23.77 [SD¼ 6.39]; treatment: 23.95 [SD¼ 6.07]; p¼ 0.814, ns), self-efficacy (control: 30.46

[SD¼ 7.84]; treatment: 23.95 [SD¼ 6.07]; p¼ 0.643, ns), metacognition and self-regulation (control: 38.74

[SD¼ 8.40]; treatment: 39.97 [SD¼ 7.67]; p¼ 0.198, ns), study environment (control: 29.41 [SD¼ 5.71];

treatment: 29.07 [SD¼ 6.16]; p¼ 0.631, ns), effort regulation (control: 15.46 [SD¼ 3.34]; treatment: 15.32

[SD¼ 3.51]; p¼ 0.716, ns), and peer learning (control: 7.50 [SD¼ 2.88]; treatment: 7.57 [SD¼ 3.02];

p¼ 0.841, ns).

Experimental Design

The double-blind, random-assignment design of this pre-post, two group quasi-experimental study

(Campbell & Stanley, 1966) addressed two very important analytical concerns that often confound research

on instruction.With the use of double-blinding, neither participants, instructors, nor researchers knewwhich

students were from the control or treatment groups. This averted both potential experimenter effects and the

Hawthorne effect (Rosenthal, 1966). We also randomly assigned laboratory sections to either a treatment or

control condition. Laboratory sections were facilitated by graduate teaching assistants (TAs) who were

assigned to a single condition for the semester. Neither TAs nor their students were aware of the existence of

the study.

The instructional content for the scientific process in biology was delivered via Internet as a series of

streaming videos that were required viewing for students in the course. Students viewed them independently

before each weekly laboratory session and a second time at the beginning of class with the TA, which was

followed by a brief discussion of the content. Each successive video became available for viewing at the

beginning of theweek forwhich itwas assigned.Once available, studentswere free toview it asmany times as

theywished for the duration of the course. Each TAwas provided only the condition-appropriate set of videos

for their instructional preparation. Every reasonable effort wasmade to ensure that the videos were as similar

as possible except for the actual verbiage of the content being presented. The faculty member being taped

even wore the same sweater for every taping session for both treatment and control in order to increase the

consistency of presentation for the videos.

Students’ viewing compliance was monitored via server logs and participation points were awarded for

viewing the videos outside of class each week. Compliance rates ranged from 69% to 93% of students each

week and on average 87% of students in the control condition and 82% of students in the treatment condition

watched thevideos on their own time. Compliancewas consistently higher in the control condition eachweek

with only the Observation I video being viewed more in the treatment condition (93% compared to 92%). As

students watched the videos in laboratory each week as well, these viewings represent reinforcement of the

material. Thus, there do not appear to be anymeaningful distinctions between viewing rates in treatment and

control and if such differences exist, they favor the control condition.

Cognitive Task Analysis

To conduct the CTA, three experts were recruited from the university biology faculty on the basis of the

following criteria: each had been engaged in biological research for at least 10 years, had published articles in

top-tier academic journals, and was acknowledged by peers as being highly skilled in the scientific process

(cf. Ericsson&Charness, 1994). Eachwas interviewed for approximately 2 hours regarding theway inwhich

he or she approached the scientific process, beginning with conducting observations and the formulation of a
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research question. As the interviews progressed, attention was focused on the identification of decision

points and cueing events that led to the selection of a specific strategy relevant to the problem-solving

process. Frequently, the interviewerwould attempt to reframe the information provided to generate a test case

(e.g., ‘‘So, if the situation were like this, you would do X and not Y. Is that correct?’’). If the expert felt that

the characterization was not fully accurate, she would articulate the way in which she would address the

situation, and the interviewer and the expert would work to construct a refined decision rule that incorporated

the appropriate differentiated elements.

Once the interviewswere completed, the transcripts were analyzed to develop an abstract representation

of the process reported by each individual. These representations took the form of outlines that incorporated

actions and branching decision points (seeAppendix 1, for examples, in final protocol). Each expert reviewed

his or her own protocol to offer any necessary revisions or additions. The three reviewed protocols were

then synthesized by the interviewer to represent a single, aggregate approach. This final protocol was then

distributed to all three experts for an additional round of editing according to the following instructions:

Please review this protocol and provide feedback. Because this is an aggregation of three people’s

procedures, do not worry if it does not represent precisely the way that you, yourself, engage in the

scientific process. Instead, please decide if the procedure would generate appropriate results for a

student trying to implement it. If you find a step that is missing, please add it. If you find a step that you

believe is inappropriate or unnecessary, please note that as well.

Suggested edits were incorporated, and the resulting protocol was redistributed for final approval by the

experts.

Creation of the Videos

The video-based instruction consisted of a tenured associate professor with multiple awards for

outstanding teaching2 delivering either traditional, lecture-based instruction in these skills (i.e., best practices

based on self-report and theoretical knowledge) or lectures scripted from the full set of decision rules

generated through the CTA process. All control condition videos were created prior to providing the

instructor with the CTA-based scripts to prevent inadvertent contamination of the ‘‘current best practice’’

videos.

Topics for the videos were determined in advance based on the laboratory curriculum goals and focused

on the major steps of scientific inquiry (i.e., observation, research question identification, hypothesis

generation, experimental design, and data analysis). Eight treatment–control pairs of videosweremade. Two

condition-neutral videos (the same videowas used for treatment and control) were also made as placeholders

to maintain the students’ viewing habit each week. Each video was 5–10minutes long. Content analysis of

treatment and control videos indicated that the primary differences in the explanations provided related to the

level of specificity and detail in the statements made and whether content was framed procedurally or

conceptually. The treatment condition (CTA-based) provided more specific and detailed statements and was

framed as a set of step-by-step actions and decisions to be made. In contrast, the explanations provided in the

control videoswere found to bemore abstract and presented as principles illustratedwith examples (Feldon&

Stowe, 2009). For example, in explaining how to generate an experimental hypothesis from observations, the

traditional instruction included statements such as:

As we design experiments to test the hypothesis, all of the data, the results, must be judged against the

hypothesis.

A hypothesis is something which is developed carefully . . . it provides the core or base around which

you can design an experiment.

It’s a guess . . . that is based upon the ideas that you have accumulated, whether from previous data, from

reading . . . it’s not based upon simply an idea that you have. Aworking hypothesis as we normally

use it in the laboratory represents our first approximation . . .

In the world of science, it is absolutely essential that every hypothesis: (a) be testable . . .; (b) that the

individual testing the hypothesis be willing to change the hypothesis at any time if the data are

inconsistent with the working hypothesis.
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While the CTA-based instruction said ‘‘write down . . . relationship you expect to see between the

factor(s) you included in your research question.’’ See Appendix 2 for detailed comparisons.

Students’ Scientific Investigations

Using the videos and other laboratory exercises, students engaged in portions of the scientific process

throughout the semester (e.g., learning how to develop testable hypotheses, isolate variables, analyze results,

and draw conclusions). The laboratory portion of the course then culminated in a multiple-week, inquiry-

based investigation of Drosophila melanogaster (fruit fly) genetics wherein students were required to make

observations, generate hypotheses, collect, analyze and interpret data and form conclusions based on those

data. Thework product submitted for course credit was a formal paper, written in scientific format, reporting

their findings. Due to logistical constraints, all students investigated the same unknown genetic cross. Their

task was to determine the genotypes of the parental generation and if the alleles exhibited Mendelian

inheritance patterns. Investigations were conducted in small groups within a laboratory section. Data were

then pooled within that laboratory section to increase sample size. Thus, students were provided with the

research question, hypothesis, and methods, but they had complete discretion in the scientific judgments

articulated in their papers (i.e., discussions of intellectual context, study rationale, data analysis and

interpretation, conclusions, and limitations). Lab reports werewritten and submitted individually by students

via an online course management website. All papers were checked for plagiarism using SafeAssignTM and

papers containing plagiarized material were not included in the sample.

Measures of Student Performance

Student performance was measured using the Universal Lab Rubric (Timmerman, Strickland, Johnson,

& Payne, in press), a rubric specifically developed for evaluating written laboratory reports in biology. The

criteria are derived from common perceptions ofwhat constitutes effective scientific reasoning andwriting in

the science education literature (Timmerman, 2008), as well as criteria espoused by scientific journals (e.g.,

Cicchetti, 1991; Marsh & Bell, 1981). The rubric has been psychometrically validated across multiple

biology courses (including previous semesters of the BIOL 101 course used in this study) and assignments

including an earlier version of the Drosophila lab used in this study. Overall reliability of the rubric was

calculated using generalizability analysis and found to be high (g¼ 0.85). Laboratory reports were rated by a

pool of three raters, two of whom had prior experience rating biology papers with this rubric and all of whom

had appropriate biological content backgrounds. Pairwise inter-rater reliability for this sample ranged from

g¼ 0.70 to 0.86.

Because of students’ limited control over the methodology for the experiment, analysis of student

performance focuses on the Introduction, Results, and Discussion Sections. Only complete papers submitted

by the assignment deadline were analyzed for the purposes of this study. Papers excluded from analysis for

these reasons were randomly distributed across all course sections. Reflecting both exclusions and course

attrition, the final sample used for analysis was n¼ 252 (n¼ 119 for the treatment condition; n¼ 133 for the

control condition).

Measures of Student Attrition

Student attrition was measured by the university registrar’s office. It is normal practice for students to

frequently add and drop lab sections during the first week of the semester as they arrange their schedules.

These students were not included in the attrition calculations. Attrition was measured by identifying those

students who had committed to the course initially but then withdrew at some later point in the semester as

indicted by a notation on their transcripts.

Results and Discussion

Using a double-blind design, this study examines the effects of CTA-based instruction in scientific

inquiry skills on undergraduate students in a lab-based biology course. Specifically, it hypothesized that

recipients of CTA-based instruction would perform better on written laboratory reports of an experiment and

that course attrition would be lower for students in the CTA condition.
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Laboratory Report Performance

In accordancewith the first hypothesis, student performance favors the treatment (CTA) condition in the

Discussion Section of thewritten laboratory reports. The lack of significant differences in other sections (i.e.,

Hypotheses, Methods, Data Selection, Data Presentation, and Statistical Analysis) is expected due to the

common methodology dictated by the instructor and used across all laboratory sections. Table 1 shows the

ANOVA of performance outcomes by individual rubric item and rubric section index score. Effect sizes

calculated for significant differences using Cohen’s d were in the small to medium range (0.232–0.391)

(Cohen, 1988).3 Effect sizes for each element in the Discussion Section of the rubric are as follows:

conclusions based on selected data, d¼ 0.265; alternative explanations, d¼ 0.311; limitations, d¼ 0.266;

significance, d¼ 0.232; and Discussion index score, d¼ 0.391.

Much of the CTA focused on the need to be explicit in predicting expected outcomes, and this constant

reference tomaking connections between data and conclusions likely contributed to this effect. For example,

the CTA instructions include details such as:

If your hypothesis does not state your expected outcomes for every condition of your experiment, then

you will need to list explicitly in your lab notebook what you expected the dependent variable to do for

each combination of factorial levels that you will test.

The CTA-based instructions repeatedly reinforced the concept that predictions and conclusions should

be made explicit and written down in the lab notebook. Engaging in such behaviors would make it more

obvious to students when anomalies or discrepancies arise between data and a theory or model. Thus, their

conclusions are more likely to be firmly grounded in their data. Recognition of anomalies and re-assessment

of prior knowledge or misconceptions are critical components of conceptual change and knowledge

acquisition (Chinn & Brewer, 1993; Posner, Strike, Hewson, & Gertzog, 1982). Instruction in the treatment

condition frequently required students to articulate and compare new information with prior ideas, which

likely stimulated significant reflection and metacognition. Reflection, especially through writing, has been

shown to improve scientific reasoning and knowledge generation (Keys, 2000).

Given the notable level of instruction on how to frame a scientific question and the role of primary

literature in framing a question and interpreting results, some might view the lack of significant differences

between treatment and control in the Introduction or Use of Primary Literature sections as surprising.

However, the rubric was originally designed to assess change over the span of an entire undergraduate career

(Timmerman, 2008). Post hoc review of the rubric suggests that the scales for these items are insufficiently

sensitive to pick up differences in these aspects of student writing at this early stage in their scholarly

development. These items are currently undergoing further revision to improve their sensitivity to initial

stages of student development. As therewas no instruction geared towardwriting style ormechanics, the lack

of significant differences in overall writing quality likely reflects an equivalent preexisting level of writing

ability among participants. It should also be noted that theWriting Quality criterion was effectively a holistic

assessment reflected in a single criterion. Holistic rubrics typically generate far greater variation in scores

between raters than do analytic rubrics (Klein et al., 1998) asmany factors are compressed into a single score.

Post hoc analysis of our inter-rater reliability data found this criterion to be the most variable.

The only significant unexpected finding was the higher mean in the control condition for the ‘‘testable

and consider alternatives’’ element of the Hypotheses section. It is possible that the emphasis in the CTA on

generation of research ideas from the literature and observations caused students in the treatment condition to

attempt more innovative andmeaningful hypotheses than were possible in a situation where the genetic cross

was pre-selected. In contrast, students in the control conditionmay not have been searching as deeply for their

hypotheses and constructed more straightforward and testable hypotheses.

Course Attrition

Course enrollment records indicate that participants in the control condition were almost six times as

likely towithdraw from the course (8.1% of enrolled students) as students in the treatment condition (1.4% of

enrolled students). Chi-square tests indicated significant differences between treatment and control sections
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Table 1

Student performance in written laboratory reports by experimental condition and rubric element

Universal Laboratory Rubric Criteria and Definitions
(Timmerman et al., in press)

Treatment, Mean
(SD) (n¼ 119)

Control, Mean
(SD) (n¼ 133) F

p-Value
(2-Tailed)

Introduction
Context: Demonstrates a clear understanding of the big

picture; Why is this question important/interesting in
the field of biology?

1.37 (0.59) 1.34 (0.59) 0.150 0.699

Accuracy and relevance: Information is accurate,
relevant and provides appropriate background for
reader including defining critical terms

1.19 (0.60) 1.29 (0.59) 1.675 0.197

Introduction: index score 2.56 (1.09) 2.63 (1.07) 0.252 0.616
Hypothesis quality

Testable and consider alternatives: Hypotheses are
clearly stated, testable and consider plausible
alternative explanations

0.74 (0.33) 0.83 (0.33) 4.500 0.035*

Scientific merit: Hypotheses have scientific merit 0.74 (0.35) 0.77 (0.35) 0.229 0.633
Hypotheses: index score 1.49 (0.66) 1.60 (0.63) 1.826 0.178
Methods

Controls and replication; Appropriate controls (including
appropriate replication) are present and explained.

0.47 (0.42) 0.49 (0.48) 0.235 0.628

Experimental design: Experimental design is likely to
produce salient and fruitful results (tests the
hypotheses posed)

0.72 (0.37) 0.70 (0.42) 0.168 0.682

Methods: index score 1.19 (0.64) 1.19 (0.73) 0.006 0.937
Results

Data selection: Data are comprehensive, accurate and
relevant

0.89 (0.35) 0.92 (0.38) 0.482 0.488

Data presentation: Data are summarized in a logical
format. Table or graph types are appropriate. Data are
properly labeled including units. Graph axes are
appropriately labeled and scaled and captions are
informative and complete

1.38 (0.74) 1.47 (1.17) 0.521 0.471

Statistical Analysis: Statistical analysis is appropriate for
hypotheses tested and appears correctly performed
and interpreted with relevant values reported and
explained

1.09 (0.56) 1.05 (0.54) 0.487 0.486

Results: index score 3.35(1.36) 3.42(1.61) 0.247 0.620
Discussion

Conclusions based on data selected: Conclusion is
clearly and logically drawn from data provided. A
logical chain of reasoning from hypothesis to data to
conclusions is clearly and persuasively explained.
Conflicting data, if present, are adequately addressed

0.90 (0.50) 0.77 (0.48) 4.378 0.037*

Alternative explanations: Alternative explanations are
considered and clearly eliminated by data in a
persuasive discussion

0.43 (0.52) 0.28 (0.44) 6.171 0.014*

Limitations: Limitations of the data and/or experimental
design and corresponding implications discussed

0.70 (0.63) 0.54 (0.57) 4.703 0.031*

Significance: Paper gives a clear indication of the
implications and direction of the research in the future

0.31 (0.46) 0.21 (0.40) 3.463 0.064^

Discussion: index score 2.34 (1.49) 1.78 (1.37) 9.501 0.002**
Use of Primary Literature: Reasonably complete discussion

of how research project relates to other relevant work
0.70 (0.42) 0.74 (0.38) 0.666 0.415

Writing quality: Grammar, word usage and organization
facilitate the reader’s understanding of the paper

1.22 (0.49) 1.19 (0.52) 0.231 0.631

Total rubric score 12.85 (4.08) 12.56 (3.9) 0.322 0.571

*Significant at p< 0.05.

**Significant at p< 0.01.
^Significant at p< 0.05 using one-tailed test.
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overall (p¼ 0.005; Cramér’s V¼ 0.152), with subpopulations consistently reflecting higher attrition in the

non-CTA condition (Table 2).

Effect of the CTA-based instruction was significant for women (p¼ 0.041; Cramér’s V¼ 0.142) and

non-majors (p¼ 0.010; Cramér’sV¼ 0.183). The relatively small number of studentswithdrawing fromboth

conditions likely limited significance andmeasurable effect size, but the trends for each subset of participants

indicated a higher rate of attrition in the control condition. The impact on declared biology majors

(three withdrawals in the control, one withdrawal in the treatment) is notable, though non-significant.

Future data collection may shed greater light on possible differential effects among majors. With the current

data, the association between exposure to CTA-based instruction and student retention reflects a small effect

size using Cramér’s V (0.10<V< 0.30; Cohen, 1988).

Conclusions

Thevalue of higher education lies in the subjectmatter expertise of its professors. It seems, however, that

STEM faculty may unintentionally fail to communicate this knowledge effectively. Evenwhen instruction is

engaging and student-centered (e.g., problem-based, inquiry-oriented), failure to provide the information

necessary to solve problems successfully, can impede students’ academic progress (Jonassen, Tessmer, &

Hannum, 1999; Kirschner et al., 2006).

Findings from this study suggest that CTA-based procedural instruction offers notable benefits over

traditional methods of generating instructions on how to engage in scientific inquiry, such as personal

reflections of the instructor or the textbook descriptions of the ‘‘scientific method.’’ The combination of

performance and attrition data is consistent with our hypotheses and the predictions of cognitive load theory.

It is important to remember that these results were obtained at a single institution during a single semester, so

the generalizability of our findings is somewhat limited. Within that context, CTA appears to provide two

specific benefits. The first is that the instructions provided to students aremore complete (fewer steps, criteria

or decision points are likely to be omitted). Second is that the explicit nature of the instructions generated by

CTAprovides a level of precision and detail that is otherwise unavailable to students, so they likely have lower

levels of extraneous cognitive load and fewer knowledge gaps. The decrease in cognitive load potentially

leads to fewer instances of burnout, because sustained task demands are less likely to exceed working

memory capacity for students receiving CTA-based instruction (Clark, 1999).

It is interesting to note that the significant differences between conditions for the performance on the

final scientifically formatted paper are associated with the most analysis-intensive facets of the scientific

writing process—interpreting findings, articulating the underlying chain of logic, identifying limitations, and

providing alternative explanations for results. Because abstract scientific reasoning processes are typically

the most difficult for experts to self-report accurately (Dunbar, 2000; Feldon, in press), CTA may be a

Table 2

Course attrition by condition, gender, and biology major status

Initial Enrollment
Number of Students Who

Withdrew
Fisher’s Exact Test
(1-Tailed), p-Value

Men (T) 52 1 0.072
Men (C) 57 6
Women (T) 90 1 0.041*
Women (C) 115 8
Biology majors (T) 60 1 0.334
Biology majors (C) 64 3
Allied health majors (T) 82 1 0.010**
Allied health majors (C) 108 11
Overall (T) 142 2 0.005**
Overall (C) 172 14

Note. Initial enrollment numbers were recorded during the second week of the semester. Number of students whowithdrewwas recorded at

the end of the semester based on transcript grades. T, Treatment (CTA-based instruction); C, Control (traditional instruction).

*Significant at p< 0.05.

**Significant at p� 0.01.
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particularly fruitful educational innovation for instructors concerned with developing students’ problem-

solving and scientific reasoning skills.

On a broader level, our findings raise important questions about instruction in ill-structured domains.

It is commonly argued that providing highly explicit, procedural explanations can interfere with

the development of flexible and adaptable knowledge that will enable students to solve new problems

within the domain.As articulated byChin andChia (2005), ‘‘in the actual implementation of projectwork, the

essence of inquiry may get diluted, displaced, or distorted, if students merely follow prescribed procedures’’

(p. 45). However, in our study, the procedural instruction provided procedural heuristics that can be applied to

a wide range of authentic research tasks. The instruction was not specifically geared to the experiment on

which the students were assessed. Further, the assessment rubric was developed completely independently of

the instruction used in either condition and was not adapted to meet any specific elements of the laboratory

activity. The effectiveness of the CTA-based instruction in the treatment condition indicates that there are

circumstances under which the assumption that ‘‘favorable conditions for learning . . . [entail] conditions for
which no known procedures are available’’ (Roth, 1994, p. 216) does not hold. Future studies should assess

the impacts of CTA for tasks that offer students greater autonomy to define their own research questions and

experiments. Results would help to further characterize the impact that CTA-based instruction can have on

transfer of knowledge and development of inquiry skills in ill-structured science domains.

The work reported in this paper is supported in part by a grant of the National Science Foundation

(NSF-0653160) to David Feldon (P.I.), Kirk Stowe, and Richard Showman. The views in this paper are

those of the authors and do not necessarily represent the views of the supporting funding agency. The

authors would also like to thank Denise Strickland for her assistance in data collection and analysis.

Previous drafts of this paper and related work were presented at the annual meetings of the National

Association for Research on Science Teaching and the American Educational Research Association.

Notes

1Thjs definition of inquiry is one of three identified by Minner, Levy, and Century (in press, p. 3) as ‘‘what scientists

do (e.g., conducting investigations using scientific methods).’’ It differs from the other two which address either the

manner in which people learn or a pedagogical approach for teaching scientific content.
2These awards include: [State] College Teacher of the Year in Science and six university-wide teaching awards,

including two created by named endowments. The name of the state and the specific university-wide awards are withheld

to preserve anonymity.
3Cohen (1988) defines small effect sizes as d� 0.2, medium effect sizes as d� 0.5, and large effect sizes as d > 0.8.
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Appendix 1: Final Cognitive Task Analysis Protocol

Observation

(1) Observe phenomena of personal and scholarly interest until a pattern (visual, temporal, spatial

and/or interactional) or the disruption of a known pattern is noticed in environment or reported in

primary research literature.

(2) IF pattern implicates the form or function of phenomena, organisms, or systems as discussed in

relevant literature base THEN describe patterns/disruptions and circumstances under which they

are observed in a lab notebook.

(3) IF pattern does not implicate formor functionof phenomena, organisms, or systems as discussed in

relevant literature base THEN return to Step 1.

(4) Seek replication of pattern/disruption in different instances, locations, or conditions.

(5) IF pattern/disruption cannot be replicated during additional observations THEN return to Step 1.

(6) IF pattern is consistent across replications THEN formulate questions asking about the

characteristics of variables of interest and the nature (magnitude, direction, causality) of the

relationships among them and write them in lab notebook.

(7) IF any question asks about historical fact (e.g., Did change x occur throughmechanism y?) THEN

change wording and tense of question to ask about existence of relationship in planned

experiments (e.g., Will change x occur through mechanism y under experimental conditions a, b,

and c?) and write it in lab notebook.
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(8) Refer to research literature discussing variables, phenomena, organisms, or systems that are part of

observed pattern.

(9) IF phenomenon of interest cannot be reliably measured THEN return to Step 1.

(10) IF literature does not report findings of correlations between observed outcomes/variables THEN

formulate research questions to test significance of correlation and identification of additional

relevant factors, write it in lab notebook, and begin Refine Research Question procedure.

(11) IF literature reports findings of correlations between observed outcomes/variables of interest

THEN identify theoretical explanations and remaining research questions.

(a) IF theoretical explanations aremissing or inadequate THEN reformulate question fromStep 6

such that an answer to the question would provide/expand theoretical explanation, write it in

lab notebook, and begin Refine Research Question procedure.

(b) IF theoretical explanations are present /sufficient THEN compare observation with

predictions of theory.

(i) IF observations do not match predictions of theory THEN reformulate question from Step

6 to askwhat this basis of difference is, write it in lab notebook, and begin RefineResearch

Question procedure.

(ii) IF observations do match predictions of theory THEN determine if facet of theory is

underspecified or requires further empirical evidence to support it.

(1) IF theory is adequately specified and/or does not require further empirical evidence to

support it THEN return to Step 1.

(2) IF theory is inadequately specified or requires further support THEN formulate

question to which an answer will clarify relationship or provide confirmatory or

disconfirmatory evidence of theory’s validity, write it in lab notebook, and begin

Refine Research Question procedure.

Refine Research Question

(1) IF previous findings reported in the literature suggest a partial answer to your question THEN

identify the factors in those studies that are relevant and correlate with the phenomenon you

observed.

(2) Select at least one of the factors that is likely to be helpful in answeringyour question and reviseyour

research question to ask about potential interactions with other factors in the pattern you observed.

Then write the revised question in your lab notebook.

(3) IF knowledge base/theory suggestsmore sources of variance than are feasible to incorporate into an

experiment or meaningfully analyzed THEN select no more than three factors that potentially

interact in order of their apparent relevance to the observed pattern and the research question.

(4) IF the process of answering the research question as written does not require the use of specific

variables or operational definitions THEN identify a scientificmodel or theory from the literature to

narrow scope of question and repeat Steps 1–3.

(5) IF the research question as written cannot be answered to a reasonable degree of certainty

through the analysis of a finite number of experiments THEN narrow scope of question and repeat

Steps 1–3.

(6) IF the research question as written can be answered to a reasonable degree of certainty through the

analysis of a finite number of experiments THEN go to Formulate Hypothesis procedure.

Formulate Hypothesis

(1) Specify expected relationship between factor of interest (independent variable) and the measured

dependent variable(s) that fully answers Refined Research Question. Write it in lab notebook.

(2) IF literature base of relevant theory or model reports existing measurement techniques that are

appropriate for investigating current research question THEN select most feasible measures given

available resources.

(3) IF literature base does not report existingmeasurement techniques appropriate for investigating the

current research question THEN select measures from alternative literature or develop and validate

measure.
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(4) Specify the means by which variables will be measured and levels of independent variables will be

verified and write in lab notebook.

(5) Specify mechanism and/or condition that will generate expected outcome.

(6) Write information from Step 1 and Step 4 into a single sentence in lab notebook as formulated

hypothesis.

(7) IF independent variable and/or dependent variable cannot be measured with as much precision

or accuracy as used in published literature on the phenomena or factors of interest THEN return to

Step 1.

(8) IF it would not be possible for another researcher to replicate or verify the measures used in Step 2

THEN return to Step 1.

(9) IF all mechanisms or conditions in hypothesis statement cannot be manipulated, controlled, or

accurately and systematically measured THEN return to Step 1.

(10) IF all mechanisms or conditions in hypothesis statement can be manipulated, controlled, or

accurately and systematically measured THEN go to Design Experiment procedure.

Experimental Design

(1) Identify and list in lab notebook which factors from the literature, personal knowledge of relevant

biological system(s), and conditions surrounding observation that led to the research question are

likely to influence obtained measurements of dependent variable stated in hypothesis.

(2) IF listed factor is not independent variable in hypothesis THEN:

(a) IF elimination of factor will not disrupt biological system or threaten organism health/survival

THEN list in lab notebook as factor to be eliminated.

(b) IF elimination of factor will disrupt biological system or threaten organism health/survival

THEN list in lab notebook as factor to be held constant at level recommended in literature or

observed in environment as satisfactory for maintenance of biological system or health/

survival of organism.

(c) IF factor cannot be controlled or eliminated to prevent influence on dependent variable THEN

identify and list in lab notebook the locations or other environmental conditions that will ensure

equivalent impact on all experimental conditions.

(d) IF no locations or environmental conditions exist where equivalent impact of factor on

measurement of dependent variable can be identified THEN identify appropriate measure of

factor from literature and include measurement of factor in protocol for reference during data

analysis.

(3) IF a listed factor is an independent variable in the hypothesis THEN:

(a) IF the factor can be controlled THEN list in the lab notebook the levels of factor that the theory

or hypothesis predicts will be different enough to produce different means in measurements of

dependent variable(s) for each condition without producing ceiling or floor effects in

measurement data from dependent variable.

(b) IF the factor cannot be controlled THEN list in lab notebook the placements or other conditions

for measuring dependent variable(s) that the theory or hypothesis predicts will be different

enough to produce different means in measurements of dependent variable(s) for each condition

without producing ceiling or floor effects in measurement data from dependent variable.

(c) IF the factor cannot be controlled and there is only one condition for the factor THEN identify

and list in lab notebook appropriate ways to measure the level of the factor and note for data

analysis that study is non-experimental.

(4) IF levels listed for each independent variable are not likely to replicate observed pattern in at least

one, but not all, experimental conditions THEN identify and list in lab notebook necessary

additional level(s) to meet condition.

(5) For each item on the list of factors to be eliminated or controlled, generate and list in lab notebook

the techniques for doing so from literature, personal knowledge of relevant biological system(s),

and conditions surrounding observation that led to research question.

(6) IF one or more techniques listed for factor elimination or control are feasible for conditions and

resources of study THEN select technique considered most effective in literature.

(a) IFmultiple techniques are considered equally effective THEN select easiest and cheapest listed

technique and write it into protocol.
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(7) IF no techniques listed for factor elimination or control are feasible for conditions and resources of

study THEN identify and recruit/obtain necessary expertise or resources.

(a) IF necessary expertise or resources are unattainable THEN return to Step 2.

(8) IF hypothesis does not predict explicitly the outcomes for each condition THEN write in lab

notebook additions to hypothesis that specify predictions for each condition in either absolute

(prediction ofmeasured outcome) or relative terms (prediction of higher or lowermeasurement than

other conditions).

(9) Conduct experiment according to protocol.

Data Analysis

(1) Record values of dependent variables and measured independent variables for each condition in

experiment.

(2) IF event occurs differently from protocol THEN record events and note potential impact on

measurements in lab notebook.

(3) Compute descriptive statistics for all measurements. Record results in lab notebook.

(4) Graph data:

(a) IF data reflect a single dependent variable changing in relation to a known factor (e.g., time,

location, experimental condition, etc.) THEN:

(i) IF points represent a linear trend THEN connect points to form line.

(ii) IF points represent a nonlinear trend THEN draw smooth curve along points maintaining equal

distances between the line and points above or below it.

(b) IF data reflect multiple variables changing in relation to a known factor (e.g., time, location,

experimental condition, etc.) THEN create a clustered bar graph with one vertical bar per

dependent variable clustered at each time point. Every bar representing a particular variable

must use the same color at every point on the graph. The color must be easily distinguishable

from the colors used for the other variables in the cluster (e.g., black, dark gray, white, etc.).

(5) Based on trends apparent in graph and descriptive statistics, select appropriate statistical method to

test hypothesis.

(6) IF outliers are detected THEN note values of outliers and conditions in which they occurred in lab

notebook, withhold from dataset, and compute statistical outcomes.

(7) IF results are statistically significant THEN repeat analysis including outliers and record results in

lab notebook.

(a) IF results still significant THEN determine extent to which results support hypotheses.

(b) IF results not significant THEN determine likely causes of outliers.

(i) IF outliers appear to be systematic THEN redesign experiment to include likely source of

outliers as relevant factor when designing protocol.

(ii) IF outliers do not appear to be systematic and resources permit THEN replicate experiment.

(1) IF replication experiment does not produce the same statistically significant results THEN

carefully review protocols and notes in lab notebook to determine differences between original

experiment and replication that could explain different results.

(8) IF results are not significant, but there is a trend in the data, THEN conduct a statistical power

analysis and repeat Step 9 of Experimental Design procedurewith increased sample size if feasible.

(9) IF results are not statistically significant and there is no trend in the data THEN return to Step 1 of

Observation procedure.
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Appendix 2: Comparison of Control and Treatment Video Content and Alignment

With Performance Outcome Criteria

Video Title Control (Traditional Content) Treatment (CTA Generated Content)

Transcribed examples of content
Observation I ‘. . .The skill of observation is essential,

because what comes out is often not
what we expect . . .’

‘. . .All of these observations occur looking for a
pattern . . . or alternatively information that
contradicts a pattern.’

‘Essentially observation allows me to test
the hypothesis by coming back over
several (time periods) . . .’

‘Observation is not done only by looking at
something directly . . ., but by reflecting
back upon . . .what’s been written.’

‘So, the verifiable observations of others are
crucial in the process of observation.’

‘This means that you are going to continue your
observations . . ., until you develop a series of
observations . . . relevant to biological
sciences.’

‘If in replicating your experiment you do not
obtain the same observations . . . If your
observations are not replicated . . . this is a
strong indication you need to go back to step 1
(initial observations).’

Observation II ‘The concept of standards, coupled with
observation is essential. Any piece of
equipment you use to observe a
phenomenon is only as good as its
reproducibility and its accuracy.’

‘. . .When you read other people’s published
research . . .At this point you will need to
evaluate what has been done in order to know
how to proceed. The first thing you need to do
is to determine if any theories exist that explain
the pattern in your observations.’

‘. . .The next step is to go to the literature and read
what scientists have already learned about
these things.’

‘When the situation arises where a theory does not
explain . . .You need to decide if the theoretical
explanation that is offered: (1) provides all of
the detail that is needed to understand the
phenomena of interest; (2) has sufficient
empirical evidence . . . to support it.’

‘However, it is possible that nothing has been
published . . . If this is the case, you need to
review your list of questions and select
a . . . focuses on measuring only the reliability,
or significance, of the relationship you
observed.’

‘It is important to understand how the variables in
your pattern are measured. If no effective and
reliable means exists . . . return to step 1 [initial
observation] . . . If variables can be reliably
measured then you need to look for previous
reports . . .’

‘But if theory needs to be further develo-
ped . . . then should reformulate a question, if
answered, will either clarify the theory or
alternatively contribute significantly to
supporting or refuting it.’
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Refine research
question

‘. . .A research question comes out of our
observations . . . It may come from a pre-
vious set of experiments, it may come from
something we read . . .’

‘. . .You start breaking that question down
until you can handle it intellectually,
objectively, in the laboratory, in the
field . . .’

‘We’re going to simplify the question, we’re
going to formulate a question which can
then be tested and hopefully a specific
answer is achieved or arrived at.’

‘. . .You’re going to look in the primary
literature . . . If . . .find partial answers to your
questions then you want to incorporate that
information along with any factors that you’ve
obtained while you’re observing and include
those factors as a list within your notebook.’
‘‘Does the question that I formulated obviously
present to me how and what I’m going to be
measuring?’’ If it does proceed. ‘If . . . not,
then you’re going to need to return to the
literature . . .’
‘. . . select one question if at all possible and
focus on this. Now, taking that question,
reword it so that it takes into account all of the
specific things that you’ve noted during your
observations.’

Hypothesis ‘. . .As we design experiments to test the
hypothesis, all of the data, the results,
must be judged against the hypothesis.’

‘First step is to write down . . . relationship you
expect to see between the factor(s) you include
in your research question.’

‘An hypothesis is something which is
developed carefully . . . it provides the
core or base around which you can
design an experiment.’

‘Remember your research question was your
independent variable and the result you plan to
measure, your dependent variable . . .Once you
have decided which measure to use . . .’

‘It’s a guess . . . that is based upon the ideas
that you have accumulated, whether from
previous data, from reading . . . it’s not
based upon simply an idea that you have.
A working hypothesis as we normally use
it in the lab represents our first
approximation . . .’

‘Next you need to think about the information you
gathered when you read the scientific literature
on your topic. Did it talk about specific ways to
measure changes in your independent variable?
If it did, then decide which method of
measuring is most practical for you’

‘In the world of science, it is absolutely
essential that every hypothesis: (a) be
testable . . .;
(b) that the individual testing the hypothesis
be willing to change the hypothesis at any
time if the data are inconsistent with the
working hypothesis.’

‘Next review the details and predictions that
you’ve written down and be sure that they all
come together as one or two clear and
grammatically correct sentences. This type of
editing . . . is very important to help make it
clear what it is you think will happen and
why. This edited statement is your formal
hypothesis.’

‘If in fact the experiment is valid, it’s
reproducible, and is inconsistent with the
hypothesis . . . there has to be an
adjustment to the hypothesis.’

‘Similarly, if it would not be possible for another
researcher to replicate or verify the measures
you have specified in your hypothesis, then
you need to return to step 1 and rewrite your
prediction statement.’‘We refine the hypothesis as we collect new

data, as long as data continues to be
consistent with the hypothesis and
verified, you are fine. The minute that
you find an inconsistency, then whether
the hypothesis needs to be changed or
you need to go back . . . and ask, ‘‘why
might there be this inconsistency?’’’

‘Using the approach I just described for the
dependent variable, repeat the process of
choosing measures for each of you factors or
independent variables . . . If it turns out that any
of your dependent or independent variables
cannot be controlled, measured, or
manipulated . . . the it is time to return to step 1
and rewrite your prediction statement.’‘Any information that you gather which is

inconsistent with the hypothesis requires
one of two things: you either must go
back and reconsider the experiment and
ask, ‘‘did the experiment ask the
question I wanted?’ Or, ‘‘did the experiment
succeed, did I do something wrong . . .?’’’

‘The variable is never the data. The data either
verifies the hypothesis or nullifies it, and, as
a consequence, if the hypothesis is nullified,
you must go back and adjust the
hypothesis.’

Video Title Control (Traditional Content) Treatment (CTA Generated Content)
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Experimental
design I

‘These are called control variables and those
are the components of the experiment
which we want to keep constant during
the length of the experiment.’

‘An independent variable is that variable
which you yourself have under
control . . .’

‘The dependent variable in your experiment
is the one which is going to vary as a
consequence of the change in the pH.’
‘We all have to agree that there is a
universe, we can see it, we can measure
it, we can design experiments and
through these experiments determine
something about the nature of the
universe.’

‘. . .Data are as simple as that . . .You
can’t manipulate it, you can’t change it,
you can’t ignore it.’

‘. . .No matter how many controlled
variables, you consider and control for,
you still have an infinite number of
additional ones which you may or may
not considered . . . as a consequence,
may very well have affected the outcome
of the experiment. And thus, the data
acquired is subject to an alternative
interpretation.’

‘For those factors that you list, which are not
independent variables in your hypothesis, you
need to evaluate them to determine whether or
not they should be eliminated, held constant,
avoided, or measured for later analysis.’

‘If you can eliminate a relevant factor that is not
in your hypothesis, without disrupting the
biological system or threatening the
organism’s health, then list it in your lab
notebook as a factor to be eliminated.
However, if by eliminating the factor you will
disrupt the system or harm the organism, then
list it in your notebook as a factor to be held at
constant levels that are recommended in the
literature or sufficient in nature to keep the
organism healthy. If the factor you list cannot
be controlled or eliminated to keep it from
influencing your measurements of the
dependent variable, then identify and write
down in your lab notebook the locations or
other environmental conditions that will make
sure that the impacts are the same across all
conditions or versions of the experiment.’

‘If this is a factor you can control then you need to
list in your lab notebook which levels of the
factor will be different enough to produce
meaningful and significant differences in the
dependent variable when you measure it . . . If
the levels you’ve listed for each of your
independent variables is not likely to reproduce
the initial pattern that you originally observed
in at least one condition, then identify and list
in your lab notebook the additional levels that
will allow you to do that.’

Experimental
design II

‘One of the last things one has to consider in
designing experiments is the concept of
controls. Now, controls are in fact
essential for any experiment. These are
perhaps more important when you’re
dealing with a chemical reaction or a
physics experiment, or any experiment
in which instrumentation is required.’

‘There, the number of organisms involved
becomes critical, because variation is
directly related with the number of
subjects that you’re examining. The key
to this is replication. And replication is
determined in great part by the sample
size that you have available to you.’

‘. . .Data analysis is something that you
have to take into consideration when you
first begin the design of your experiment . . .
But, thinking ahead and asking yourself
‘‘what is it that I’m actually asking?’’
and ‘‘What is it that I actually expect
to get?’’’

‘For each one, write down in your lab notebook
which techniques you will use to deal with it.
These strategies can come from scientific
literature, your personal knowledge of the
relevant biological systems, and/or the
conditions surrounding your original
observation that led to your research question.
If you find that you can identify more than one
feasible strategy to eliminate or control a
particular factor, then select a technique in the
literature that is considered the most effective.’

‘If your hypothesis does not state your expected
outcomes for every condition of your
experiment then you will need to list explicitly
in your lab notebook what you expected the
dependent variable to do for each combination
of factorial levels that you will test.’

Video Title Control (Traditional Content) Treatment (CTA Generated Content)

20 FELDON ET AL.

Journal of Research in Science Teaching



Data analysis I ‘. . .One has to recognize that as you collect
your data, not all of it is going to fit
perfectly. The question then is, ‘‘are you
allowed to do something with that data?’’
As a matter of practice, the answer is no.
You must include all of your data . . .
Furthermore, you must not move, delete,
add, or in any other way modify the
data once it has been collected. As I’ve
said before, the data are.’

‘You can choose a number of different
types of statistic methodology, but
what’s most important, is that you
understand what that statistical
methodology tells you . . . If it was not,
it’s entirely possibly that at the end of
your analysis, you’re going to discover
there simply was not an answer
available. There was not enough
statistical power in your experiment,
and, as a consequence, you can’t get
an answer.’

‘Now you need to graph your data. To do this you
should recall from your design how many
dependent variables you have. If you have only
one and you’re measuring has changed in
relation to the independent variable, plot the
points on the graph where the ‘‘x’’ axis
represents the value of the independent
variable, and the ‘‘y’’ axis represents the value
of the dependent variable . . .’

‘Also, if anything happened during your
experiment that was different from how it
was designed, in other words, if the protocol
changed in some way, then you need to record
the details of those events and how they may
have impacted your measurements in your lab
notebook. This information will be helpful
later if you need to explain why things did not
turn out as you predicted in your hypothesis.
Next you should compute the appropriate
descriptive statistics for all of the data and
record the results in your lab notebook . . . at
the minimum, you should calculate the mean
and the standard deviation.’

Data analysis II ‘And out of the pattern that appears of the
plotting of the data you begin to see a
relationship between unknown factors
and known factors. This plotting of
the data requires that you think about
how to deal with individual points . . .
connecting points . . . draw a line
between . . . straight line . . . curved . . .’

‘Based on the trends in your graphs and the
descriptive statistics from your variables, you
next need to select an appropriate statistical
method to test your hypothesis.’

‘If your results are not statistically significant but
you do see a trend in your data, then you should
conduct what’s called a statistical power
analysis to figure out a better sample size for
getting significant results and rerun your
experiment accordingly.’

‘If your results are not statistically significant and
you do not see any meaningful trend in your
data then it is unfortunately time to go back to
the very beginning and start conducting initial
observations to look for a pattern of interest to
investigate.’

‘. . .You need to check your measurements to see
if there are outliers in your data. Outliers are
specific data points that deviate substantially
from an otherwise stable trend that you can see
in your graphs. If you do have outliers then
write down in your lab notebook the values
for these data points and the experimental
conditions under which they occurred. Next,
pull them out of the larger data set and run your
statistics.’

‘. . . If they [outliers] are [due to unplanned source
of variation], . . . you need to . . . redesign the
experiment to control or measure the new
factor.’

‘. . . If similar outliers show up again in your
replication data then you need to keep
looking for another source of variance in your
protocol.’

Video Title Control (Traditional Content) Treatment (CTA Generated Content)
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