
Overview

Learning sciences
Mitchell J. Nathan∗ and Martha Wagner Alibali

The aims of the learning sciences (LS) are to understand the nature of learning from
a broad range of perspectives, and to shape the ways that learning environments
and resources are designed and used. LS incorporates both systemic and elemental
approaches to investigating questions about learning, as a complement to the
primarily elemental approach emphasized in cognitive science research. Thus, its
greatest potential is in the integration of systemic and elemental perspectives.
Four major themes are central. First, research in LS attempts to bridge the divide
between research and practice. Second, research in LS is motivated by limitations
of theories of learning and cognition for specifying instruction. Third, research
in LS embraces the importance of analyzing and assessing complex interventions
through both experimental and design-based research. Fourth, research in LS
emphasizes the learning and behavior of the individual in interaction with the
physical, social, and cultural world, as well as with semiotic and technical resources.
Research in LS can be conceptualized along a continuum of time scales, from the
more microscopic to the more macroscopic. The time-scale framework illustrates
how disparate research traditions and research methods can function within a
unifying framework for the study of learning and complex behavior. The effort to
‘scale-up’ from more elemental findings to more complex, authentic settings has
been generative for LS, but faces serious challenges. There is an alternate route to
establishing a cumulative scientific knowledge base, namely, ‘scaling down’ from
more complex, ecologically valid levels to more elemental levels. Studies of basic
learning processes, framed in the context of the larger system, are well positioned
to support impact in authentic settings.  2010 John Wiley & Sons, Ltd. WIREs Cogn Sci

Learning sciences (LS) is a confederation of fields
of study and scholars—primarily from psychology

(including cognitive, developmental, and educational
psychology), education, computer science, and neu-
roscience, but also from other areas of social science
such as anthropology, social linguistics, and sociol-
ogy—whose mutual interests are to understand the
nature of learning from a broad range of perspectives,
and to shape the ways that learning environments
and resources are designed and used. Many learning
scientists engage in what could be termed eduneer-
ing because of the important focus on the design,
implementation, evaluation, and redesign of innova-
tive learning approaches and tools. In the spirit of
engineering research, the evaluation of success is based
in part on societal impact—measurable improvements
in learning and performance, interest and motivation,
instructional practices, or educational policies—and
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not on theory development alone. It would be inac-
curate, however, to frame LS exclusively as a form
of applied cognitive science. Rather, scholars in LS
investigate basic research questions about learning
and learners, the role of social context and culture,
and the nature of the design process itself, as well
as more applied questions about the implementation
process and the sociological and policy issues that
arise when disseminating successful interventions for
widespread use.

To capture this broad and evolving agenda,
research in LS is often conducted at the level
of complexity for which application is ultimately
intended. Impact is paramount and can drive the
research questions and the methods for accumulating
knowledge. We frame this as the systemic approach to
learning research and recognize it as a complement
to the elemental approach that has historically
shaped cognitive science research. The broader LS
research program ultimately seeks to incorporate
both elemental and systemic perspectives in a more
complete account of learning.
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As with the engineering approach in science
and technology,1 a systemic approach to learning
research emphasizes the iterative design process
and the complex nature of implementations in
authentic settings. A systemic study of learning begins
with investigations that capture the complexities
of the behavior and interactions of learners in
their authentic social and cultural settings, such as
family interactions, classrooms, community youth
and leadership groups, after-school programs, and
professional workplaces as they take place across the
day and lifespan.2,3 Later in this article, we propose
that inquiry commencing at larger, more macroscopic
levels of study can be ‘scaled down’ in order to take
advantage of more elemental research approaches,
such as controlled laboratory experimentation and
neuroscientific studies. Studies of basic learning
processes that are framed in the context of the
larger system are well positioned to lead to impact in
authentic settings, such as improved reasoning across
a broad range of cultural and socioeconomic groups,
and design of sociotechnical learning environments
for diverse populations of learners. Within the
systemic approach, the scope of research, theoretical
perspectives, and data collection and analysis methods
are appropriate to the complexity of the settings of
intended impact. Advancements in learning theory
and research methods acknowledge the complexities
of authentic contexts, thus leading to sophisticated
models of behavior in authentic settings.

WHAT IS LS?

The LS reflect both Modern and Postmodern views
of human behavior, as well as other intellectual
influences such as constructivism and socio-cultural
theory. With the emergence of ‘modernism’ in arts
and science, ‘behaviorism’ came to dominate studies
of human behavior, pushing forth a positivist agenda
that the world—in its mental as well as physical
senses—was knowable through formal analysis and
experimentation. Cognitive science rejected a core
assumption from ‘behaviorism’ about the reducibility
of mental events to observed phenomena. However,
cognitive science retains much of the positivist
character of that earlier view, particularly the reliance
on experimentation and on the operationalization of
mental and behavioral constructs using mathematical
and computational structures. Extending formal
descriptions of behavior to mental processes through
the use of computer programs and simulations had
a monumental influence on the types of phenomena
that could be scientifically studied.

Postmodern views argue against the existence
of a knowable universe and acknowledge—even
embrace, at times—skepticism and the subjective
nature of knowledge. A central aspect of Postmod-
ernism is ‘critical theory’, where the objective is to
critique and change society, rather than explain it.
As an example, Kaput’s4 critical analysis of the cap-
stone calculus course typically reserved for the small
group of high school students who take advanced
placement mathematics leads to a new perspective
on the discipline as the mathematical study of change,
which he then shows to be a topic accessible to primary
grade students. From this ‘critical theory’ perspective,
some LS scholars examine the design of curricula and
instruction with an eye to how they serve the social
and economic needs of an ethnically diverse student
body. For example, in language arts, Lee5 examined
assumptions regarding the standard canon of litera-
ture taught in schools from the perspective of race and
social justice. When race is used to ‘catalog human
communities’, Lee5 [p. 158] argues this shapes what
schools privilege and neglect when designing curricula.
When the literature and linguistic forms of historically
underserved groups are excluded, it limits their access
to rich and valued forms of reasoning.6

In LS, postmodern influences are apparent in
basic theoretical constructs: knowledge is sometimes
viewed from the epistemology of social and radical
constructivism (e.g., see Refs 7–9) and its situated
and distributed nature is emphasized;10–16 learning
is framed as changes in discourse and participation
within communities,17–19 and as problem-based and
project-based;20,21 and transfer is recast as preparation
for future learning22 and in agent-centered terms that
address the perceptual and conceptual generalizations
constructed by the learner rather than from the
viewpoint of the domain expert.23

LS also has roots in developmental learning
theories, such as constructivism, put forth by Jean
Piaget, and socio-cultural theory, as articulated by
Lev Vygotsky. A constructivist view holds that people
generate knowledge based on their experiences in and
interactions with the physical world. Socio-cultural
theory, in contrast, holds that social interactions are
the primary means through which people generate
knowledge and meaning. In LS, the legacy of
these developmental approaches is apparent in the
theoretical emphases on processes of knowledge
change24,25 and on nested levels of social and
cultural context (such as dyads and classrooms; see
Ref 26) and their roles in learning and developmental
change.27 These developmental approaches have also
influenced the research methods used in LS, such as
clinical interviews28 and microgenetic studies.29
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Because LS is the product of a wide range of intel-
lectual influences, it wrestles with the inherent tensions
among these varying philosophical perspectives. Yet
this interplay is central to the nature of LS scholarship.
Furthermore, there is great promise for a new synthe-
sis of these views, especially in areas such as education
and technological innovation, where research meth-
ods and epistemologies influence the design of learning
environments that rest on a firm evidentiary base.30

Several important themes within the LS program
of research are worth highlighting. The first is the
attempt to bridge the divide between research and
practice. The second is the limitations of theories of
learning and cognition for specifying instruction. The
third, an outgrowth of the first two, is the importance
of, and the methodological challenges involved in,
analyzing and assessing complex interventions in
authentic settings. The fourth is an emphasis on the
learning and behavior of the individual in interaction
with the physical, social, and cultural world, as well
as with semiotic and technical resources.

Bridging the Divide between Research and
Practice
More than five decades after the 1956 ‘Symposium on
Information Theory’ at MIT ushered in the cognitive
revolution,31 educational practitioners and cognitive
scientists continue to have little interaction over the
topic of learning.32,33 Indeed, practitioners often show
little interest in what researchers have produced.
Research is often too abstract and decontextualized to
be readily used by practitioners. Principles are often
tested in a narrow range of contexts, so practitioners
are skeptical about whether they will apply or scale-
up to the complexities of authentic settings.34 In
like fashion, those in the research community can be
dismissive of the knowledge generated by practitioners
and critical of the methods they use (however, see
Ref 35,36 as examples of successful collaborations).
Consequently, researchers often develop ‘solutions’
to educational problems with little direct input from
teachers or school leaders.

The misalignment of the scientific and practi-
tioner perspectives has deep philosophical roots, going
back to the classic Hellenic era, when scientific inquiry
(the ‘philosophical arts’) was explicitly separated from
its practical use (the ‘manual arts’; e.g., see Ref 37,38).
Learning studies are largely still conducted from this
philosophical perspective, with investigations of iso-
lated elements of cognition and practice conducted
in artificial settings, the results of which are then
combined and scaled up to account for the complex-
ity of behaviors found in authentic settings. In this

view, application of research stems from the output of
this scientific work; the intended application does not
itself shape the science or the methods that generate
knowledge.

From a LS perspective, the persistent divide bet-
ween research and practice is unacceptable. It hampers
efforts to develop a robust science of learning, and it
also interferes with the development of educational
innovations that are compatible with educational
institutions, organizations, and participants.

Incompatibilities between research and practice
can be framed as a mismatch between levels of gran-
ularity of the phenomena of interest.39 Teachers can
benefit from an understanding of child development
and cognition. However, they also need to know what
they are going to teach and how they are going to teach
it. Cognitive task analyses often do not give teachers
what they need to assist learners. An example comes
from one of our own experiences in teacher education.
In a class about cognitive development, pre-service
teachers were learning about the work of Robert
Siegler40 on information processing models of children
of different ages reasoning about the balance scale.
The teacher education lesson emphasized the qualita-
tively different forms of reasoning used by younger
and older children, and the notion of readiness to
learn. At the lesson’s end, a puzzled undergraduate
who felt that she gained new insight into children’s
thinking wanted to know whether this meant that
they all needed to be teaching the balance scale to
their students. To the instructor, this lesson seemed
like a transparent account of core cognitive princi-
ples with actionable information for teaching. Yet to
this budding teacher (and others, as nods circulated
around the room), the critical concern was iden-
tifying prescriptions for classroom instruction. Too
often, educational psychology courses delve into the
basic structures and processes of attention, memory,
perception, cognition, and language without framing
the scientific knowledge appropriately for practition-
ers. Educational psychologists with cognitive training
attempt to share the science, but teachers—a clien-
tele that should be ideal for cognitive science—need
application-ready ideas that allow them to create and
carry out classroom activities, while enriching their
understanding of thinking and learning (recent exam-
ples of compendia of such ideas are41,42).

Limitations of Theories of Learning
to Prescribe and Assess Instruction
The path from elemental to systemic research can be
productive as a method of theory development and
is in keeping with the philosophical roots of science.
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Psychological theories of learning and competence in
a domain are natural sources of principles for learning
environment design, and the potential benefits of
this cross-fertilization are manifold. First, theories of
learning help point the way toward effective designs
in a search space that is extremely large and difficult
to formalize (cf. see Ref 43). Second, when the design
process is tied directly to a theory of competence, the
principles used in the system are likely to be drawn
from a larger theoretical perspective on the workings
of the mind and the complexity of the domain.44

Third, design principles rooted in a theory have the
promise of being internally consistent. Finally, systems
based on principles that have been tested empirically
can be expected to be reliable.45 Following this
rationale, there have been repeated calls by leaders
in the field of learning environment design that the
work should be rooted in some theory of learning and
competence in a domain.21,46–48 This is in contrast to
an early (and continuing!) tendency to base learning
environment designs primarily on intuitions of how
learning proceeds, historical precedence, or novel uses
of available technology.49

As we strive to develop a scientific approach
to the design of learning environments, however, it is
important to acknowledge the inherent limits of learn-
ing theories in prescribing the final implementation of
learning environments. Although a specification of
learning is dependent upon a theory of knowledge,
a theory of knowledge vastly under-specifies how
learning occurs. Similarly, any learning theory under-
constrains the instructional designs that are drawn
from it.50 Put simply, theories of cognition are descrip-
tive of learning and performance, not prescriptive of
the instruction needed to foster that learning.51,52 To
fully specify an instructional approach, designers and
practitioners working from such theories must make
a great many decisions during planning and teaching
that are not stipulated by the learning research. (Note
that these approaches should be distinguished from
research that specifically seeks to develop cognitively
and epistemologically based theories of instruction
and instructional design, e.g., see Refs 3,51,53–55)
The general point is that, on its own, an elemental
approach to the study of learning faces enormous
challenges of scaling up when the scientific work is
called upon for application to authentic settings.

Studies of successful scaling up of educational
innovations point to the complex, iterative, and
nonlinear nature of the process, and the ‘wide-angle
view’ necessary to secure the needed support in a
systemic manner. As noted in a recent RAND report
on scaling improvements in classroom-level learning
and teaching,56 successful efforts go beyond spreading

to more sites and participants; they need to provide
support for the enactment of new practices, the
infrastructure and local policies needed to ensure
the continuance of these new practices, and the
transfer of knowledge and authority (ownership) of
these practices. This includes aligning with the prior
knowledge and beliefs of educational leaders and
students.57 New programs that do not match leaders’
prior knowledge are less likely to be implemented
or tend to be altered in ways that make them
more familiar.58 Yet these systemic considerations
are seldom addressed in the laboratory and efficacy
studies upon which scaled up field studies are based.
Furthermore, successful scale-up does not adhere to
a unilateral model that envisions the transfer of
knowledge from innovation provider to practitioner.
Instead, it depends on interactions among teachers,
providers (such as researchers), education leaders, and
organizations at the school, district, and state levels.
Neither is scale-up universally applied. It is subject to
‘local contingencies’ of the settings within which the
innovations are to be situated.59 Effective innovations,
such as cognitively guided instruction,60,61 have
shown that supporting teachers to implement and
sustain intended instructional practices requires
change throughout the local systems in which they
operate.62 This includes working within the specific
policies governing regional standards, assessments,
norms for accountability, and within the supporting
infrastructure, which includes factors such as teacher
incentives and resource allocation. To this end,
Gamoran and colleagues63 concluded that, in addition
to commitment from teachers and institutional
responsiveness, successful innovations benefit from a
strong research base with enhanced knowledge about
student thinking. Thus, in implementing effective
educational programs, it is important to ‘scale down’
from the policy, curriculum, and instructional levels
of design and analysis to more elemental research that
can advance our understanding of the impact of the
intervention, while at the same time contextualizing
the more basic research.

Analyzing and Assessing Interventions Using
Experimental and Design-Based Approaches
A great deal of LS research seeks to analyze and assess
the outcomes of educational interventions. Some
research that addresses these aims uses experimental
designs that include control groups and that use
random assignment.64 Such studies emphasize internal
validity, and they allow for strong causal inference.
As such, experimental studies yield the strongest
possible evidence about the efficacy and effectiveness
of educational interventions.
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However, in some cases, experimental design
may not be suitable for studies of learning and
behavior in naturalistic settings, because the control
of variables can lead to unnatural adaptations of
the tasks of interest, thus compromising ecological
validity.39 Also, as noted above, the limitations of
learning theories for specifying all of the components
that constitute a functioning learning environment
mean that many non-theoretically specified (and
perhaps uncontrollable) factors may have important
but undocumented effects on outcomes. Experimental
approaches designed to isolate a small number of
influences can be too slow to generate optimal designs
for complex interventions and settings.

The division between theories of learning and
prescriptions for instruction, on one hand, and the
need to bridge research and practice on the other hand,
has led some LS researchers to explore alternative
methods for analyzing and assessing the impact of
interventions. One approach is to adopt a design-
oriented philosophy more commonly associated with
engineering fields than with social science. The
design-based influences can be traced back, in part,
to the Intelligent Tutoring Systems and Artificial
Intelligence and Education (AI & Ed) communities,
whose work inspired early LS research on learning
environment development that later spawned research
in educational technology and human behavior more
broadly. In LS, design-based research methods, ‘design
experiments’, or ‘teaching experiments’ (e.g., see
Refs 39,65–68) address questions of what to design
in a climate of imperfect knowledge of the critical
factors that will impact learning. Design experiments
do not strive to ‘vary one thing at a time’ in
order to attribute causality. Instead, they allow
for a vastly expanded tool kit of data collection
and analysis methods that have been developed
to address questions about settings, people, and
phenomena that do not lend themselves easily to
classic experimental methods. Design-based research
provides for flexibility of interventions and faster
means of innovation—similar to what Koedinger69

[p. 8] refers to as ‘the hare of intuitive design’—which
can be complementary to the incremental approach
of experimental research—Koedinger’s ‘tortoise of
cumulative science’.

We offer the term eduneering to capture this
design-based ethos of research and development.
Given the complexity of understanding learning in
rich contexts, and the dual commitment to scientific
knowledge and social impact, the designs of studies
in natural settings are difficult to completely specify
in advance. Although an initial set of questions and
possible measures for data collection can be sketched

out, the design often unfolds as the study progresses.
Very often, new paths of inquiry and new data
sources are pursued as new insights emerge. Under
this view, evaluation is dynamic and not tied to a
single conceptualization of predetermined goals or
outcomes. Instead, evaluation needs to focus on the
actual operation and impacts of a process, program,
or intervention over time.70 Consequently, design
experiments are often conceptualized in longitudinal
terms, with significant redesign occurring before
the implementation of a subsequent cycle of the
intervention.71 This allows for learning at various
levels of the study to influence the investigation,
as researchers, designers, and practitioners continue
to develop a more informed perspective of how to
facilitate learning. In this way, researchers become
integral parts of the systems they are investigating,
and, reciprocally, teachers become collaborators in
the research.36,72

It should be noted that design-based studies
often forgo the close analyses to comparison groups
characteristic of experimental studies (though com-
parison groups are often used to track changes against
learning gains with the standard level of treatment
and a partial implementation of the innovative treat-
ment; see Ref 10). However, they do provide rich
process account of changes over time during the inter-
vention. For example, in a teaching experiment in
elementary mathematics, Cobb73 presents an ongoing
analysis of classroom events, along with a retrospec-
tive analysis of all the data sources generated during
the intervention.

Addressing Learning and Behavior
of the Individual in Interaction
Research in LS emphasizes the importance of studying
knowledge structures and learning in interaction
with the physical, social, and cultural world. From
this perspective, investigations consider: the context
and setting; affordances of objects in the world
(e.g., see Refs 74,75); embodied knowledge grounded
in experiences in the physical world (e.g., see
Refs 76,77); knowledge distributed among members
of a group and tools (e.g., see Refs 14,15,78);
social interactions, including shared objects and
representations (e.g., see Refs 19,79,80); positioning
within the participation structure (e.g., see Ref 81);
shared intentionality and intersubjectivity (e.g., see
Refs 82–84); and cultural, ethnic, and class influences
(e.g., see Refs 6,85) among others.

Scholars who focus on learners’ interactions
with the physical world often take an ecological74

or embodied cognition86,87 perspective on learning
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and complex behavior. From these perspectives,
some of the crucial questions that LS research
addresses center on the conceptual metaphors that
underlie reasoning,88,89 the importance of body
movements, including gesture and manipulations of
objects, in learning and instruction,90,91 and the
importance of motor and visual imagery and mental
simulations of action.77,92–95 For example, Glenberg
and Roberston96 studied how people learned to use
a compass from different types of instructions, which
included combinations of text, pictures, and video of
an actor’s hand indicating and operating the compass.
Scholars who address such questions often focus on
learning outside of formal education settings, such as
the workplace, where reasoning and learning depend
to a great extent on the use of tools, objects, and
various forms of technological media.3,97,98 As one
example, a study of civil engineers and field biologists
learning on the job revealed that new terminology
is learned through participation in activities that
establish words’ meanings.99

Scholars who work from a social interactional
perspective have coined their work, variously, as
situated cognition,100 situativity,11,12 socio-cultural
approaches,101 situated action,102 and distributed
cognition.13 Building on Vygotsky’s socio-cultural
framework, these views consider the individual acting
within the socio-cultural setting as the proper unit
of analysis, including the artifacts, people, activities,
and practices that contribute to that setting. Because
of this emphasis on the individual within the activity
setting, scholars working with this approach may find
it necessary to address aspects of the personal and
social identities of the participants and the histories of
these individuals as members of ethnic, generational,
or class-based groups that engage in culture-specific
activities. For example, one’s linguistic practices or
methods of learning may be traced back to the
family or community-based practices of a cultural
community.85,103 Heath’s104 ethnographic account of
middle class and rural families showed how cultural
influences in the home contribute to differences in
intellectual practices that have profound implications
for children’s school experiences. Others85 have
used the interaction-based perspective to reframe
the psychological notion of traits as behavioral
manifestations of ‘people’s history of engagement in
practices of cultural communities’ (p. 21) rather than
inherent to an individual or members of a group.
Although the study of learning in interaction is a major
break with traditional information processing views of
cognition, there is a general recognition that LS needs
to develop an integrated approach drawing from both
perspectives in order to achieve its aims.16,105

This perspective also has implications for
the study of online communities and computer-
supported collaborative learning (CSCL). The growth
of technological media for collaboration and socially
constructed knowledge (e.g., email, Wikipedia) has
fueled this as a rich area of study unto itself.106

Researchers in CSCL investigate how designed media
influence learning and collaborative work, including
the forms that unfold in academic, workplace,
entertainment, and community settings. Learning is
often recast as joint activity and meaning making
among distal participants. Investigators in this
research area seek to develop theories that will both
account for this behavior and guide the design of
effective media for the future.

TIME SCALES OF HUMAN BEHAVIOR

Research in LS spans a wide range of time scales
and uses a wide range of methodologies. As
Newell107 argued when delivering the 1987 William
James Lectures, learning, and human behavior more
generally, can be conceptualized along a continuum
of time scales (see also Ref 108). A time-scale
analysis of behavior shows how disparate research
traditions and research methods can be conceptualized
within a unifying framework for the study of
learning and complex behavior. At time scales below
10−2 s (10 ms), intellectual behaviors are at biological
(primarily neural) levels of operation. In the next
band of our human time scale, from 10−1 s (100 ms)
to 10 s, behaviors transition into the cognitive band,
and include perceptual and motor processes, as well
as basic and complex mental processes ranging from
word and object recognition to brief communicative
exchanges. The next band, from 102 s (minutes)
to 104 (hours), addresses behavior that is more
planful, interpersonal (such as dialogic exchanges),
and task oriented (‘rational’, in Newell’s terms,
p. 150). Human behavior at the further reaches of
the next band (104 s to 106 s; hours to days) is
characterized primarily by social and developmental
operations, such as experiences with classroom or
on-the-job training over whole class periods or
training units spanning several days. At 107 s (months)
and beyond, the focus is primarily on behaviors
in organizational, developmental, generational, and
cultural terms. Furthermore, there are forms of
research that are trans-scale such as studies of systems
across the time scales, and studies of the nature of the
scales that may naturally partition a field of inquiry.
Historical analyses of scientific research and systems-
level analysis are two such examples.
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At each time scale, different research method-
ologies and theoretical perspectives are used to forge
a level-specific learning theory that must be integrated
with, at a minimum, its immediately preceding and
succeeding levels (see Table 1). For example, mov-
ing logarithmically through the powers of ten, the
time-scale analysis highlights how cognitive functions
in individuals (operating in seconds) mediate between
neural (milliseconds) and rational (minutes) processes.
Lemke109 contends that coherence is established when
research at a more fine-grained time scale is con-
strained by the processes and structures at the next
highest level. Rigorous research at a given level of
temporal resolution, and the integration across these
levels, will promote advanced theory building that
will ultimately explain the manifold ways that learn-
ing occurs, and contribute to effective designs for
future learning environments.

A time-scale analysis also highlights some of
the barriers to an integrated and interdisciplinary
science of learning. The boundaries between each
of these levels of analysis tend to define distinct
research traditions, each with their own professional
societies, journals, and modes of scholarly discourse.
The forms of research at the finer-grained scales
(lower portion of Table 1) emphasize the study of
relatively elemental structures and processes, such
as brain structures, basic components of cognitive
architectures, and sensory, motor, and cognitive
processing. Methodologically, studies at this level tend
to be conducted in isolated, highly constrained settings
that support rigorous, quantitative conclusions. In
contrast, modes of research that emphasize the study
of learning over longer time scales (upper portion
of Table 1) tend to occur in complex, authentic
settings, often involving multiple agents and multiple
modalities for encoding and expressing actions,
perceptions, and ideas. Research at these levels lends
itself to more narrative and qualitative research
methods intended to address macroscopic processes
and structures. Thus, research methodologies form
another series of contrasts that correspond roughly
with the time-scale continuum (see column 4 of
Table 1). Finally, there are approaches to research on
learning and behavior that naturally span time.107,109

Representative Research
Research programs aimed at substantive problems of
learning in authentic contexts often form ‘boundary
crossings’ that allow learning scientists to operate
across elemental and systemic traditions, and ulti-
mately to transcend them. We briefly review two
programs of research to illustrate the nature and

utility of the time-scale framework, and the integration
of elemental and systemic approaches. Both address
mathematical learning and instruction, though one
focuses primarily on classroom experiences and the
other on community-based experiences. Our selec-
tive review should not be interpreted as an indication
that other learning domains are not conducive to this
framework. Other programs of research demonstrate
many of the qualities we seek to illustrate. We selected
mathematics as a common element across these exam-
ples partly because it aligns most closely with our own
focal areas, and partly because mathematics learning
has been well studied.

Cognitive Tutors: From Science
and Technology to Classrooms
and Neural Systems
We first illustrate these various time scales with
research on ‘cognitive tutors’, a well-integrated
program of research that incorporates theoretical
and methodological approaches across many of the
time bands of this framework. At the center of
this research and development program is a type
of software-based intelligent tutoring system for
mathematics learning.110 To address the complex
nature of classroom learning and instruction, the
program of research and development has taken a
systemic perspective, including considerations at the
macroscopic range of the time scale—such as teacher
participant design, teacher training, and classroom
social interaction—as well as an elemental perspective,
focusing on cognitive and neural processes at the more
microscopic range of the continuum.

As a form of instructional software, ‘cogni-
tive tutors’ provide learners a rich problem-solving
environment that incorporates a variety of represen-
tational tools, and that provides tutorial guidance in
several forms, such as feedback about steps taken
in problem solving, messages in response to com-
mon errors, and hints about next steps. The specifics
depend on the particular version of the ‘cognitive
tutor’ under consideration. At their core, ‘cognitive
tutors’ are based on a cognitive theory of learn-
ing and problem solving called adaptive control of
thought—rational (ACT-R),44 and they were created
in part to test aspects of the theory. Within ACT-R,
cognition is modeled as a system of productions, which
are condition-action (or if-then) pairs that link actions
to higher-level goals and features of context [e.g., If
the goal is to solve a(bx + c) = d, then rewrite as abx +
ac = d]. Each ‘cognitive tutor’ contains a production
system model of the competencies the tutor is intended
to help students acquire. Using the model, the tutor
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TABLE 1 Time Scales of Human Behavior and the Corresponding Areas of Study and Research Methods (Adapted from Ref 107)

Time scale (S) Level of study Scope of research Representative methodologies

Sp
an

s
tim

e
sc

al
es

Trans-scale • System • Design
• Interactions among levels
• Multidisciplinary

• Ecology
• Systems science
• Modeling
• Historical analyses
• Economics

←
De

cr
ea

si
ng

•T
im

e
Sc

al
es

•I
nc

re
as

in
g

→

107 s (months) &
beyond

• Organizational • Generational changes
• Legislation
• Economics
• Equity and social justice
• Leadership decisions
• Standards
• Personal development
• Professional development
• Program evaluation

• Policy analysis
• Program evaluation

(quantitative & qualitative),
• Longitudinal studies
• Experimentation
• Modeling
• Ethnography

104 s (hours) to
106 s (days)

• Social-cultural-
historical

• Teaching practices
• Curricular studies
• Socially mediated learning
• Learning environments
• Context of learning
• Robust learning
• Cognitive development

• Discourse
• Field observation
• Design-based research
• In vivo experimentation
• Ethnography
• Microgenetic studies
• Longitudinal studies

102 s (minutes) to
104 s (hours)

• Rational • Individual achievement
• Teacher and student behavior
• Beliefs
• Identity

• Interviews
• Psychometrics
• Experimentation
• Cross-sectional studies
• Conversation Analysis
• Survey
• Journaling
• Case study
• Modeling

10−1 to 10 s • Cognitive • Symbolic processes and structures
• Situated cognition
• Embodied cognition

• Experimentation
• Cognitive modeling
• Think-aloud reports
• Gesture analysis

10−2 s down • Biological • Neural processes
• Perception
• Motor processes
• Cognitive processes
• Emotion
• Imitation
• Empathy

• Neuro-imaging
• Single-cell recording
• Eye tracking
• Modeling

interprets each student’s actions and uses this informa-
tion to estimate how well the student has acquired each
of the relevant productions. The tutor uses these inter-
pretations to provide students with feedback about
correctness, to individualize instruction based on stu-
dents’ solution steps, to select problems appropriate
to individual students’ needs, and to determine when
students have mastered the target concepts and skills.

We focus here on recent work on ‘cognitive
tutors’ for geometry and algebra instruction. Much
of the work leading up to the construction of
‘cognitive tutors’ in any given domain is situated
at the cognitive-symbolic level (i.e., a time scale
of 10−1 to 10 s, or tenths of seconds to tens of
seconds, see Table 1). The tutors focus on specific
skill development, as reflected by the condition-action
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rules, as the unit of analysis for amassing a large
and sophisticated body of mathematical knowledge.
For example, Koedinger and Anderson’s111 early
work on expertise in constructing proofs in geometry
involved collecting and analyzing think-aloud reports
of experts as they planned proofs. This work
revealed that experts did not plan in a step-by-step
fashion; instead, they planned proofs at a more
abstract level. Koedinger and Anderson simulated
this planning process using a process that relied
on parsing problems into perceptual chunks that
cue relevant schematic knowledge. The ‘cognitive
tutor’ for geometry builds on this knowledge in its
model of expert proof construction. As a second
example, several studies have documented the range of
strategies that competent algebra problem solvers use
in solving linear equations.112,113 The ‘cognitive tutor’
for algebra builds on this knowledge of alternative
solution strategies in its model of expert knowledge
of algebraic reasoning.

Research on ‘cognitive tutors’ has subsequently
proceeded in multiple directions, both toward larger,
more macroscopic time scales, and toward smaller,
more microscopic time scales. Research on the efficacy
of ‘cognitive tutors’ on individual skill learning in
classroom settings extends to the more macroscopic
time scales, including the rational, the social-cultural-
historical, and organizational levels (see Table 1). A
number of studies of both ‘geometry and algebra
tutors’ have documented large learning gains in
classrooms that use the tutors over extended time
periods, compared with classrooms that do not
use the tutors. For example, one evaluation of the
‘geometry tutor’ showed that students who worked
with the tutors over an academic year scored about
one standard deviation better on a final test of
proof skills than students who did not work with
the tutor, even though both groups were taught by
the same human teacher.114 Similarly, an evaluation
comparing a ‘cognitive tutor algebra’ course with a
traditional algebra course over one academic year
(the organizational time scale of 107 s and beyond)
found that students in the ‘cognitive tutor’ course
performed 15–25% higher on standardized test items,
and 50–100% higher on items assessing problem
solving and use of representations.35

Studies of classroom functioning in classrooms
that use ‘cognitive tutors’115 work at a social-cultural-
historical time scale (hours to days, see Table 1).
A qualitative study of the use of ‘geometry tutors’
in an urban high school documented substantial
changes in classroom functioning in classrooms that
used the tutors, relative to comparison classrooms
that did not use the tutors.116 Students in tutor

classrooms started their work more promptly at the
beginning of the period, and were more likely to
work until the end of the period, than students in
comparison classrooms. Students in tutor classrooms
also appeared to be more engrossed in their work. The
tutor also wrought changes in the social environment
of the classrooms. Teachers’ assistance to students
was more individualized in tutor classrooms, because
teachers’ behavior was less constrained by the needs
of the class as a whole. Teachers in tutor classrooms
knew that students working on the tutors were
involved in productive activities, so they could devote
assistance to individual students without worrying
that other students were floundering or getting off-
task. Teachers in tutor classrooms were also less likely
to ‘hover’ or to offer unsolicited help to students,
as they knew that students could access help from
the tutor at any time. In turn, the students became
more active in seeking help when they needed it.
Students in tutor classrooms were able to receive help
in a more private, one-on-one manner (rather than
receiving it publicly), and this also led to changes in
patterns of help seeking. There was also considerably
more peer interaction in these classes, an element
that the researchers report was ‘key’ to its success.114

Finally, in tutor classrooms, there was an increase in
‘friendly’ competition among the students, because
student progress in tutor classrooms varied more
than student progress in comparison classes. This was
because student progress through the tutor was self-
paced, whereas student progress in the comparison
classrooms was less variable and more constrained,
with the group as a whole moving on to new material
together.

Other research on ‘cognitive tutors’ has extended
to more microscopic time scales, typical of perceptual
and neuroscientific investigations (seconds to mil-
liseconds, see Table 1). Gluck117 and Anderson &
Gluck118 investigated the eye movements students pro-
duced when using a simplified version of a ‘cognitive
tutor’ for algebra to better understand the processes
that mediated its success, and to inform future designs.
One surprising finding was that approximately 40%
of the tutor messages to students were not read. In
many such cases, students immediately corrected their
behavior, suggesting that the specific content of the
tutor message was not actually needed. However, in
some cases, students did not immediately self-correct,
and they were then likely to make an error. Another
compelling finding was that eye movements sometimes
revealed differences in strategy use among students
whose behavior appeared identical at the behavioral
level. For example, in solving word problems where
students first produced a symbolic expression, some
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students answered subsequent questions by fixating
on the symbolic expression, whereas others fixated
back on the verbal problem statement and ignored the
symbolic expression they had produced.

Other research has begun to use functional
magnetic resonance imaging (fMRI) brain imaging
to study learning from ‘cognitive tutors’. Anderson
et al.119 scanned adults solving algebra problems in
a simplified ‘cognitive tutor’ that was designed to
enable use in the scanner. Participants were scanned
on two separate occasions, before and after instruction
about the material, so that changes due to learning
could also be evaluated. Patterns of neural activation
were largely in line with predictions drawn from
past fMRI studies of algebra problem solving,120 and
with predictions based on the ACT-R cognitive model
that underpins the ‘cognitive tutors’. One unexpected
finding suggested that learning involved increased
efficiency in perceptual processing (manifested in
reduced activation in the fusiform gyrus region of
the temporal lobe). Thus, the imaging data helped to
identify specific changes that occur with learning (both
predicted and unpredicted). These findings can then
feed back to inform the cognitive model that provides
the knowledge engine of the ‘cognitive tutors’.
Furthermore, this knowledge can also be used to
generate recommendations for improving educational
practice—both recommendations about how to build
better ‘cognitive tutors’, and recommendations about
how to structure more ordinary learning situations for
optimal success.

A Socio-Cultural Approach to the Study
of Math Instruction and Learning
A second illustration of research across time scales is
Nasir’s program of research on learning mathematics
through game playing, and its relationship to learners’
goals and social identities. The focus is on young
African-American males learning to play dominoes.
The studies (e.g., see Refs 121,122) use ethnographic
and observational methods, as well as structured
interviews and surveys.

As with any well-structured game, dominoes has
a clear set of goals, an initial state, and operators that
define the legal moves through the search space. There
are also strategies that identify advantageous moves
and that reduce the cognitive demands for selecting
them. Thus, there is a familiar structure to the domain
that lends itself to a fairly standard information
processing account.123 In this way, the research
addresses goal-based problem-solving behaviors at the
level of cognitive processes and structures (10−1 s to
101 s). Yet the cognitive account is a performance-
oriented one, and therefore omits other notable

phenomena that Nasir identifies in studying how
young learners are initiated into the practice of
effective domino play and how that play and the
players develop over time.

In dominoes and many other activities (such
as determining basketball statistics)124 players’ math-
ematical goals are tied to broader practice-linked
goals.124 In dominoes, learners at the elementary
school level first strive simply to make legitimate
moves. This entails basic pattern matching methods so
that one’s own pieces are properly placed at openings
on the board. Later, typically by middle school, learn-
ers try to optimize the number of points each move
will tally. This involves systematically comparing the
options available based on the board configuration
and the dominoes available to the player. Then the
player must perform the mental calculations for the
points accrued with each option, and select accord-
ingly. By high school, Nasir observed players using
sophisticated probabilistic thinking and counterfac-
tual (if-then) reasoning to make reasonable judgments
about what plays an opponent may make on later
turns, and striving to block one’s opponent from
making higher scoring moves, as well as optimizing
one’s own position.

To more fully understand the strategies used
by learners, Nasir124 set up mock boards with
configurations that made varied strategic demands.
These situated interviews revealed that advanced
players were managing a great deal of information
about their opponents’ pieces and those that were left
unplayed, as well as board openings that would allow
them to make multiple plays over the course of the
game. More sophisticated play was not simply the
result of players adopting more and more powerful
strategies. Rather, players were adopting new goals for
game playing that were inextricably linked with their
advancement in their levels of play as well as changes
in their identities as participants in the competitive
community of players.

In Nasir’s view, the process of adopting
strategies for complex game play, typically framed as
learning from a cognitive perspective, is alternatively
framed as changes in the learner’s identity to
a more engaged and able social participant.17,124

In this way, the research addresses individual
achievement and performance (102 s to 104 s) and
socio-cultural-historical influences (104 s to 106 s).
Influences on players’ identities were most evident
in the flexibility of their interactions during play.
Neophytes maintained their roles within school and
neighborhood relationships during the games, such
that friends were given to generous and affable
interactions with one another, while a bully was
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accorded the same respect in a game as elsewhere.
Among more advanced players, particularly at the
high school level, one’s positive or negative reputation
for play temporarily altered the nature of the
interactions, and this was evident in differences in
shared laughter or teasing.

Changes in players’ performance of both the
game playing task and the mathematical forms of
reasoning that made advances in play possible were
accompanied by changes in the players’ goals and
identities. Both longitudinal changes of individual
players and cross-sectional differences between ages
and levels of experience were reflected in shifts in
cognitive processes, as evidenced by changes in declar-
ative knowledge and game playing strategies, as well
as changes in social practices, methods of interac-
tion, and values. Players shifted from basic pattern
matching and addition at the elementary school level
to complex inferences about probability and logical
thinking at the high school level. This shows the broad
developmental aspects of this program of research,
which spans the time scales of 107 s and beyond,
down to cognitive strategies and operations (10−1 s to
101 s). Far from a linear account, the influences appear
to be bidirectional and mutually constitutive. Thus, as
players became more engaged, they acquired new skills
and knowledge that supported greater involvement.
Increased opportunities for participation, along with
increased competence, contributed to more identifica-
tion with the practices and the practice communities
at social and personal levels, which, in turn, fostered
greater motivation to learn the mathematics as well
as the games. These mutual influences reveal a sys-
temic structure (top row of Table 1) that could be
overlooked by a solely elemental approach to learning
research.

Another way that this program of research
illustrates the broad LS perspective is its particular rec-
ommendations for the education of African-American
children. Traditionally, cognitive science has shied
away from issues of inequity within schools and other
learning settings, focusing instead on the articulation
of mental processes and structures with respect to a
certain task. Yet African-American students, as well as
individuals from other minority groups, can come to
disidentify with formal education.125 Dominoes and
basketball are seen as racially stereotyped activities
by both in-group and out-group members,126 yet they
also are highly demanding and engaging activities that
can provide an effective locus for the development
of mathematical knowledge. By identifying situated
practices in out-of-school settings that foster the type

of learning valued by educational institutions, LS con-
tributes to new visions of both learning and learning
environment design.

PROPOSAL FOR A UNIFIED
FRAMEWORK FOR THE LS

The Value of Integrating Systemic
and Elemental Perspectives
We contend that LS research stands to gain from inte-
grating the systemic and elemental views of learning
research. To contribute substantively to learning the-
ory, a research program must have all the elements
of any rigorous science, particularly ‘accumulation
of . . . coherent, disciplined, and rigorous knowledge
and explanation; the conduct of focused and dis-
ciplined scholarly inquiry and discovery; and the
resulting informed and improved action that ensues
from the application of the outcomes of the first two
elements in practice’,127 [p. 228]. The character of the
elemental approach to science is to derive the laws of
nature from examination of all available data. This
approach is most appropriate when there are a small
number of patterns to be found among a relatively
small number of variables. The emphasis of elemental
research in cognitive science, for example, is to iso-
late cognitive mechanisms and form an explanatory
account of behavior.52

Research conducted from the elemental perspec-
tive is indeed informative for education, as noted by
several collections of research in the area of cognition
and instruction.128–130 Controlled studies of elemental
processes are essential for understanding how iso-
lated processes and stimuli influence learning without
the complexities of the classroom or other authentic
settings.131 However, when authentic interventions
are driven exclusively by elemental research, the
instructional design is frequently an adaptation of the
laboratory approach. It is learning-oriented, at times
student-oriented, but seldom classroom-oriented, and
must ‘fill in’ aspects of instructional design that are
unspecified by the research.50

Many LS scholars believe that a science of
learning and of learning environments must be
prescriptive as well as descriptive.51,52,132 The analytic
accounts of behavior that emerge from scientific study
must inform these scholars about ways to influence
learning by modifying the world and the ways learners
interact with teachers and other students, as well as
forms of technology and visual media. From this
perspective, the study of learning can be cast as
a ‘design science’.1 When framed in this way, the
progress and maturity of a science of learning
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are naturally measured by its impact on society, in
addition to how well the terrain of learning processes
and structures are mapped out.

For aspects of learning research where impact
is as important as theory building, and where the
systemic nature of the phenomena is paramount and
isolated effects of individual factors are generally inde-
terminable, the eduneering approach is warranted.
Design issues and the interaction among system com-
ponents and resources come to the fore, and quantita-
tive methods are most powerful when used in concert
with design methods, qualitative forms of analysis,
and interpretive frameworks.

‘Scaling Down’ as a Method for Establishing
a Cumulative Knowledge Base
The effort to ‘scale-up’ from more elemental findings
to more complex, authentic settings has been quite
generative for the LS in terms of questions and find-
ings. We believe that including the systemic approach
conveys an additional route to establishing a cumula-
tive scientific knowledge base, namely ‘scaling down’
from more complex and ecologically valid levels to
those elemental levels that contribute to it.

From an elemental perspective, scale-up of
research involves a shift to a broader sample and
to new settings and tasks. Many of the contextual,
social, practice-based and design-based complexities
that were originally excluded from the scope of the
research now must be introduced. Yet the very meth-
ods and models that drove the research successes are
often incommensurate with the new environs. Conse-
quently, the path from successful elemental research to
wide dissemination is disjoint and often unsuccessful.

Scale down uses the findings from longer time
scales of analysis to generate targeted research ques-
tions at finer-grained levels. In this approach, learning
and practice are studied first in the complex settings
within which they naturally occur: the settings of the
organizational system (such as districts and schools),
places of professional practice (such as a field, shop
floor, or office), learning environments (such as a class-
room, workplace, or multi-user gaming environment),
and the individual (addressing issues such as iden-
tity, goals, and pre-existing knowledge structures).
Research at a higher time scale or level of aggregation
then constrains research at lower levels, providing it a
target phenomenon that needs further explication.109

For example, in the ‘cognitive tutors’ program, data
from the year-long program evaluation served to con-
strain research at various finer-grained levels, such as

the work on classroom interactions among peers and
the teacher,133 on visual processes used in attending
to hints from the tutor,117,118 and on neural processes
involved in encoding information.119 This integrated
research then informs theories of learning that con-
strain the design of future learning environments.

CONCLUSION

In this article, we have argued that the LS are poised to
make great strides in understanding complex human
behavior by integrating a systemic approach to inves-
tigating questions about learning with the elemental
approach that has historically been emphasized in
cognitive science research. We presented four major
themes that we see as central to LS: connecting
research to practice; developing evidence-based pre-
scriptions for instruction and learning environment
design; analyzing and assessing educational inter-
ventions using both experimental and design-based
approaches; and framing learning and behavior of the
individual in terms of interactions with the physical,
social, and cultural world. From the LS perspective,
impact is paramount and motivates the research ques-
tions and methods.

We have further argued that research in the
LS can be conceptualized along a continuum of time
scales.107,109 We illustrated this time-scale framework
with examples drawn from research on ‘cognitive
tutors’ and on socially situated game playing, two
very different programs of research in which math-
ematics learning can be observed. These two exam-
ples span levels of human behavior from the more
microscopic to the more macroscopic. As a unified
framework for understanding learning, the time-scale
framework illustrates how disparate research tradi-
tions and research methods can inform one another
and ultimately contribute to an integrated research
program.

Finally, we note that the effort to ‘scale-up’ from
more elemental findings to more complex, authentic
settings has been quite generative, in terms of ques-
tions and findings, for the LS. However, we suggest an
additional route to establishing a cumulative scientific
knowledge base, namely ‘scaling down’ from more
complex, ecologically valid levels to those elemental
levels that contribute to it. For a comprehensive sci-
ence of learning, we need not only to scale-up, but
also to scale down.
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