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Abstract

We present an analysis of hypothesized advantages of
pictorial representations for improving learning and
understanding of pre-algebraic quantitative reasoning.
We discuss a "Picture Algebra" strategy that has been
used successfully by 6th grade students as part of a new
middle school mathematics curriculum. This strategy
supports students in sense making both as they construct
pictorial representations and as they use them to cue
appropriate computations. Although we demonstrate that
6th grade students can use this strategy to successfully
solve algebra-level problems, our detailed production
rule analysis revealed limitations in our instructional
approach and targeted areas for improvement.

Introduction
As part of a larger effort to develop a 6th grade
mathematics course including both a textbook and
Cognitive Tutor software (cf., Koedinger, Anderson,
Hadley, & Mark, 1997), we have been exploring the
use of pictorial representations to support student
reasoning and learning (Rittle-Johnson & Koedinger,
2001). Here we investigate the claim that pictorial
representations can help students gain early entry into
algebraic reasoning and build a foundation that will
facilitate more effective learning of formal algebra.
   Why might using pictures or diagrams be
advantageous? Cognitive scientists have presented
arguments and experiments for the advantages of
diagrams (e.g., Cheng, 1999; Larkin & Simon, 1987).
According to Larkin and Simon (p. 98), "a diagram can
be superior to a verbal description for solving
problems" for three reasons. First, diagrams reduce
problem-solving search by providing localized
groupings of relevant information.  Second, diagrams
reduce the need for matching symbolic labels.  Third,
diagrams support perceptual inferences that are often
easier than corresponding symbolic inferences.
    Others have presented arguments for the use of
diagrams for mathematics instruction in particular.  The
mathematics standards of the National Council of
Teachers of Mathematics (NCTM, 2000) recommends

use of pictures to support students in developing a
conceptual understanding of mathematics. Pictorial
representations are used extensively in Asian curricula
(cf., Singapore Ministry, 1999).  This usage may be a
factor in the success of Asian countries on international
mathematics assessments (TIMSS, 1996).
   Despite these arguments for the advantages of
pictures, there is also reason for caution. One argument
for the use of alternative representations, like pictures,
is that traditional instruction focuses too much on error-
prone rote learning. However, students may also
acquire rote procedures when learning to use
alternative representations. Further, learning an
alternative representation takes time that might be
better spent learning the standard representation.
   In this paper we introduce the "Picture Algebra"
strategy, present student data on the use of it, and
discuss a production rule model of the strategy and
implications for transfer and instructional design.

Picture Algebra
Try to solve the Cans problem shown in Table 1 and
reflect on the strategy that you use to do so.  We have
informally observed that many adults do not directly
infer what arithmetic operations are needed to solve
this problem. Instead, most begin by translating the
problem statement to one or more algebraic equations,
for instance, x + (x + 9) + (x + 17) = 227.  They then
perform transformations on the equation to arrive at a
solution. Although a few use other means (cf., Hall et
al., 1989), most find this problem difficult without the
use of algebraic equations.  In other words, this is
arguably an "algebra problem" that we might expect to
be out of reach of students without algebra instruction,
for instance, 6th graders.
    Figure 1A shows a 6 th grade student’s solution to this
problem using a "Picture Algebra" strategy that was
taught to students as part of our middle school
mathematics curriculum. Like other problem-solving
strategies, Picture Algebra can be described in two
phases: a representation phase and a solution phase.  In
the representation phase, the student first translates the



Table 1. Three Problems Solved by 6th Graders
Cans: The sixth, seventh and eight grade classes brought in
canned goods for the needy. They collected 227 cans between
the grades. Sixth grade collected 9 more cans than eighth
grade, and seventh grade collected 17 more cans than the 8th
grade. How many cans did each grade collect?
Beanie: Robin has 6 fewer beanie babies than Angie. If they
have 42 beanie babies altogether, how many beanie babies
does Robin have?
CD: Carissa wants to buy the latest Out o’ Sync CD. She also
wants to buy a magazine and a poster about her favorite band.
The magazine costs $8 less than CD, and the poster costs $12
less than CD. The total cost for all three items is $46. How
much does each item cost?

phrase "sixth grade collected 9 more cans than eighth
grade" into a box diagram by drawing a box to
represent the cans collected by the 8th grade and a
larger box to represent the cans collected by the 6th

grade.  The larger box is made up of two smaller boxes,
one that is the same size as the 8th grade box and one
that represents the 9 more cans the 6th grade collected.
Similarly, the student draws two boxes to represent the
7th grade cans.  In both cases, the extra box off to the
right is labeled with the given "more-than" values, 9
and 17.  In the final step of the representation phase,
the student represents the total number of cans, 227, by
drawing a bracket to the right of all the boxes.
    This picture representation and the algebra equation,
x + (x + 9) + (x + 17) = 227, are "informationally
equivalent" in Larkin & Simon’s terms. The three equal
sized boxes on the left are analogous to the three x’s in
the equation, the extra boxes represent the + 9 and +
17, and the bracket and the 227 represent the equal sign
and right hand side of the equation.  Despite this
similarity, the picture and equation representations are
not "computationally equivalentÓ. Whereas the
equation is a 1D "horizontal" representation, the picture
is 2D and takes advantage of both the horizontal and
vertical dimensions to better support the inferences
needed to solve the problem.
    As we step through the Picture Algebra solution
phase, notice how inferences are visually supported in
a way they are not in the analogous equation solving
steps.  The first step in the solution phase is to parse or
comprehend the representation, picture or equation.
Past research has shown that both equation
comprehension (Payne & Squibb, 1990) and equation
production (Heffernan & Koedinger, 1998) are
particularly difficult sets of skills for students to
acquire. For instance, students must learn when they
can and cannot rearrange elements of an equation.
Although experts know they can in effect ignore the
parentheses in "x + (x + 9) + (x + 17)" and transform
the expression into "x + x + x + 9 + 17" and then "3x +
26", the steps involved are non-obvious to students and
prone to error. In contrast, the analogous steps in the

Picture Algebra strategy are visually supported. The
vertical organization of the bars makes it more apparent
that the three equal unknown boxes can be grouped
separately from the two extra boxes for 9 and 17. As a
consequence, students can "see" that if they subtract
these extra boxes, they will be left with the three equal
boxes. Notice the arithmetic on the left in Figure 1A
where the student computes both 9 + 17 = 26 and 227 —
26 = 201. This step is analogous to the "subtract from
both sides" transformation in equation solving,
however, it is more perceptually intuitive as students
can visualize chopping off the extra boxes. Next the
student divides 201 by 3 (see the bottom middle of
Figure 1A) to get the value, 67, of the three equal
boxes. Finally, the student adds back the 9 and 17 to
get the values of cans collected by the 6th and 7th grade.

Student Solution Data
We analyzed 35 sixth graders’ solutions to the three
problems shown Table 1. The Cans and Beanie
problems were given as part of a unit test. To get a
sense for whether the representation or solution phase
of Picture Algebra is more difficult for students, we
provided a correct picture representation for some
students but not for others. Half the students were
given a test in which a diagram was given for the Cans
problem but not for the Beanie problem. The remaining
students were given a test in which a diagram was
given for the Beanie problem, but not the Cans
problem. Students solved the CD problem (with no
diagram provided) as part of a warm-up activity on a
later day. (One student was absent on each day.)
   The Cans problem involves three unknown quantities
(cans collected by 6th, 7th, and 8th grades) and more-than
relations between these quantities. Students were
initially instructed on Picture Algebra with simpler two
quantity more-than problems. The Beanie problem also
has two quantities but is more difficult because of the
less-than (or "fewer") relation between them (Lewis,
1989). The CD problem combines both dimensions of
difficulty as it involves three quantities and less-than
relations. One question of interest is whether these
dimensions of difficulty are independent.

Overall Performance Results
The first result of note is that 6th graders can effectively
use pictorial representations to solve "algebraic"
problems. They were 68% correct on both the Cans and
Beanie problems and 32% correct on the CD problem.
Such problems are challenging for many older students.
For instance, Bednarz & Janvier (1996, p. 120) found
that pre-algebra students (same age as US 7th graders)
were only 5% correct on the following problem:

380 students are registered in sports activities for the
season. Basketball has 76 more students than skating and
swimming has 114 more than basketball. How many



           
    (A) Correct size-preserving picture for Cans problem              (B) Correct size-preserving picture for CD problem
     

              (C) Wrong picture for CD problem                                   (D) correct abstract picture for CD problem

Figure 1. Correct and incorrect 6th grade students’ Picture Algebra solutions.

students are there in each of the activities?
As another reference point, Koedinger & Alibali (1999)
collected data on college students’ performance on the
following relatively simple problem:

There are 38 students in class. If there are 6 more girls than
boys, how many boys are in the class?

Students in a college algebra course were only 54%
correct and even CMU students with a mean math SAT
of 719 were 86% correct.
   Students given a picture on the Cans and Beanie
problems were 71% correct in both cases and were
65% correct on both without the picture. That being
given the picture did not help much on these problems
indicates that the representation phase was relatively
easy for students. In contrast, the representation phase
on the CD problem was not easy.  Students drew a
good picture in only 32% of CD solutions, but were
64% correct when they did. They were only 17%
correct when a picture was missing or incorrect.

    We were surprised at students relatively poor
performance on the CD problem (32%) given that two
key sources of difficulty in that problem, 3 quantities
and less-than relations, were each present individually
in either the Cans problem (3 quantities) or the Beanie
problem (less-than relation). A simple surface-level
analysis of problem difficulty factors would predict
that students would be, at worst, 42% correct (.65*.65)
on the CD problem. Clearly, such a surface level
analysis is insufficient to understand why the CD
problem was so hard for students. Our production rule
analysis below provides a better explanation.
Diagramming Strategies
We classified the pictures students drew into 5
categories: size-preserving, incomplete, wrong,
abstract, and no-diagram. In a "size-preserving"
picture, all quantities, or parts of quantities, are
represented by boxes whose sizes correspond with the



relative sizes of the quantities. That is, bigger quantities
are represented by bigger boxes. Unknown quantities
can be any size, but equal quantities must be
represented by equal size boxes. All quantities are
represented and all known quantities or parts of
quantities are labeled with their given value. Figures
1A-B show examples of "size-preserving" pictures. An
"incomplete" picture was one that was otherwise
correct, but was missing quantities or labels. A
"wrong" picture has boxes that are the wrong relative
sizes. Figure 1C shows an example where the box for
the magazine cost (top box) is the same size as the box
for the poster cost (bottom box) when, in fact, the
magazine cost is bigger than the poster cost.
    An "abstract" picture is shown in Figure 1D. The
boxes in Figure 1D violate the size preserving
constraint. Whereas the CD cost is largest, it appears as
the smallest box (the top one). However, some students
correctly interpreted these extra boxes (labeled —12 and
—8) as, in essence, having a negative size.
    A potential advantage of the abstract picture is that it
may incrementally move students toward the kinds of
abstract inferences needed for symbolic algebra
transformations. On the easier Cans and Beanie
problems, the 7 solutions employing an abstract picture
were all correct. However, one disadvantage of the
abstract picture is that without the size-preserving cues,
students can easily confuse the operations that need to
be performed and, for instance, subtract when they
should add. This confusion led 4 of the 10 students
who used an abstract picture on the CD problem to an
incorrect answer. Further, even among the 6 students
whose abstract picture led to a correct solution, there is
evidence of confusion. Notice the arithmetic on the left
in Figure 1D where the student incorrectly subtracts 20
from 46 rather than adding 20 and 46. The student
abandons this approach when he notices that 3 does not
divide evenly into 26. This correct solution may not
have come from understanding, but from a shallow
school heuristic that problems usually come out even.

Production Rule Model of Picture Algebra
We performed a production-rule analysis of typical
correct and incorrect student solutions to the three
problems. Table 2 shows examples of key productions.

Production Trace of Cans Solution
The correct solution to the Cans problem with a size-
preserving diagram (see Figure 1A) is traced with 13
productions. These productions are the same ones
needed to solve a more-than problem dealing with two
unknown quantities and thus we would expect good
transfer from class instruction. To process 3 unknown
quantities rather than 2, some productions are executed
multiple times. When drawing a size-preserving picture
the model first has to draw a "base" box (P2a in Table

Table 2. Picture Algebra Production Rule Examples
P0a: Change-less-than-to-more-than
If goal is to draw boxes to represent
        =Q1 is =X less than =Q2
then  set goal to draw boxes to represent
          =Q2 is =X more than =Q1
P0b: Change-less-than—to-more-than-negative
If goal is to draw boxes to represent
       =Q1 is =X less than =Q2,
then set goal to draw boxes to represent
         =Q1 is minus =X more than =Q2
P2a: Draw-base-box-more-than
If goal is to draw boxes to represent
      =Q2 is =X more than =Q1
      and no box has been drawn
then draw a first box for =Q1
P3c: Draw-comp-box-equal-part-repair
If goal is to draw boxes to represent
     =Q2 is =Y more than =Q3
    and first box for =Q2 with the size =S1 is drawn
    and no box for =Q3 has been drawn
then draw a first box for =Q3 with the size =S1
P6a: Check-equal-size-boxes-with-extra
If goal is to solve a problem with a box diagram
      and there are equal-size boxes
      and the value of an extra box for =Q1 is =X
      and the box with value =X has not been removed
then  set  goal to remove the extra box
2). This box represents the 8th grade cans. Other
productions draw "equal-part" boxes for the equal parts
of the 6th and 7th cans and "extra-part" boxes for the 9
and 17. The final production in the representation
phase draws and labels the bracket with the total 227.
    At this point, the solution phase begins with
production P6a, which sets a goal to remove an extra
box. This production fires twice in the Cans solution,
once with =Q1 set to 6th grade cans and =X to 9 and a
second time with =Q1 set to 7th grade cans and =X to
17. Once all quantities represented as extra boxes (i.e.,
9 and 17) are subtracted from the total quantity (227),
further productions find the base quantity by dividing
the new total (201) by the number of equal-size boxes
(3). The model finishes with productions for finding
the other two quantities by adding the extra box values
(9 and 17) to the value of the base quantity (67).

Production Trace of Beanie Solution
The key to the model’s solution of the Beanie problem
is production P0a that converts a less-than relation to a
more-than relation. Once the model sees "Robin has 6
fewer beanie babies than Angie" as "Angie has 6 more
beanie babies than Robin", it can solve the problem just
as it would a more-than problem. Students’ relatively
good performance on the Cans and Beanie problems is
consistent with a production rule transfer analysis
(Singley & Anderson, 1989). Relative to the familiar
two-quantity, more-than problems students were
instructed on, only repetitions of already known



productions are needed for the Cans problem and only
one new production is needed for the Beanie problem.

Production Traces of CD Solutions
It turns out the simple less-than to more-than
transformation performed by P0a does not work so well
for solving the CD problem.  A production rule trace of
the incorrect solution to the CD problem in Figure 1C
illustrates this point.  As in the Beanie trace, the model
begins by firing P0a to convert "price of magazine is
$8 less than the price of CD" to "price of CD is $8
more than the price of magazine". It then draws the
single smaller box for the magazine cost (top of Figure
1C, but without 8 inside) and the equal-part and extra-
part boxes for the CD cost (first two boxes in the CD
row, without the 12 box or the first 8 label). The
representation is correct at this point, but after
converting "the price of poster is $12 less than the price
of CD" relation to "the price of CD is $12 more than
the price of poster" the model has trouble.
    If the model only had the productions needed for the
Cans and the Beanie problem, it would reach an
impasse here. Usually the smaller base of the more-
than statement (Poster in this case) has already been
drawn and there are productions for drawing the equal-
and extra-parts of the larger quantity (CD).  However,
in this case, it is the smaller box (Poster) that has not
been drawn.  Our model predicts that students reach an
impasse at this point and must implement a "repair"
(VanLehn, 1983).  The production P3c in Table 2
represents a result of this repair.  It draws a base box
for the Poster cost that is the same size as the equal-
part of the CD cost.  Next, an over-general production
adds an extra box to the CD row for the "12 more".
This production is over-general because it is missing a
constraint to check that an extra box has not already
been drawn (the middle 8 box in the CD row). The
model continues, like the student, to correctly compute
values consistent with this incorrect representation of
the problem.
    With only one production difference from the Cans
and Beanie problems this solution is a relatively easy
transfer. This provides an explanation for the frequency
of this odd incorrect solution strategy.  8 of 34 students
drew pictures for the CD problem like the one shown in
Figure 1C with two extra boxes in the CD row.
    Students found two ways to be successful on the CD
problem. Figure 1D shows an example of one of these
ways. The model again starts by converting the given
less-than relations to more-than relations, but not by
changing the position of the quantities in the relation,
but by negating the difference value (P0b in Table 2).
For example, "price of magazine is $8 less than the
price of CD" is converted into "price of magazine is -
$8 more than the price of CD". The model then draws
an abstract diagram with an extra box in the Magazine

row that has a negative value. New productions are
needed to deal with extra boxes with negative values.
One of these productions removes an extra negative
box by adding the absolute value of the box to the total
(46 + 12 and + 8). A similar production is needed in the
final steps of the solution to combine these negative
values with the unknown value (22).
    A second approach to the CD problem involves
directly representing the less-than relations in the
picture (see Figure 1B). In this approach, the larger CD
cost remains the base quantity in both relations. That
the magazine cost is $8 less is represented by labeling
the space between the right end of the Magazine bar
and the right end of the Poster bar. (It would be better
if the student had not put a box around the 8 as this box
implies the size of the Magazine cost includes this 8
when it does not.) Only one student on the CD problem
drew a picture that was close to size preserving.
    Both of the correct solution strategies for the CD
problem involve more new productions (4 and 7) than
the incorrect solution strategy (1). While the abstract
picture strategy involves fewer new productions (4)
than the size-preserving strategy (7), there are other
relative advantages of the size-preserving strategy.
    The new productions required for the size-preserving
strategy are mostly straightforward analogies with
existing productions, where less-than is substituted for
more-than. More importantly, this strategy provides
more reliable perceptual support for inferences. To get
three equal bars, one must fill in the empty space to the
right of the Magazine and Poster boxes (see Figure
1B). This "filling in" is a perceptual cue for addition. In
contrast, in the abstract picture (see Figure 1D), the
perceptual cues suggest "removing" or subtraction and,
as we saw, many students fell for or were distracted by
this cue. To succeed with this strategy, students have to
do explicit symbolic processing to infer that taking
away a negative is the same as adding.
    An important consequence of this analysis was the
recognition that students should be instructed not to
draw boxes around extra missing parts (see the —8— and
—12— in Figure 1C), but to use a double-headed arrow
or bracket to mark the empty space.

Discussion
The Picture Algebra strategy benefits from a number of
positive features of diagrammatic representations:
grouping to facilitate search, reducing the need for
symbolic labels, and substituting intuitive perceptual
inferences for more difficult logical inferences (Larkin
& Simon, 1987). The potential value of this strategy is
evidenced by the observed success of 6th grade students
on algebra-level problems that are quite difficult for
many older students.
   Teachers always encourage students to check their
answers and students appear more likely do so when



using Picture Algebra (Fig 1B,C,D) than when using
other strategies. We speculate that by evoking students’
spatial intuitions, the pictorial representation puts
students in a "sense making" mode that leads to greater
self-monitoring (cf., Kalchman, Moss, & Case, 2001).
   However, instruction based on pictures is not a
panacea. Although pictures may facilitate students’
reasoning and learning, it is not trivial for students to
learn to use such representations flexibly and with
understanding. Not all students using Picture Algebra
engaged in sense making. Some made errors typical of
equation solving (e.g., subtracting when they should
add) and failed to catch them even with the visual
support of the picture (cf., Lewis, 1989).
    Although students performed relatively well on
problem demands presented individually in the Cans
and Beanie problems, they had much greater trouble
with the CD problem that combined both demands. Our
production rule analysis provides a detailed explanation
for why this problem is significantly more difficult.
The difficulty arises from the order in which the
quantities are related to each other and potential traps
from inappropriately selecting a "base" quantity.
    A novel prediction of our model is that a 3-quantity
more-than problem of the form "A is X more than B
and A is Y more than C" should be almost as difficult
as the CD problem (a 3-quantity less-than problem).
This prediction follows from the fact that the model
essentially converts the CD problem into this form.
Similarly, the model predicts that a 3-quantity less-than
problem of the form "A is X less than B and A is Y less
than C" should actually be relatively easy, more like
the Cans problem. The generation of such predictions
has pushed us to rethink and improve our curriculum
design to better address the previously hidden skills
revealed by our production rule analysis.
    This paper reports on theoretical and empirical steps
toward answering the following research questions:
1. Can instruction on the use of Picture Algebra help

younger students gain entry into algebraic
reasoning sooner than direct instruction on formal
algebra?

2.  Can instruction on Picture Algebra help younger
students build a foundation that will improve and
accelerate later learning of formal algebra?

Because of the complexity and cost of performing
classroom experiments that could directly address these
questions, these questions are excellent candidates to
test the applicability of cognitive theory.  Our goal is to
employ cognitive theory and lower cost empirical
studies to provide strong arguments for and/or against
these claims. With such arguments in hand, we are
better prepared to assess the potential benefit of a
costly classroom experiment and, perhaps more
importantly, facilitate the design of an instructional
method that is most likely to be successful.
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