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This chapter begins with a memory experiment, and you the readers are the

participants!  Please read the brief story below and try to memorize it. There will

be recall questions asked later. (You may recognize the story, as it is quoted

verbatim from an already published work [Gick & Holyoak, 1983].)

The General

A small country was ruled from a strong fortress by a dictator. The

fortress was situated in the middle of the country, surrounded by

farms and villages. Many roads led to the fortress through the

countryside. A rebel general vowed to capture the fortress.  The

general knew that an attack by his entire army would capture the

fortress.  He gathered his army at the head of one of the roads,

ready to launch a full-scale direct attack.  However, the general then

learned that the dictator had planted mines on each of the roads.

The mines were set so that small bodies of men could pass over

them safely, since the dictator needed to move his troops and

workers to and from the fortress.  However, any large force would

detonate the mines.  Not only would this blow up the road, but it

would also destroy many neighboring villages. It therefore seemed

impossible to capture the fortress.

However, the general devised a simple plan.  He divided his

army into small groups and dispatched each group to the head of a
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different road.  When all was ready he gave the signal and each

group marched down a different road.  Each group continued down

its road to the fortress so that the entire army arrived together at the

fortress at the same time.  In this way, the general captured the

fortress and overthrew the dictator (Gick & Holyoak, 1983, pp. 35-

36).

Introduction

This chapter focuses on the problem of improving young adults’ statistical

reasoning skills , with a particular emphasis on transfer outside the original

learning context. Effective transfer is critical here because statistical reasoning is

applicable across a wide variety of domains and in daily life; statistical reasoning

skill is of little value if it can only be applied in the statistics classroom. And yet,

students have great difficulty learning statistical reasoning skills in a transferable

way (e.g., Garfield & delMas, 1991; Pollatsek, Konold, Well, & Lima, 1984).

These instruction-oriented studies document that many current approaches to

teaching statistics—even modern reform-based pedagogy—leave significant room

for improvement, but they provide relatively little guidance on how to proceed.

Learning the appropriate representations for knowledge (not overly

specific, not overly general) is key for effective transfer. Understanding how

knowledge representations are formed and changed during learning is one of the
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foci of cognitive theory. This suggests that a successful route to improving

students’ transfer of statistical reasoning skill may rely heavily on integrating

instructional and cognitive theory, while still maintaining a link to the realities of

the classroom. Unfortunately, the fundamental tension between theoretical and

applied methods over the last thirty years has led to the emergence of three

distinct approaches, each emphasizing primarily a single perspective:

(1) Develop cognitive theories to describe knowledge representations that

explain observed performance on simplified statistical reasoning

problems;

(2) Conduct empirical work to study students solving simplified statistical

reasoning problems in real-world contexts.

(3) Work in the classroom, with all the complexity that doing so implies,

to develop new instructional techniques based on instructors’

expertise, but without much guidance for or contribution to theory.

Which of these approaches should cognitive scientists and educational

researchers take to best address the problem of improving students’ statistical

reasoning abilities?  (Hint: Think back to the story about the general!) The

response advocated here is analogous to the general’s solution: Do not use one or

another solution approach by itself, but rather employ a convergence of multiple

approaches.  This chapter begins with the story about the general not as part of a
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memory experiment (are you surprised?) but rather as a “source” problem to be

applied by analogy to help solve the problem of improving statistics instruction

(see Gick & Holyoak, 1983, for more details on their analogical problem-solving

experiment).

While it is difficult to take a multidisciplinary approach to any research

problem, the work of Ann Brown shows that it is possible and indeed can lead to

striking benefits. In Brown’s 1992 “Design Experiments” paper, she emphasizes

the importance of bringing multiple perspectives to bear for the success of her

work. Brown’s training in experimental psychology spurred her initial theoretical

ideas, based on memory and learning research, regarding how to improve

instruction. These ideas led to instructional interventions (e.g., Palinscar &

Brown, 1986) that she and her colleagues tested in the laboratory and then in the

classroom, where they have become fairly widely used. More recently, she

extended her applied side even further by playing the role of “learning

community” builder in order to address issues of acceptance and impact so that

her instructional innovations could produce larger educational changes. This

integration of pure and applied work is a model for the success of the convergent

approach to be discussed in the context of statistics education below.

The next section defines the term “statistical reasoning”.  Then, a brief

historical review of cognitive science research on statistical reasoning is
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presented, highlighting how the three approaches mentioned above map onto the

development of the field over the past 30 years:

1970’s Cognitive science theories were developed to explain fallacies in

people’s statistical reasoning.

1980’s New empirical work was conducted to study students’ statistical

reasoning

1990’s Students’ difficulties in statistical reasoning (and associated

instructional innovations) were studied in the context of classroom

practice.

These examples of single-perspective research are then followed by a description

of some of my own research in which the aim is to bring these different solution

approaches together to improve students’ ability to transfer their statistical

reasoning skills.

What is Statistical Reasoning?

“Statistical reasoning” is the use of statistical tools and concepts (e.g., hypothesis

testing, variation, correlation) to summarize, make predictions about, and draw

conclusions from data. Two examples illustrate this definition in a more

probabilistic and a more statistical problem, respectively.

Example #1:

A certain town is served by two hospitals.  In the larger hospital

about 45 babies are born each day, and in the smaller hospital
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about 15 babies are born each day.  As you know, about 50 percent

of all babies are boys.  However, the exact percentage varies from

day to day.  Sometimes it may be higher than 50 percent,

sometimes lower.

For a period of one year, each hospital recorded the days on which

more than 60 percent of the babies born were boys.  Which

hospital do you think recorded more such days? The larger

hospital; the smaller hospital; or about the same (i.e., the two

hospitals are within 5 percent of each other). (Kahneman &

Tversky, 1972)

Solution to Example #1:

The smaller hospital likely recorded more days with more than

60% boys because when sample sizes are smaller the observed

distributions are more likely to diverge from that of the population

at large.

Solving this problem requires reasoning about the impact of sample sizes on

variability and involves making a prediction based on this relationship.  Thus, this

example fits the definition of statistical reasoning because (a) it employs the use

of statistical concepts (e.g., sample size and variability) and (b) it involves making
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a prediction based on the given data (two separate samples with sample sizes

equal to 15 and 45).

Example #2:

A weather modification experiment was conducted in Florida to

investigate whether “seeding” clouds with silver nitrate would

increase the amount of rainfall.  Clouds were randomly assigned to

be seeded or not to be seeded, and data were collected on the total

rain volume falling from each cloud.  A variable named group

contains data on whether each cloud was seeded or not, and a

variable named rain contains data on each cloud's rain volume.

Does cloud seeding increase rainfall? To answer this question,

perform any appropriate statistical analyses of the given data set

and interpret the results accordingly.

(Partial) Solution to Example #2:

[Insert Figure 1 about here]

Solving example #2 requires performing exploratory and confirmatory data

analyses.  It thus fits the above definition of statistical reasoning because (a) it

employs the use of several statistical tools and concepts (e.g., boxplots,

confidence intervals, hypothesis testing) and (b) it involves drawing conclusions

based on these analyses.  It is important to note that the complete solution to this

problem would involve more than the displays and statistics presented in Figure 1.
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For example, the skewness of the data suggests re-analyzing the rain volume data

after performing a transformation, an analysis not presented in Figure 1.  More

importantly, a complete solution would include a more thorough interpretation of

the various results in terms of the question at hand, “Does cloud seeding increase

rainfall?”  (Note that this is a test problem used in the statistics course that

provides a classroom context for much of my work described below.)

Historical Review

The question motivating this volume (and the Carnegie Symposium that it

documents) asks how far we have come in applying cognitive research to

instruction in the past 25 years.  In this spirit, it is worth considering the

development of past research relevant to statistical reasoning as a benchmark for

current work in this area. Moreover, by looking at the past work on statistical

reasoning—theoretical in the 1970’s, empirical in the 1980’s, and classroom-

based in the 1990’s—one can see how these different research approaches

perform at their best in isolation, thereby gaining insights into how they might be

profitably integrated.

A Template for Comparison

Four questions serve to structure this historical review of cognitive science

research on statistical reasoning, The corresponding answers highlight how the

social context of the research in each era influenced the nature of the research.  A

discussion of each of these questions follows:
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Who are the researchers? The answer to this question may be cognitive

scientists, education researchers, teachers, domain experts, or some combination

of the above. It is an important question to consider because the background and

experience of the researchers involved can greatly influence the direction of the

research, both in terms of the questions being asked and the methods used to

address them.  In terms of identifying research that takes a “convergence”

approach to studying statistical reasoning, the main distinction to be made

regarding this question is whether or not the research integrates expertise from

multiple disciplines (regardless of whether that multidisciplinary expertise comes

from one or more than one person).

What is the goal of the research? The various answers to this question are of

course quite involved, but they may be categorized into different types of goals,

such as developing or extending a body of theory, adding to an empirical

database, testing an educational intervention, or assessing educational outcomes

(at a classroom or institutional level).  While the goal of a particular project may

not fall completely into one of these categories, it is likely that one emerges as

most representative of the emphases in that project.

What is the context of the research? This question can be answered at many

levels, as there are many ways of interpreting the term “context”.  For simplicity,

a basic interpretation answers the question in terms of the physical context in

which the research is pursued.  Even at this basic level, there are vastly different
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possibilities, including the cognitive psychologist’s laboratory, the school

classroom, or everyday life situations.  Each of these different physical contexts

tends to have a unique social and cultural context that can, in turn, influence the

nature of the research.

How is the research being applied?  The most salient application area is

education and, more specifically, the improvement of instructional practice.  This

application may be a direct part of the work or a potential future outlet for the

work.  Alternatively, the research may not be directed toward any explicit

application, or its application may be mostly self-directed, that is to extend or test

a current theory.  This question, then, does not address the nature of the work

itself as much as the implications of the research, for example what impact will it

have on science or society? and what audience will be concerned with its results?

With these framing questions outlined, the next three subsections briefly

sketch research on statistical reasoning produced in three different periods: the

1970’s, the 1980’s and the 1990’s.  The purpose of this review is not to provide

complete coverage but to convey the general tenor of the work produced in each

of the different periods.  For each period, the above questions will be answered

based both on “typical” work and on specific papers from that era.

Theoretical Focus of the 1970’s

Cognitive science in the 1970’s savored the somewhat-new concept that mental

representations can offer important insights into human behavior.  Applying this
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concept to the domain of statistical reasoning—specifically, to the question of

how people make judgments under uncertainty—led to a body of work that is best

represented by Kahneman, Slovic, and Tversky’s (1982) book, entitled Judgment

under Uncertainty: Heuristics and Biases.  In this book, the editors, along with

many other cognitive psychologists and social scientists working at that time,

document their research from the preceding decade.  They present a variety of

behaviors that people exhibit when reasoning about probabilistic and statistical

situations, and they posit specific mental processes as leading to these behaviors.

In most cases, the behaviors demonstrate people’s errors in reasoning.  For

example, the hospital babies problem presented earlier (Example #1) is taken

from a study performed by Kahneman and Tversky (1972) in which more than

half of the participants answered that the two hospitals would have the same

number of days with more than 60% baby boys (despite the fact that one hospital

delivers three times as many babies per day as the other).  This answer fails to

take into account the relationship between sample size and variability (i.e., the

probability of extreme measurements), so it highlights the fact that people do not

always employ correct statistical reasoning.

Other statistical reasoning fallacies (e.g., the gambler’s fallacy, the

conjunction fallacy, overconfidence, and insensitivity to base rates) were

documented by these researchers.  However, the main goal of the work was to

develop and test a theory that explains why people make these reasoning errors.
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Relying on the importance of mental representations and processes in

understanding behavior, this theory proposed that people reason about uncertain

situations by applying particular heuristics and biases that generally work well

(i.e., produce “good” reasoning) but fail under particular circumstances. Thus, it

should be emphasized that this era evince a positivist perspective, comparing

human performance against logical ideals without much attention to the general

value of using heuristics and biases (e.g., they are easy to apply, not overly

computation- or memory-intensive, and make accurate predictions in many

situations).

An example of one of these heuristics, proposed by Kahneman and

Tversky, is the representativeness heuristic, which states that people make

relative probability judgments about events A and B according to how

representative A is of B. In the hospital problem, this heuristic applies when

people consider the bigger and smaller hospital to be equally representative of the

population of baby-delivering hospitals and therefore judge them both to have the

same probability of delivering more than 60 percent baby boys on a given day.

The representativeness heuristic explains several other errors in statistical

reasoning as well. For example, Kahneman and Tversky (1973) showed that, in

particular circumstances, individuals are insensitive to the prior probabilities of

two events and that this insensitivity can be explained by application of the

representativeness heuristic.  When given brief personality descriptions of several
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individuals taken from a pool of 70% engineers and 30% lawyers, participants

rated the following individual as equally likely to be from either profession:

Dick is a 30 year old man. He is married with no children.  A man

of high ability and high motivation, he promises to be quite

successful in his field.  He is well liked by his colleagues.

(Kahneman & Tversky, 1973)

Because this description was designed to convey no information particular to

Dick’s profession, the prior probabilities of the two professions would suggest

that Dick was more likely an engineer than a lawyer.  However, participants on

average judged this probability to be 0.5.  Kahneman and Tversky argued that this

response stems from the representativeness heuristic because Dick’s description is

equally representative of a lawyer and an engineer, so the probability judgment is

reasoned to be that he is equally likely to be one or the other.

Table 1 encapsulates the 1970’s research on statistical reasoning by answering

the four framing questions of this historical review. In summary, the research of

this era mainly followed a theory-based approach to try to understand how people

solve (or fail to solve) statistical reasoning problems.  Little attention was paid to

the realities of everyday problem solving, let alone classroom learning, and yet

several new ideas and constructs were developed (e.g., reasoning heuristics) that

could later be applied in more practical settings.

[Insert Table 1 about here]
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Empirical Focus of the 1980’s

Toward the end of the 1970’s, researchers interested in science and math

education were starting to get excited about the ways in which cognitive science

theories and results (similar to those described above) could be applied to improve

instruction (cf. Klahr, 1976).  However, this potential influence between cognition

and instruction did not immediately impact the domain of statistical reasoning.  It

was not until the 1980’s that several researchers interested in statistical reasoning

started working on the question of how students , who have been trained in a

probability and statistics course, fare on similar tests of statistical reasoning (e.g.,

Fong, Krantz, & Nisbett, 1986; Konold, Pollatsek, Well, Lohmeier 1993;

Pollatsek, Konold, Well, & Lima, 1984; Pollatsek, Well, Konold, Hardiman,

1987).  These researchers tested students on problems that resembled those from

Kahneman and Tversky’s work.  Presumably, a reasonable prediction at the time

was that these students, thanks to their coursework in probability and statistics,

would demonstrate better statistical reasoning than that exhibited in the earlier

studies where the participants had no special training.  However, this prediction

did not generally hold true.  For example, Fong et al. (1986) found that students

had significant difficulty answering such questions outside the classroom context.

Indeed, this experiment warrants special attention not only for its results on

students’ statistical reasoning but for its serious attention to the issue of transfer of

relevant knowledge and skills outside the statistics classroom.
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In Experiment 4, Fong et al. (1986) selected students at random from a

college-level introductory statistics course; half of the students were tested during

the first week of the semester, and the other half were tested during the last week

of the semester.  The “test”, however, did not consist of a typical set of questions

given in connection with the students’ statistics course.  Instead, students were

contacted by phone (completely outside the context of any course) and asked if

they would have time to answer some questions for a campus survey on students’

opinions about sports.   Following two questions that actually did ask students

about their opinions regarding sports issues, four statistical questions—couched in

terms of sports cover stories—were asked.  An example of such a question that

was designed to tap students’ understanding of the concept of “regression to the

mean” is as follows:

In general, the major league baseball player who wins Rookie of

the Year does not perform as well in his second year.  This is clear

in major league baseball in the past 10 years.  In the American

League, eight Rookies of the Year have done worse in their second

year; only two have done better.  In the National League, the

Rookie of the Year has done worse the second year 9 times out of

10.  Why do you suppose the Rookie of the Year tends not to do as

well his second year? (p. 279)
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Other statistical questions included in the survey involved the statistical concepts

of sample size (cf. Example #1 presented earlier) and confounding variables.

Students’ responses to the four statistical questions were rated for evidence of

statistical thinking and for the quality of the statistical response. For two of the

questions, there was no significant difference between the two test periods (before

and after students had taken a relevant course) in their use of statistical thinking.

For the other two questions, there was a significant difference in the use of

statistical thinking between the two testing times.  However, in each of these latter

two cases, the effect reflected only an additional 20% of students giving

statistically related responses (with little concern of ceiling effects limiting the

possible improvement). For example, for the question given above, only 37% of

students tested at the end of the term used statistical reasoning in their answers,

compared to 16% of students tested at the beginning.

Regarding the quality of statistical reasoning, only one out of the four

questions showed a significant increase between students’ responses collected at

the two testing times. While these results do suggest that a statistics course can,

for particular questions, produce transfer effects in students’ statistical reasoning,

an interpretation of the practical significance of these results (and similar results

in Experiment 3 of the same paper) seems more akin to a glass half-empty.

Placing this work in its historical context, it is important to note that the

motivation behind these experiments was not to understand students’ statistical
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reasoning in their college courses but rather to test the hypothesis that people in

general tend to use abstract rules in their application of statistical concepts, such

as the law of large numbers. This theoretical basis for studying students’

statistical reasoning is also true of other work in this period.  For example, a series

of studies by Konold, Pollatsek, Well, and their colleagues was aimed at better

understanding why students might demonstrate the various fallacies documented

in the 1970’s (Konold, et al., 1993; Pollatsek, et al., 1984; 1987).  One such study

tested two alternative hypotheses for why students reason incorrectly about

random sampling: is it because they hold a passive, descriptive view of sampling

that merely does not include the notion of independence of trials or is it because

they hold an active-balancing model in which earlier trials influence later trials

thus countermanding the notion of independence (Pollatsek, et al., 1984)? By

varying the original paradigm used by Tversky and Kahneman, these researchers

were able to distinguish that students’ judgments were not consistent with an

active-balancing model, thereby suggesting a descriptive view of sampling.

These results helped to distinguish different underlying statistical conceptions that

students might have, thereby expanding the 1970’s theoretical work on reasoning

fallacies; they were not, however, directly applied to the improvement of

classroom instruction.

In summary, the research conducted during the 1980’s, like that of the 1970’s,

was mainly theoretical in nature.  However, there was a new trend toward



19

studying statistical reasoning in  more realistic situations. Moreover, the research

participants were often college students who had taken a course in probability

and/or statistics. In this way, the results were more relevant to an applied audience

including university instructors and instructional designers.  Again, Table 1

summarizes the answers to the four framing questions for this era.

Classroom focus of the 1990’s

By the 1990’s, the reform movement in math and science education had taken a

foothold in statistics instruction.  Many new textbooks focusing on the practice of

statistics were being used in courses whose curricula now emphasized reasoning

about data rather than memorizing formulas.  Along with this change in content,

there was a change in the techniques of instruction: Students were getting more

hands-on practice (typically in computer laboratories where they used statistical

software packages to analyze data); they were solving more real-world problems;

and they were getting access to computer simulations of various statistical

phenomena (e.g., the central limit theorem).

With all these changes in statistics instruction, many researchers were

asking the question: What do our students know and what problems can they

solve coming out of these new courses?  The motivation seems not to have been

to compare previous, traditional instruction with the new, nor to directly explore

the application of previous research to college instruction, but rather to document

students’ strengths and weaknesses under the reformed courses and, in some
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cases, to evaluate the potential of specific instructional innovations.  For example,

Garfield and delMas (1991) tested students’ conceptions of probability at the start

and end of an introductory course by asking questions such as the following:

Which of several coin flip sequences is most likely? least likely? How should one

interpret a medicine label warning that there is a 15% chance of developing a

rash?  Each question had a set of multiple-choice answers. Comparing students’

results from before and after the course showed that students did show an overall

increase in correct responses.  Nevertheless, particular misconceptions were

maintained after instruction, leaving the absolute performance levels at posttest

well below perfect performance. In a similar vein,  Melvin and Huff (1992) listed

and described several difficulties that their students demonstrated regarding

various statistical concepts required for analyzing data and interpreting statistical

results.  In both of these studies, the results highlighted that students have

difficulty applying particular statistical concepts even in the same context where

these concepts were learned (i.e., not a case of real transfer).

Other work during this period shares the focus on assessing students’

strengths and weaknesses but does so in the context of evaluating a particular new

teaching intervention.  For example, Cohen and his colleagues conducted several

studies in which the students were tested before and after taking a statistics course

that either did or did not employ a new instructional software package (Cohen and

Checile 1997; Cohen, Checile, Burns, and Tsai 1996; Cohen, Tsai, and Chechile
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1995).  The questions were designed to test students’ ability to apply the statistical

concepts taught by the software package.  Although the “experimental” students

exhibited greater learning gains (posttest – pretest) than did "control" students,

Cohen and Checile (1997) remark that "even those students with adequate basic

mathematical skills [who had used the hands-on instructional software] still

scored only an average of 57% [correct] on the [post-] test of conceptual

understanding” ( p. 110). While this result demonstrates an improvement relative

to that group's average pre-test score of 42% correct, it shows that students’

ability to reason statistically could still be greatly improved.

To summarize the research conducted during the 1990’s, the main focus

was on studying students’ statistical reasoning (and difficulties thereof) in the

classroom.  (See Table 1 for the 1990’s answers to the framing questions.) While

there was little attempt to draw on previous theoretical work that might have

helped to explain why these difficulties arose, there was a solid contribution in

practical knowledge for teachers regarding where students’ difficulties lie.

Perhaps even more importantly, research in this era provided public

documentation that there is still ample room for improving statistics instruction.

It is this last point that may have provided an impetus for researchers to look to

multiple perspectives in trying to make headway against the challenging problem

of improving students’ statistical reasoning.

Islands of Integrative Research in the mid 1990’s and Beyond
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As described above, most of the work on statistical reasoning during the 1970’s,

1980’s, and 1990’s employed a single research approach (i.e., theoretical,

empirical, or classroom-based). This past research also emphasized the products

of learning and reasoning rather than the processes. There have been some recent

studies, however, in which the focus is more process oriented and multiple

approaches have been integrated.  These bridging examples generally use the

results of one approach to motivate or justify new research using a second

approach.  For example, Garfield (1995) provides a review of past results on

probabilistic reasoning fallacies (highlighting some of the same 1970’s research

described above). She describes results, which were generated to test a more

general psychological theory, but she does so in a way that draws on her own

applied perspective and that will reach a classroom-oriented audience (e.g., high

school and college statistics instructors).

Another paper by Garfield (1994) describes a fairly traditional assessment of

students’ statistical reasoning ability but adds to this applied topic a more

theoretical perspective on learning.  In particular, the assessment asks students not

only for their answer to each question, but also which of several different modes

of reasoning led them to their chosen answer.  This approach enables the

teacher/assessor to identify not only when and how often a student answers

correctly/incorrectly but what mental processes and concepts led them to their

answers.  These additional data led Garfield to look for patterns of responding
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across related questions to make better inferences about what mental models of

statistics each student might have. More generally, it suggests to instructors and

assessors to consider, in the abstract, what knowledge is required for statistical

reasoning and how students’ knowledge differs.

This approach is closely related to Hunt and Minstrell’s DIAGNOSER

research  (e.g., Hunt & Minstrell, 1994) in which students are asked to complete

assessments that require them to select among options that reflect both their

solutions and their reasoning (i.e., both the products and processes of their

problem solving). In this way, the assessment makes it possible to diagnose which

facets of knowledge and understanding students have. Thus, like the theoretically

focused work of the 1970’s, this research aims to make inferences about students’

internal mental states.  In Minstrell and Hunt’s work, however, the DIAGNOSER

goes beyond inference to intervention in students’ learning by providing feedback

tailored to students’ particular choices and asking additional questions tailored to

the inferred facets of knowledge. This research integrates a theoretical and applied

approach because it includes both the development of new theoretical constructs

(i.e., facets of knowledge that represent certain profiles of understanding) and the

development of an empirical database describing real students’ various levels of

understanding.  Although Hunt and Minstrell’s earlier work focused on students’

understanding of physics, their approach has more recently been applied to the

domain of probability (Schaffner, 1997).
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A Convergent Assault on Statistical Reasoning

The remainder of the chapter will describe some of my recent work on examining

Carnegie Mellon students’ learning of statistical reasoning.  This work is part of a

project aimed at both understanding students’ learning processes and improving

their statistical reasoning abilities by creating new instructional environments.

Exploratory and inferential data analysis (like that exemplified in the cloud-seeing

example presented earlier) are the focus of our work. Our approach involves using

cognitive theory to help achieve instructional goals, instructional results to help

inform theory, and technology to help both.  We are integrating all three

approaches mentioned earlier: theoretical, empirical, and classroom based. In

contrast with the work of the 1970’s, 1980’s, and 1990’s, we are able to integrate

these approaches in large part because of the multidisciplinary team working on

this project.  In our work, the researchers consist of cognitive psychologists,

statistics instructors, educational researchers, and instructional technologists.

Our convergent approach is also made possible by the varied contexts in

which we are conducting the research.  These diverse contexts reflect a mixture of

the psychology laboratory and the statistics classroom.  In particular, the

classroom context for our work is an introductory statistics class taken by more

than 250 first-year undergraduates each semester. These students come from a

variety of majors in the humanities, social sciences, and architecture.
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Because of this strong link between our research program and the course

mentioned above, it is important to briefly describe the content and format of the

course.  The instructors’ goals in designing this course were to help students

learn to (1) apply the techniques of exploratory data analysis, (2) understand the

concept of sampling variability, (3) critically evaluate the effectiveness of

different study designs, and (4) use and interpret inferential statistical procedures.

(As mentioned above, exploratory and inferential analyses—goals 1 and 4—are

the focus of our work.) The course de-emphasizes the memorization of statistical

formulas in favor of students practicing statistics in authentic situations.

Specifically, the students analyze real data sets in order to address current

scientific and policy-oriented questions (e.g., Does seeding clouds with silver

nitrate increase rainfall? Which of two new drugs is most effective in reducing the

recurrence of depression? Do female professors earn less than their male

counterparts?).

The format of the course includes two hour-long lectures and one hour-long

computer laboratory session per week.  In each laboratory session, students work

in pairs at a computer, using a commercially available statistics package (Minitab

1999) to complete assigned exercises. These exercises are presented in the form

of a lab handout that describes a data set, provides detailed instructions to guide

students through the analysis, and asks them to interpret the results of their
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analysis.  Similar exercises are assigned as homework, where students apply the

same skills without the supervision of laboratory instructors.

As it stands, this course uses several innovative instructional design

techniques (e.g., collaborative learning, hands-on practice).  However, given the

1990’s research on similar reform-based courses, it seemed quite possible that

students could be exiting the course without the desired statistical reasoning skills

and transfer abilities. To address these potential areas of poor learning and

transfer, we could have jumped in with a variety of new, “better” ideas to test in

the class.  Unfortunately, however, the existing research on students’ difficulties

in learning statistical reasoning does not offer much explanation of what causes

these difficulties nor does it provide much guidance in devising specific solutions

for overcoming them.

Thus, instead of relying on our intuition to guide us where past research could

not, we took a systematic approach toward describing and understanding students’

learning processes before we began any instructional interventions. Our approach

involves developing a model of how students learn statistical reasoning, testing

that model empirically, and using that model to inform instructional innovations.

The products of our approach include: (1) a cognitive model of statistical

reasoning that is detailed enough to solve the same problems that students will be

asked to solve in an instructional setting, (2) well tested instructional innovations,
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and (3) a computerized learning environment, based on (1) and (2), for students to

use in the statistical reasoning class.

The remainder of this section documents four studies we have conducted that

exemplify (1) and (2). Then, the following section describes how the results of

these studies have been instrumental in our ongoing development of (3), a new

computerized learning environment for statistical reasoning.

Task Analysis

Analyzing the knowledge and skills required for reasoning statistically is an

important first step both for understanding how this skill is learned and for

designing a learning environment to help teach it. Cognitive theory provides a

mechanism for representing knowledge and can make detailed predictions about

how that knowledge is learned and used.  Within the ACT-R cognitive theory

(Anderson & Lebiere, 1998), knowledge is represented in one of two ways: as

declarative facts arranged in a semantic network or as procedural skills embodied

in a set of production rules, each of which specifies an action to be taken under

particular circumstances. These pieces of knowledge can be inferred from traces

that document the steps a solver takes at each point in a problem. Once the set of

production rules and semantic network are specified, the corresponding problem-

solving performance can be generated by simulation using the ACT-R

computational engine. Putting these knowledge pieces into a cognitive model
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makes it possible to compare the theory’s predictions with observed behaviors

and to evaluate or refine the model.

We began this process of knowledge decomposition by focusing on the

first and last of the four course goals that were specified by the instructor (as

listed above). These goals refer to students’ ability to apply the techniques of

exploratory data analysis and inferential statistics.  By collecting talk-aloud

protocols (Ericsson & Simon, 1993) from the statistics instructors and analyzing

what they considered to be “ideal” student solutions to typical data-analysis

problems, we generated a sequence of steps that reflect their problem-solving

process (See Figure 2). Note that this sequence of steps can be applied to solve the

cloud-seeding example presented earlier. To refine this analysis and obtain a

further specification of each step, we generated an initial set of production rules

and corresponding declarative facts that enabled the ACT-R simulation program

to perform each of the steps (correctly and at the appropriate points in problem

solving). Testing the model on sample problems assigned in the course,

comparing the model’s performance to that of actual students’, and identifying

parts of problems where the model lacked appropriate knowledge, we iteratively

refined our cognitive model. The model thus represented (to a reasonable level of

completeness) the facts and skills that students would need in order to solve each

part of a typical problem.

[Insert Figure 2 about here]
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Given our focus on improving students’ ability to transfer their statistical

reasoning ability, we were interested in how much of this knowledge would be

general (i.e., applicable in multiple contexts for multiple problems) and how much

of it would be case specific (i.e., only applicable under specific circumstances).

The model was helpful in making this distinction because it highlighted the fact

that there were particular production rules that were used regardless of the

specifics of the problem. For example, Table 2 shows several of these production

rules, translated to pseudo-code for easier reading. The first production rule

represents the knowledge for executing a particular step, namely, choosing an

appropriate graph. Notice, however, that even this particular graph-choice step is

represented with sufficient generality that it applies to problems with different

types of variables. The second and third production rules in the table represent a

small part of the common goal structure that guides the application of particular

problem-solving steps throughout the solution.  This goal structure is depicted at a

high level in Figure 2 and, like that figure, applies to almost any exploratory data

analysis problem.

[Insert Table 2 about here]

For the purpose of understanding students’ learning processes, this

production representation raised the question: At what level of generality do

students learn these rules. For example, students could learn lots of specific rules

to apply in different situations instead of the more general rules in our model, or
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they could learn overly general rules that do not adequately account for the

specific conditions under which particular steps are appropriate. For the purpose

of improving students’ learning via our new learning environment,  this question

led to the further consideration of how we could design the learning environment

to emphasize the common goal structure so that students’ internal knowledge

representations would be at an appropriate level of generality, like the model’s

(see the next major section for more details on this issue).

This analysis and model development were also quite helpful in

establishing a common language among the statistics instructors and cognitive

psychologists that facilitated the collaboration in our group.  As we developed the

model and discussed its possible refinements, the instructors had opportunities to

indicate precisely which aspects of the problem-solving process they found

important, and the cognitive psychologists had concrete, domain-specific

examples to use in discussing how knowledge comes in different forms (e.g.,

procedural vs. declarative) and the implications of different levels of generality.

Large-Scale Assessments

Having generated a model describing what students need to know to reason

statistically on data analysis problems, we next wanted an idea of students’

knowledge, both before and after taking the course.  This information would be

especially helpful for our applied goal of improving instruction because it would

indicate students’ strengths and weaknesses, that is, where we needed to work
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most to improve their statistical reasoning abilities.  In addition, because of our

focus on transfer, we wanted some assessment of how students would perform

outside the original learning context. To obtain this information, we created an

assessment instrument designed to tap students’ statistical reasoning abilities.  In

particular, we used the results of our task analysis to generate separate questions

for each separate concept (a part of the model’s semantic network) or skill (a

subset of the model’s production-rule set).  In this way, we tried to achieve a close

correspondence between items on the instrument and particular pieces of

knowledge identified in our task analysis as critical for statistical reasoning.

For ease of administration, scoring, and analysis with large groups of

students, we designed the questions in multiple-choice format.  While this

conveys more information about the products of problem solving (which is

different from most of our other work which emphasizes process), the fact that the

questions focus on small sub-parts of each problem gives some intermediate

information about students’ problem-solving process.  As examples of the content

and format of the assessment, Figure 3 shows two questions that were designed to

test students’ knowledge of how to choose an appropriate graph.

[Insert Figure 3 about here]

We administered the complete assessment according to a pretest/posttest

design with two groups of students participating—those who did and those who

did not take the course between the pretest and posttest phases.  The latter group
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served as a control so that we could determine what statistical reasoning abilities

students in the course were gaining above and beyond those attributable to

maturation or exposure to the general college environment. Both groups of

students took the pretest in an extracurricular testing session given at the

beginning of the school year.  Then, at the beginning of the second semester of

that same year, students took the posttest in the context of a separate statistics

course.

This posttest context represents our attempt at establishing a near-transfer

situation: “near” because the testing environment was another statistics course (as

opposed to, say, an economics course) but still “transfer” because that course was

different from students’ original learning environment.  Given poor results in the

studies reviewed above, it seemed prudent to test for near transfer before

expanding to more distant transfer tests.  Note that the context of this posttest also

had important ecological validity that was of interest to the statistics instructors;

we were testing students’ ability to retain and apply what they learned in one

course to a related course downstream in their program of study.

Here, we summarize the results of this assessment and describe how they

were helpful to the different members of our group.  (Lovett, Greenhouse, &

Johnson, 1999, provides a more thorough report of our analyses of the data.)

Panel a of Figure 4 presents total percentage correct for each group of students at

pretest and posttest.  These results were encouraging in that they showed that
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students who took the statistics course improved their total scores more than did

the students who had not taken the statistics course. Such aggregate results,

however, do not provide any diagnosis of students’ potential areas of strength and

weakness.  We therefore conducted item-based analyses of students’ responses

and found three distinct categories of items: (1) items for which the statistics-class

students increased the accuracy of their responses but for which the other group of

students did not, (2) items for which both groups of students showed no increase

in accuracy but could have, and (3) items for which both groups of students

showed no increase in accuracy due to a ceiling effect at the pretest.  Panels b, c,

and d of Figure 4 show the average proportion correct for group of students for

each of these categories of items, respectively. Only the pattern of results in panel

b demonstrates learning of statistical reasoning skills that can be attributed to the

course.

[Insert Figure 4 about here]

By identifying which items on our test fall into these three categories, we

were able to glean important information both about students’ areas of strength

and weakness (i.e., what components of statistical reasoning skill are inherently

difficult?) and/or how the course might be improved (i.e., what part of the course

is the instruction insufficient?).  For example, the first category of items included

skills such as interpreting descriptive and inferential statistics and defining

statistical terms (e.g., correlation).  These skills appear to be well learned from the
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course, and there is not much need for improvement. The second category of

items included skills such as choosing appropriate statistical displays (including

the example questions from Figure 3) and drawing conclusions from statistical

analyses.  The corresponding pattern of performance in Figure 4c suggests that

students have particular difficulty with these skills—both before and after the

course—and that our efforts at improving the course should be directed at these

areas. Finally, the third category of items included interpreting boxplots and

scatterplots. That students had an especially easy time with these subskills was

somewhat surprising to the instructors.  This result implies that the course need

not emphasize these subskills as much as it does, something that we could also

take into account in our plan for a new learning environment.

Assessing students’ abilities skill by skill with this instrument gave the

instructors more precise information about the areas of strength and weakness

than they could previously obtain.  Final exam questions given by instructors

often require synthesis of a variety of skills (an important ability to test) but do

not offer the same diagnosis capability, nor do they offer a controlled comparison

to students’ abilities before the course or without having taken the course.  In

summary, these assessment results provided important information to the

instructors about their students’ strengths and weaknesses, and they provided

initial pointers for the project team as a whole in terms of where we should
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concentrate our further study of why students have difficulty reasoning

statistically.

Detailed Study of Individual Students

As a result of the large-scale assessments, we knew that students exited the course

without having fully learned particular subskills important to statistical reasoning

(e.g., choosing appropriate analyses, drawing conclusions, etc.), but we did not

know the source of these problems.  Moreover, we wanted to know how students

were able to combine these and their better learned skills in the context of solving

authentic problems.  To address these questions, we conducted a very different

type of study, focusing on individual students’ ability to apply statistical

reasoning in solving open-ended problems.  We asked individual students who

had taken the statistics course under study to come into the psychology laboratory

and provide talk-aloud protocols while they solved a few data analysis problems

analogous to the ones they had encountered in class.  They were allowed to use

whatever statistics package they preferred (usually the one they had used in the

statistics class).  The main difference between these experimental sessions and

students’ computer laboratory sessions in the course is that our problems were

stated with only three basic pieces of information: the background needed to

understand the problem, the research question being asked, and a description of

the data to be analyzed.  In contrast, in most of the computer laboratories in the

statistics course, students would have received this information plus an entire lab
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handout guiding them explicitly as to how they should proceed in their problem

solving. Instead of constraining students to a single solution path, we wanted to

investigate how they would approach these problems in a much more open

format, i.e., what ideas and strategies for data analysis that they would generate

on their own.  Moreover, this served as a different kind of transfer test to see how

well students could solve problems without the typical aid of a lab handout to

guide them.

We collected students’ talk-aloud protocols and synchronized these with

the computer traces of their interactions with the statistics package.  Together,

these two streams of data offered a rich description of the mental and physical

steps students were taking as they solved the problems. Here is a sample problem

from our study:

In men’s golf, professional players compete in either the

regular tour (if they’re under 51 years old) or in the senior

tour (if they are 51 or older).  Your friend wants to know

if there is a difference in the amount of prize money won

by the players in the 2 tours.  This friend has recorded the

prize money of the top 30 players in each tour.  The

variable money contains the money won by each of the

players last year.  The variable tour indicates which tour
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the player competed in, 1=regular, 2=senior.  The variable

rank indicates player rank, 1=top in the tour.

We analyzed students’ verbal and computer protocols in several ways to

get a full description of their problem-solving behavior.  First, we coded the

combined protocols according to the main steps of problem solving (see Figure

2): If a given protocol segment or computer interaction offered evidence that the

student had considered one of these steps, we would code the step as attempted.

Figure 5 shows a protocol excerpt and our coding of each segment.  The

percentage of students who showed evidence of engaging in each step is presented

in Figure 2 next to the box corresponding to that step.  It is clear that students

were often not engaging (at least explicitly) in the first three steps and the last step

of our problem-solving sequence. While it is possible that experts could skip the

first three steps and initiate their problem solving at step 4 (selecting the

appropriate analysis), this sample of students did not demonstrate such expertise:

Although 100% of protocol subjects showed evidence of attempting to select the

appropriate analysis, their accuracy in doing so was only 50%. Thus, it seems

likely that inaccuracy in step 4 was in part caused by skipping steps 1-3. Separate

analyses supported this idea by demonstrating that the probability of a correct step

4 was much higher in cases when the preceding steps were not skipped compared

to when they were skipped. Also, note that although 100% of subjects gave some

interpretation of their results, only 80% provided accurate interpretations.
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[Insert Figure 5 about here]

Given students’ difficulty with step 4, choosing the appropriate analysis,

our next step was to review the protocols to explore the nature of students’

inappropriate choices. More specifically, what (if anything) were students doing

instead of applying the preceding three steps that could lead them to an

appropriate analysis? An “interpretation approach” (Chi, 1997) was used where

the protocols were examined to facilitate interpretation of the computer data.  In

many of the verbal protocols, we found evidence that students were relying on the

statistics package as a crutch to get a reasonable analysis on screen.  Two such

examples are presented below.  In the first, the student does not systematically

derive the appropriate analysis given the problem information but rather uses the

statistics package’s menu list as an idea generator:

Oh, okay. Um, I'm not really sure if- do I need to  uh we

can just, like, graph it, right?  Uh line plot, I guess. …

oh, uh histograms, barcharts  maybe a boxplot? Uh, no...

Uh, uh histogram, um data table, um...

In this case, there is no clear constraint on the student’s selection process, nor is it

guided by a conceptual understanding of the task.

In the second protocol example, a different student uses two separate

heuristics for selecting the appropriate analysis, neither of which is related to the
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specifics of the problem or an understanding of the task. The first heuristic

involves relying on what is typically a correct choice in this task (i.e., following

the base rates of success on past problems).  The second heuristic involves using

the statistics package’s warning message as feedback that the chosen analysis is

not appropriate:

Oh well, maybe,  hmm... if I highlight all of them [the

variables in the dataset], and then, maybe make a

boxplot cause, in statistics class that always worked

when you got stuck, just make a boxplot, and see what

happened. So uh, I'll boxplot them, um, y by x. [quack]

Uh oh, it says the variable rank has 30 categories, shall I

continue? Usually that was bad, so I cancel that, because

it shouldn't come out like that.

These protocol examples offer a preliminary hypothesis for why students were (1)

skipping the first three planning steps of the problem-solving process and (2)

relatively inaccurate in selecting an appropriate analysis. Namely, by using the

statistics package interface cues, they were able to apply a basic guess-and-test

strategy in order to generate analysis.

Our third analysis of the students’ problem-solving traces looked for

quantitative evidence supporting this hypothesis.  In particular, we analyzed
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various features of the analyses students performed on each problem.  We found

that, on average, students performed  approximately 11 separate analyses per

problem, even though only three analyses at most could be deemed truly

appropriate.  Also, of the analyses students generated in their problem solving,

approximately three per problem were exact repeats of a previously generated

(usually inappropriate) analysis.  These two results suggest that students were not

using an efficient search strategy because they were generating so many extra

(generally useless and often redundant) analyses,  Moreover, the sequence of

analyses generated by the students did not follow what the course had taught.  On

average, the most informative statistical analysis (i.e., the one that the course

instructor would have performed first and the one that was most consistent with

the teaching in the course) was the sixth analysis attempted by these students.

There are at least two possible explanations for this pattern of results. One

is that students have not yet learned a systematic procedure for selecting

appropriate displays that works for all sorts of data analysis problems. Thus, they

do not see the common structure across problems and do not know how to

proceed in a systematic fashion.  Another possible explanation is that students

have arrived at a sub-optimal strategy that enables them to “get by” with arbitrary

selections but without understanding of the reasoning behind their steps. Both of

these suggest that our computerized learning environment should emphasize the
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common goals and procedures across problems and monitor students’ choices to

assess the effectiveness of their selection strategies.

Experimental Study of Learning

The above results helped us uncover an important area of difficulty in students’

statistical reasoning—the ability to systematically plan an analysis based on the

problem information and on an understanding of statistical displays.  Tackling this

difficulty area thus became one of our new goals. In particular, we wanted to

design our computerized learning environment to facilitate students’ planning

processes so they could more easily learn to choose appropriate statistical displays

and acquire the corresponding skills at an appropriate level of generality. We

generated various ideas, based on past research, that would scaffold students in

this planning process.  Before implementing any of our ideas in the context of a

full-scale learning environment, however, we compared two potential design

variants in a controlled experiment.  Our motivation for doing so was twofold.

First, as a basic research goal, we wanted to gather more, fine-grained data on

how students’ learn these planning skills.  Note that the studies presented above

involved either students who had already taken the statistics course (i.e., were not

in an initial learning phase) or a data-collection procedure that produced very

coarse-grained information (i.e., provided data only on students’ answers not their

processes). In the description below, we describe data collected at a fine grain

from students who had not taken a previous statistics course.  Our second
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motivation was an applied research goal. We wanted to gather some preliminary

data on whether our ideas for scaffolding students’ planning skills would actually

aid learning.  In particular, we wanted to compare two versions of a computer

interface which manipulated the degree of scaffolding students would receive as

they learned how to choose appropriate statistical displays.

The procedure of this experiment involved assigning students to one of

two conditions (i.e., end-only and immediate feedback) and then asking them to

complete four experimental phases (i.e., pretest, instruction, problem solving, and

posttest).  The first phase involved a set of pretests to assess students’ pre-

experimental understanding of statistical displays and planning.  These tests

included problems where students had to consider the entire problem-solving

situation, not just the step of choosing appropriate displays. The second phase

involved an instructional phase in which students read various materials (on the

computer) that described different statistical displays, how they are produced and

under what conditions they are appropriate.  These materials were made available

to students throughout the course of the experiment, whenever students chose to

access them.  The third phase, the only phase to differ between the two groups,

involved a series of 16 problems that students were asked to solve on the

computer.  Depending on their assigned condition, students would receive more

or less specific feedback as they worked through each problem.  Figure 6 shows

the problem-solving interface.  Students in the “end-only” scaffolding condition
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were asked to make all five selections shown, in any order, and then submit their

answer.  Upon doing so, they were shown the corresponding statistical display

(regardless of whether their selections were correct) and binary feedback

(correct/incorrect) regarding their entire response. Note that incorrect feedback for

the end-only group does not disambiguate which of the five choices is incorrect.

In contrast, students in the intermediate-feedback condition received

correct/incorrect feedback after making the first four choices (choosing the

response/explanatory variables and their quantitative/qualitative type).  If

incorrect, they would be forced to try again until these choices were correct.  The

procedure thus implies that this group of students would only be selecting a type

of display (i.e., making the fifth choice) after they had correctly classified the

problem situation. Further, it implies that their end-of-problem feedback (same as

in the other group) unambiguously referred to the correctness of the fifth (display

type) choice.   The fourth phase of the experiment involved the same tests used in

the first phase.

[Insert Figure 6 about here]

The data gathered in this experiment consisted of students’  answers to the

pre- and post-experimental tests (phases one and four) and complete traces of

their interactions with the computer during phases two and three.  Figure 7A

shows that,  based on their pre/posttest scores, students improved a great deal in

their ability to select appropriate data displays, F(1,50)=69.6, MSE=2.83, p< .01.
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As a point of comparison, it is interesting to note that students in this experiment,

who had taken no previous statistics class and who spent approximately 45

minutes working with these instructional materials and problems, showed posttest

scores that were comparable to those of students who had taken the full-semester

course and then participated in the same experiment.  This comparison does not

suggest that students can learn an entire statistics course in 45 minutes, but rather

that the set of subskills involved in selecting appropriate analyses can be

reasonably well learned in a short, focused lesson that forces students to practice

making these selections on their own. It is often the case in the context of an

actual statistics class that students do not actually have many opportunities to

make such choices on their own; these choices are either made for them explicitly

(in homework or lab assignments that indicate which analysis is appropriate and

ask for students’ interpretation of the results) or implicitly (in cases where there is

only one new analysis being taught in a given week and that analysis is the correct

one for the problems assigned that week).

[Insert Figure 7 about here]

Perhaps more interesting than the pre/posttest data are the data collected

while students were learning.   On average, the number of attempts made on each

problem decreased with problem number for both conditions in the experiment,

F(3, 54) = 2.9, MSE = 13.6, p < .05 (See Figure 7B). In other words, students

were getting better at solving the problems over the course of the experiment.



45

Moreover, the number of attempts across blocks of the experimental phase was

lower for the intermediate-feedback group, suggesting that this version of the

interface made the learning process go more smoothly and quickly, F(1, 18) = 3.9,

MSE = 37.3, p < .06 (See Figure 7B). The advantage of the intermediate-feedback

group was also revealed when analyzing a particular set of “difficult” problems

where it was predicted that students would tend to make errors: On these

problems, the intermediate-feedback group chose the correct analysis first 82% of

the time, whereas the end-only feedback group chose the correct analysis first

40% of the time.

These results support two general points about how students learn to

choose appropriate statistical displays. First, students can acquire mastery of this

skill by practicing it in isolation with adequate feedback. This supports the notion

that decomposing the task of statistical reasoning into the required knowledge and

skills for good performance can lead to targeted, effective instructional

interventions. Of course, this knowledge-decomposition idea also acknowledges

the value of giving students practice at the “synthesis” skills that are required for

handling whole-problem solutions. Second, the fact that intermediate feedback

helps students learn this skill more efficiently suggests that students can benefit

from more than a standard statistical software package when learning. In

particular, the “feedback” offered by a statistical software package is limited in

that (1) it relies on the student’s ability to interpret a dubious display as such, (2)



46

it does not indicate what aspect of the student’s selection is incorrect, and (3) it

does not provide any information to help the student to correct the error. In

contrast, the intermediate feedback condition of this experiment provided enough

information to avoid all three of these problems. In our learning environment, we

are incorporating feedback features that avoid these problems as well as offering

students information on why their selections were wrong.

 A Convergent Assault: Putting It All Together

As the above studies show, understanding how students learn statistical reasoning

can be studied effectively from many different perspectives. Moreover, greater

gains can be achieved when these perspectives are brought together to influence

each other. In each of the four studies described, multiple perspectives were

integrated (e.g., theoretical and empirical, empirical and classroom-based, etc.) to

study a particular aspect of students’ statistical reasoning. These four studies also

serve to provide important results that are informing the design of our

computerized learning environment for statistical reasoning. In this way, all three

perspectives converge to impact the way students learn statistical reasoning in the

classroom.

The design considerations offered by the above studies’ results are as follows.

First, the task analysis highlighted the general skills that correspond to the goal

structure present in many data-analysis problems. Ideally, then, our learning
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environment should help students to learn these skills in a general way so that

they can transfer what they learn to a variety of problem contexts. Second, the

large-scale assessment indicated that, while students improve overall on statistical

reasoning questions after taking a course, there are particular areas (e.g., selecting

appropriate displays, and evaluating the strength of evidence) with ample room

for  improvement. Our learning environment should give special attention to these

aspects of statistical reasoning, such as scaffolding students’ intermediate steps.

Third, the detailed, process-baed study showed that students’ difficulties in

planning stemmed from the application of non-optimal strategies for selecting

appropriate analyses (e.g., guessing through menu items in the statistics package).

Our learning environment thus should discourage students from using these

strategies and instead should teach them to apply a systematic strategy based on

an understanding of data types and experimental designs. Fourth, the laboratory

study showed that practice on planning steps improves students’ ability to select

appropriate analyses and that intermediate feedback increases students’ efficiency

of learning.

Applying all these considerations jointly leads to the design of a learning

environment that has the following features. First, to highlight the general schema

for solving data-analysis problems, the learning environment should make the

goal structure explicit. Other researchers have achieved this by labeling important
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goals and subgoals in problem solutions (Catrambone 1995, 1996) and by

emphasizing the commonalties across problems (Cummins, 1992). Figure 8

presents a snapshot of a prototype for the interface to our learning environment.

Notice that the “outline-like” format presents major goals and subgoals with

expand/compress buttons for focusing on particular parts of the problem. The

labels for these goals and subgoals are the same for all data-analysis problems,

regardless of the particulars of the dataset or questions. Second, our learning

environment scaffolds students in their planning processes. The goal structure

highlighted in the interface includes steps for considering the relevant

variablesand their types that students must complete before selecting a particular

analysis for the given problem. Here the aim is to reduce students’ “dive in”

tendency and to encourage them to explicitly plan their analysis. This interface

also makes the invisible skills of planning visible (cf. Koedinger & Anderson,

1993) by giving external actions for steps that ordinarily would only take place

“in the students’ head”.  These external actions then enable the third design

consideration, offering feedback to students at critical points in problem solving.

When studens can communicate their intermediate planning steps to the problem-

solving interface in Figure 8, the problem-solving engine behind this interface can

offer feedback on these steps individually. For example, if a student identifies the

response variable incorrectly, that mistake can be indicated and explained before

the student goes on to conduct and interpret analyses that have no relevance to the
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question at hand. Note that the problem-solving engine here is based on the

cognitive model of statistical reasoning developed in the task analysis study; it

makes our learning environment an example of an intelligent tutoring system

because it can track students’ problem solving and offer hints and feedback

accordingly.

[Insert Figure 8 about here]

As we develop and refine this learning environment, we will not abandon

the convergent approach that motivated its development; our evaluation protocol

for our own system will be based on empirical studies conducted both in the

laboratory and the classroom, and we will use these results in combination with

theoretical considerations and the guidance of our domain experts to improve the

effectiveness of the system. Part of this further development will include going

beyond exploratory and inferential data analysis to emphasize the other two goals

of the course, namely, sampling variability and experimental design.

Making the General’s Strategy Work

Although it was not discussed in the opening story about the General, an

important pre-requisite for the success of his convergent strategy is effective

communication. Coordinated timing was the key to the strategy; if

communication among the various troops were not strong, the whole plan could

have been dashed.  Similarly, in the collaboration discussed in this chapter,
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effective communication among the different team members has been critical.

Such communication, however, takes time to establish in a multidisciplinary

situation. Early on in the project, team members with different areas of expertise

spoke somewhat different languages. It took collaboration on specific problems of

mutual interest, where everyone was willing to consider alternative perspectives,

to establish a common language. As this common language has been refined

through our work on the project, the synergy of our multiple perspectives has

increased.
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Table 1

Contrasting Historical Periods of Research on Adult Statistical Reasoning

Question 1970’s Answer 1980’s Answer 1990’s Answer

Who are the

researchers?

Cognitive

psychologists and

social scientists

Cognitive

psychologist

Psychologists,

educators, and

instructors

What is the goal of

the research?

Developing and

testing a theory

positing that people

use certain

heuristics and biases

Primarily testing

theory but also

documenting

abilities of statistics

students

Documenting

students’ difficulties

in statistical

reasoning

What is the context

of the research?

The psychologist’s

laboratory, with

sanitized versions of

real-world problems

Studying students

outside the context

of statistics class,

with pseudo-real-

world problems

Studying students in

the classroom

How is the research To develop and test To test theory; could To provide
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being applied? theory also be applied to

instructional design.

information to

instructors of

similar courses
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Table 2
General Production Rules in Cognitive Model of Statistical Reasoning

If the goal is to address question q with dataset d
& the relevant variables are x and y
& the type of x is x-type & x is the explanatory variable
& the type of y is y-type & y is the response variable
& a graphical tool for y-type versus x-type data is graph g
THEN produce a graph g of y versus x

IF the goal is to address question q with dataset d
& relevant variables have not yet been selected
& variables x and y are in dataset d and relevant to question q
THEN select x and y as the variables to be analyzed

IF the goal is to address question q with dataset d
& the relevant variables are x and y
& the type of variable x (quantitative/categorical) has not yet been identified
THEN set a subgoal to inspect variable x as to type
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Figure Captions

Figure 1. Components of a solution to the cloud-seeding problem.

Figure 2. Task analysis of major steps in solving exploratory data analysis

problems. Note that this is a cyclical process in which initial analyses may suggest

further questions for analysis. Percentages to the right of each step represent the

percentage of students in a protocol study who showed explicit evidence of

engaging in that step.

Figure 3. Two sample assessment questions on choosing appropriate statistical

display.

Figure 4. Results of large-scale assessment. Panel A shows percentage correct

over all items.  Panel B shows percentage correct for items on which students who

took the course improved from pre- to posttest. Panel C shows percentage correct

for items on which both groups of students showed no improvement, even though

they could have. Panel D shows percentage correct for items on which both

groups of students showed no improvement, presumably due to a ceiling effect at

pretest.

Figure 5. Sample protocol with each step coded according to the major steps of

statistical reasoning (see Figure 2). Notice that there is no evidence for steps 3 and

7. Also notice that the interpretation is somewhat inaccurate in that boxplots

display the median not the mean as a measure of central tendency.

Figure 6. Interface displayed to subjects in learning experiment.
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Figure 7. Panel A shows the overall improvement in pre/posttest scores for the

two groups of student—those with and without previous statistics courses.  Panel

B shows the improvement throughout the course of the experiment for the two

different conditions (end-only vs. intermediate feedback), including only those

students who had no prior statistics classes.

Figure 8. A snapshot of a prototype interface to our learning environment.



     seeded unseeded
 Group

N           MEAN            MEDIAN            STDEV

Seeded 45 61.33 40 45.31

Unseeded 45 44.67 40 35.07

The exploratory analysis (i.e., boxplots and descriptive statistics) suggest that there is
great overlap in the distributions of rainfall among the “seeded” and “unseeded” clouds.
[Ideally, student would also notice skewness of rainfall data and hence would perform
inferential statistics on transformed data.

95% Confidence interval for µseeded - µnot: (0.02, 0.583)

T-test for H0: µseeded = µnot HA: µseeded ≠ µnot

t= 2.11  p=0.038  df=  85

These inferential statistics suggest that, with an alpha level of 0.05, these data show a
significant evidence to reject the null hypothesis of no difference between seeded and
unseeded clouds’ rainfall volumes. This is consistent with the 95% confidence interval
which falls completely above 0.0, suggesting that the seeded clouds’ rainfall volume is
greater than the unseeded clouds’.

Figure 1. Components of a solution to the cloud-seeding problem.
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Figure 2. Task analysis of major steps in solving exploratory data analysis problems.
Note that this is a cyclical process in which initial analyses may suggest further questions
for analysis. Percentages to the right of each step represent the percentage of students in a
protocol study who showed explicit evidence of engaging in that step.

1) Translate question into
statistical terms

2) Identify relevant
variables

3) Characterize problem
(variable types, etc.)

4) Select appropriate
analysis

5) Conduct analysis

6) Interpret results of
analysis

7) Evaluate evidence with
respect to question
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Your local running club has its own track and keeps accurate records of each member’s
age and individual best lap time around the track, so members can make comparisons
with their peers.  Below are graphs of these data.
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12.  Suppose you wanted to show a group of new members how much joining this team
improves people's running times.  Which of the four graphs above would you use?
[Answer choices: A, B, C, D, or none of the above]

13.  Suppose you were interested in how running times tend to change as people get
older.  Which graph would you use to get an idea of what this trend looks like?
[Answer choices: A, B, C, D, or none of the above]

Figure 3. Two sample assessment questions on choosing appropriate statistical display.



(A) (B)

(C) (D)

Figure 4. Results of large-scale assessment. Panel A shows percentage correct over all
items.  Panel B shows percentage correct for items on which students who took the
course improved from pre- to posttest. Panel C shows percentage correct for items on
which both groups of students showed no improvement, even though they could have.
Panel D shows percentage correct for items on which both groups of students showed no
improvement, presumably due to a ceiling effect at pretest.
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1) Oh, okay. So we need to, he wants to know whether there is a difference in the

amount of prize money, the amount of money won by players in the two tours.

2) So, I think this is the prize money, uh, money contains the prize money won by

each of these players. Tour indicates which tour the player competes in. Well,

you don't really need rank, in order to solve this, right? Cause like, well, I don't

know.

4)  Um... I'm gonna do a boxplot... ...

5) [Subject uses statistics package to make a boxplot] oh, cool (laugh)- I did it.

6) All right, uh, so just looking at the average. It looks like the people in the

senior tour get less money. Um, and there's a lot less variation in the amount of

money that, like all the prizes. A couple little outliers in each which means

like, I don't know, like some people won, like a lot of money at a time...

Figure 5. Sample protocol with each step coded according to the major steps of statistical
reasoning (see Figure 2). Notice that there is no evidence for steps 3 and 7. Also notice
that the interpretation is somewhat inaccurate in that boxplots display the median not the
mean as a measure of central tendency.



Figure 6. Interface displayed to subjects in learning experiment.



(A)

(B)

Figure 7. Panel A shows the overall improvement in pre/posttest scores for the two
groups of student—those with and without previous statistics courses.  Panel B shows the
improvement throughout the course of the experiment for the two different conditions
(end-only vs. intermediate feedback), including only those students who had no prior
statistics classes.
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Figure 8. A snapshot of a prototype interface to our learning environment.


