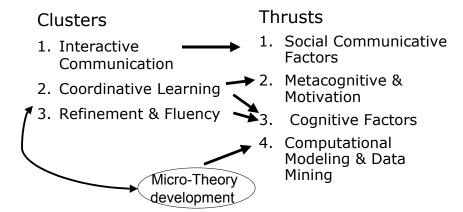
Computational Modeling and Data Mining Thrust

Kenneth R. Koedinger
Human-Computer Interaction
& Psychology
Carnegie Mellon University

Marsha C. Lovett Eberly Center for Teaching Excellence & Psychology Carnegie Mellon University

From 3 Clusters to 4 Thrusts



2

4

Motivation

- Transformative Opportunity of Technology
 - Key to 21st century education
 - Directly benefits education PLUS
 - Facilitates collection of vast data on learning that will dramatically accelerate the science of academic learning.
- PSLC Data Shop offers rich resource
 - Today
 - Vast amount of data already (see next)
 - Multiple measures of task performance, reasoning & problem solving & learning
 - Future
 - 100x more data in 5 years!
 - Multiple measures of motivation & metacognition

DataShop score card: Vast amount of free data!

Domain	Data- sets	Papers linked to DS	Student Actions	Students	Student Hours
Language	50	8	2,300,000	2,684	5,000
Math	50	25	15,200,000	5,996	68,000
Science	21	11	2,900,000	3,267	16,000
other	17	13	1,500,000	2,669	8,000
Total	138	57	21,800,000	14,616	97,000

Plan

- Review relevant AB suggestions & status
- Describe CMDM high-level goals
- Breakout:
 - Probe goals
 - Illustrate with on-going work (as needed)
 - Discuss pros & cons of proposed work

Relevant Advice from the 2008 Advisory Board Meeting

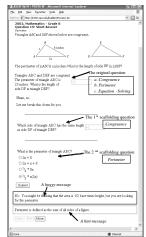
- Extend PSLC work on the microgenetics of learning, such as data mining of event logs and development of DataShop tools, to apply to the *field of* assessing student learning.
- Expand current studies to include longitudinal research on students over time.

5

6

Assistment Project

- On-line assessment system that teaches as it tests
- Data from instructional interactions used to estimate end-of-year high stakes state test result
- Results
 - Reliably better prediction using interaction data
 - Model based only on interaction info makes better predictions than the traditional assessment model (only uses correctness)



Feng, Heffernan, & Koedinger (in press). Addressing the assessment challenge in an online system that tutors as it assesses. User Modeling and User-Adapted Interaction.

Help-seeking tutor: Lasting effects of assessment & feedback!

• Roll, Aleven, McLaren, Koedinger

- Effects of help seeking tutor used in 2 units persists in future units
 - Students are better help-seekers even after immediate support has been removed

Other Metacognitive Assessment

- Sub-vocal self-explanation detector (Shih)
 - Individual differences in time after "bottom-out" hints predict learning!
- Gaming the system detectors (Baker)
 - General detector shown to work across different math courses & tutor units
 - Gaming is a state, not a trait, better predicted by features of curriculum than student
- Peer collaboration skill detector (Walker)
 - Language analysis of chat text can distinguish statements of tutor & tutee that are productive or not

Longitudinal Studies

Mostly within school year or semester so far

- · Already mentioned
 - Assistments (Heffernan, Junker, Koedinger)
 - Months of data to predict spring standardized test
 - Embedded assessment in 8th grade predicts 10th grade test scores as well as the 8th grade test does
- On-going & planned
 - Mizera ESL study across 3 semesters
 - Dev of L2 oral fluency can be tracked through increase in "formulaic sequences"
 - Tracking fluency prerequisites & effect on prealgebra learning (Pavlik, Cen, Koedinger)
 - SC thrust accountable talk analysis in class dialogs (Resnick, Rose)

9

10

Other Ed Data Mining News since last year

- Leadership in educational data mining
 - First Educational Data Mining Conference
 - · Organized by Ryan Baker et al
 - PSLC researchers won Best Paper (Shih) & Best Poster (Chi)
 - New: Journal of Educational Data Mining
 - Baker is an Associate Editor
 - Coming: Handbook of Educational Data Mining
 - Several PSLC chapters
- Related on-going projects
 - Learning Factors Analysis (Cen, Koedinger & Junker, 06) in Geo
 - Improved Cognitive Task Analysis in Physics (van de Sande)
 - Beck, Chang, Mostow, & Corbett, (2008). Does help help?
 Introducing the Bayesian evaluation & assessment methodology.
 - Transfer-enabling knowledge components (Hausmann, Nokes)
 - identify KCs common to both translational & rotational kinematics
 - Use to design self explanation & analogical comparison intervention

Focal Questions of this Thrust

- 1. How can we generate accurate cognitive models of students' domain-specific knowledge?
- 2. What models of *domain-general* processes best capture student learning?
 - learning & metacognition
 - motivation & affect
 - social aspects and instructional talk
- 3. By integrating domain-specific & -general models into *predictive models*, how can we *engineer* instructional interventions with big impact?

Focal Research Questions: Anticipated Outcomes

- 1. Cognitive models of *domain-specific* knowledge
 - Machine learning: New discovery algorithms, scale, efficiency
 - Learning science:
 - Produce better cognitive models for most of 90+ units/chapters across LearnLab courses
 - Use models to design provably better instruction
 - Conduct in vivo experiments to verify
- 2. Models of *domain-general* processes in learning
 - High fidelity SimStudent models that predict which of alternative instructional approaches yields better learning
 - Models (detectors) of motivation and affect that capture student's states accurately and create adaptive instruction
- 3. Engineering models
 - Specify Assistance Dilemma formula for ~ 5 dimensions
 - Show match to learning data
 - Generate and test novel predictions/instructional treatments

BREAK-OUT DISCUSSION -- Supporting slides as needed

14

13

Focal Questions of this Thrust

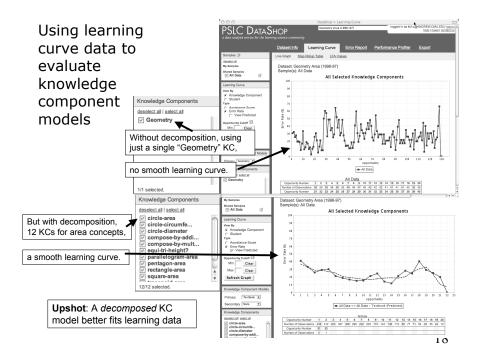
- 1. How can we generate accurate cognitive Next models of students' domain-specific knowledge?
- 2. What models of *domain-general* processes best capture student learning?
 - learning & metacognition
 - motivation & affect
 - social aspects and instructional talk
- 3. By integrating domain-specific & -general models into *predictive models*, how can we *engineer* instructional interventions with big impact?

Domain-Specific Cognitive Models

- Question: How do students represent knowledge in a given domain?
- Answering this question involves deep domain analysis
- The product is a cognitive model of students' knowledge

Discovering Knowledge Representations

- Knowledge decomposability hypothesis
 - Acquisition of academic competencies can be decomposed into units, called knowledge components, that yield accurate predictions about student task performance & transfer of learning
- Scientific importance: Not obviously true
 - "learning, cognition, knowing, and context are irreducibly coconstituted and cannot be treated as isolated entities or processes" (Barab & Squire, 2004)
- Practical importance: Optimal instructional design depends on deep understanding of domain knowledge



Future Goals in Discovering Domain Models

- 1. Improve model-discovery methods
 - Partial Order Knowledge Structures (POKS)
 - Exponential-family Principle Component Analysis
- 2. Improve human-machine interaction
 - Better process for task difficulty factor labeling
- 3. Show models yield improved student learning

Domain modeling projects

- Domain model discovery algorithm invention
 - LFA vs. ePCA (Cen, Singh, Gordon, Koedinger)
 - POKS, LFA, vs. PFA (Pavlik, Cen, Koedinger)
 - Clustering vs. IRT (Ayers, Nugent, Junker)
 - Time series, state-space models
- Computer science issues
 - Algorithm invention; software optimization
- Use of tools/algorithms by domain researchers
 - Van der Sante, Hausmann in Physics kinematics; Wylie in English article use; Matsuda in Algebra equation errors; Perfetti et al in Chinese; Lovett in Statistics
- Models yield improve learning
 - Pre-algebra conceptual prerequisites (Pavlik, Koedinger)

17

Focal Questions of this Thrust

- 1. How can we generate accurate cognitive models of students' domain-specific knowledge?
- Next
- 2. What models of *domain-general* processes best capture student learning?
 - learning & metacognition
 - motivation & affect
- 3. By integrating domain-specific & -general models into *predictive models*, how can we *engineer* instructional interventions with big impact?

Models of domain-general processes

- Learning processes
 - SimStudent learns from algebra tutor (Matsuda et al.)
- Metacognition
 - Model of domain-general help-seeking (Aleven et al.)
- Motivation & affect
 - Using classroom observation & data mining to build detectors of motivation & affect (Baker)

21

22

Future domain-general model projects

- Models of learning, SimStudent
 - Is "weak" prior knowledge key to both domain-general learning & learner misconceptions? (Matsuda, Koedinger)
- Longitudinal models of affect & motivation
 - Detect affect & motivational behaviors (e.g., gaming the system, boredom, self-efficacy) over time (Baker)
 - Predict metacognition & learning
- Investigate relationships across data sets, domains, classrooms, teachers, & schools
 - Baker, Pavlik, Matsuda, Koedinger

Focal Questions of this Thrust

- How can we generate accurate cognitive models of students' domain-specific knowledge?
- 2. What models of *domain-general* processes best capture student learning?
 - learning & metacognition
 - motivation & affect

Next

3. By integrating domain-specific & -general models into predictive models, how can we engineer instructional interventions with big impact?

Assistance Dilemma: A Fundamental Unsolved Problem

 "How should learning environments balance information or assistance giving and withholding to achieve optimal student learning?"

- Koedinger & Aleven, 2007

Instructional support	Poor learning outcome	Good learning outcome
High assistance (less demanding)	crutch	scaffold
Low assistance (more demanding)	undesirable difficulty; extraneous load	desirable difficulty; germane load

Need predictive theory: when does assisting performance during instruction aid vs. harm learning

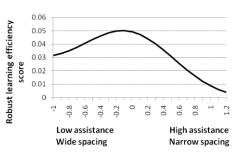
General plan of attack for the immense challenge

- Decompose: Identify & distinguish relevant dimensions of assistance
 - On-going: Practice spacing, practice timing, study-test, example-problem
 - Potential: Concrete-abstract, do-explain, immediatedelayed feedback, low-high variability, block-space, ...
- 2. For each(!) dimension
 - 1. Integrate: Collect & integrate relevant literature
 - 2. Mathematize: Characterize conditions, parameters, equations in precise predictive model
 - 3. Test: Make a priori predictions & test in experiments

Inverted U for practiceinterval dimension

• Precise predictive formula

$$eff_m = \frac{p_m b_{mc} g_m + (1 - p_m) b_{fail} g_m}{p_m (t_m + fixed succosts) + (1 - p_m) fixed fail costs}$$



 eff_m = efficiency of robust learning $p_m^*b_{suc}^*g_m$ = learning from success $(1-p_m)^*b_{fail}^*g_m$ = learning from failure $p_m(t_m+fsc)$ = success time $(1-p_m)ffc$ = failure time m = activation of fact p_m = probability of recall success b_{suc} = gain from success b_{fail} = gain from review after failure g_m = long-term increase in activation t_m = time of recall fsc = time for success ffc = time for failure

General form of assistance formula

For each learning event:

Robust learning efficiency gain =

p * benefit-of-success + (1-p)*benefit-of-failure

p * cost-of-success + (1-p)*cost-of-failure

p = Probability of success *during* instruction

Future Engineering Modeling projects

- Instantiate equation & fit to data sets for 4 dimensions (Pavlik, Koedinger)
 - Practice spacing, practice timing, study-test, exampleproblem
- Collect missing data on exampleproblem dimension (Salden, Aleven, McLaren)
 - Parameterize adaptive example-fading
- Collect missing data on do-explain dimension (Wylie, Mitamura, Koedinger)

Possible Questions for the AB

- What aspects of the domain modeling are potentially interesting to the broader cognitive/learning science or psychometric audiences?
 - This is a quantitative approach to domain analysis -- can it be coupled with qualitative approaches like protocol or discourse analysis? Pros and cons?
- For some of us, the Barab quote is hard/impossible to make sense?
 - What does it mean? How to make progress in the field?
 - Better demonstrates of integrative knowledge components?
 - Better demonstrations of interactions with affect?
- Feedback on Assistance Dilemma agenda
 - Is this too big? Will this have traction?
 - Need to address cross dimension as well as within?

Summary of Anticipated Outcomes

- 1. Cognitive models of *domain-specific* knowledge
 - Machine learning: New discovery algorithms, efficiency
 - Learning science:
 - Produce better cognitive models for most of 90+ units/chapters across LearnLab courses
 - Use models to design provably better instruction
 - Conduct in vivo experiments to verify
- 2. Models of *domain-general* processes in learning
 - High fidelity SimStudent models that predict which of alternative instructional approaches yields better learning
 - Models (detectors) of motivation and affect that capture student's states accurately and create adaptive instruction
- 3. Engineering models
 - Specify Assistance Dilemma formula for ~ 5 dimensions
 - Show match to learning data
 - Generate and test novel predictions/instructional treatments

30