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From 3 Clusters to 4 Thrusts

Clusters

1. Interactive
Communication

2. Coordinative Learning

3. Refinement & Fluency

Thrusts

1. Social Communicative
Factors

2. Metacognitive &
Motivation

3.  Cognitive Factors

4. Computational
Modeling & Data
MiningMicro-Theory 

development  
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Motivation

• Transformative Opportunity of Technology
– Key to 21st century education

– Directly benefits education PLUS

– Facilitates collection of vast data on learning that will
dramatically accelerate the science of academic learning.

• PSLC Data Shop offers rich resource
– Today

• Vast amount of data already (see next)

• Multiple measures of task performance, reasoning &
problem solving & learning

– Future

• 100x more data in 5 years!

• Multiple measures of motivation & metacognition
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DataShop score card: Vast
amount of free data!

Domain

Data-

sets

Papers

linked

to DS

Student

Actions Students

Student

Hours

Language 50 8 2,300,000 2,684 5,000

Math 50 25 15,200,000 5,996 68,000

Science 21 11 2,900,000 3,267 16,000

other 17 13 1,500,000 2,669 8,000

Total 138 57 21,800,000 14,616 97,000
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Plan

• Review relevant AB suggestions &
status

• Describe CMDM high-level goals

• Breakout:

– Probe goals

• Illustrate with on-going work (as needed)

• Discuss pros & cons of proposed work
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Relevant Advice from the
2008 Advisory Board Meeting

• Extend PSLC work on the microgenetics
of learning, such as data mining of
event logs and development of
DataShop tools, to apply to the field of
assessing student learning.

• Expand current studies to include
longitudinal research on students over
time.
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Assistment Project

• On-line assessment system
that teaches as it tests

• Data from instructional interactions
used to estimate end-of-year high
stakes state test result

• Results
– Reliably better prediction using

interaction data

– Model based only on interaction info
makes better predictions than the traditional
assessment model (only uses correctness)

The original question

a. Congruence

b. Perimeter

c. Equation -Solving

The 1 st scaffolding question

Congruence

The 2 nd scaffolding question

Perimeter

A buggy message

A hint message

The original question

a. Congruence

b. Perimeter

c. Equation -Solving

The 1 st scaffolding question

Congruence

The 2 nd scaffolding question

Perimeter

A buggy message

A hint message

Feng, Heffernan, & Koedinger

(in press). Addressing the

assessment challenge in an online

system that tutors as it assesses.

User Modeling and User-

Adapted Interaction.
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Help-seeking tutor: Lasting

effects of assessment & feedback!

• Roll, Aleven,
McLaren,

Koedinger

• Longitudinal:

– Over 4 months

• Effects of help seeking tutor used in 2 units

persists in future units

– Students are better help-seekers even after

immediate support has been removed
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Other Metacognitive
Assessment
• Sub-vocal self-explanation detector (Shih)

– Individual differences in time after “bottom-out”
hints predict learning!

• Gaming the system detectors (Baker)
– General detector shown to work across different

math courses & tutor units

– Gaming is a state, not a trait, better predicted by
features of curriculum than student

• Peer collaboration skill detector (Walker)
– Language analysis of chat text can distinguish

statements of tutor & tutee that are productive or
not
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Longitudinal Studies
Mostly within school year or semester so far

• Already mentioned
– Assistments (Heffernan, Junker, Koedinger)

• Months of data to predict spring standardized test

• Embedded assessment in 8th grade predicts 10th grade
test scores as well as the 8th grade test does

• On-going & planned
– Mizera ESL study – across 3 semesters

• Dev of L2 oral fluency can be tracked through increase
in “formulaic sequences”

– Tracking fluency prerequisites & effect on pre-
algebra learning (Pavlik, Cen, Koedinger)

– SC thrust – accountable talk analysis in class dialogs
(Resnick, Rose)
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Other Ed Data Mining News

since last year
• Leadership in educational data mining

– First Educational Data Mining Conference
• Organized by Ryan Baker et al

• PSLC researchers won Best Paper (Shih) & Best Poster (Chi)

– New: Journal of Educational Data Mining
• Baker is an Associate Editor

– Coming: Handbook of Educational Data Mining
• Several PSLC chapters

• Related on-going projects
– Learning Factors Analysis (Cen, Koedinger & Junker, 06) in Geo

– Improved Cognitive Task Analysis in Physics (van de Sande)

– Beck, Chang, Mostow, & Corbett,  (2008). Does help help?
Introducing the Bayesian evaluation & assessment methodology.

– Transfer-enabling knowledge components (Hausmann, Nokes)
• identify KCs common to both  translational & rotational kinematics

• Use to design self explanation & analogical comparison intervention
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Focal Questions of this Thrust

1. How can we generate accurate cognitive
models of students’ domain-specific
knowledge?

2. What models of domain-general processes
best capture student learning?

– learning & metacognition

– motivation & affect

– social aspects and instructional talk

3. By integrating domain-specific & -general
models into predictive models, how can we
engineer instructional interventions with big
impact?
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Focal Research Questions:
Anticipated Outcomes
1. Cognitive models of domain-specific knowledge

– Machine learning: New discovery algorithms, scale, efficiency

– Learning science:
– Produce better cognitive models for most of 90+ units/chapters across

LearnLab courses

– Use models to design provably better instruction

– Conduct in vivo experiments to verify

2. Models of domain-general processes in learning
– High fidelity SimStudent models that predict which of alternative

instructional approaches yields better learning

– Models (detectors) of motivation and affect that capture student’s
states accurately and create adaptive instruction

3. Engineering models
– Specify Assistance Dilemma formula for ~ 5 dimensions

– Show match to learning data

– Generate and test novel predictions/instructional treatments
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BREAK-OUT DISCUSSION --
Supporting slides as needed
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Focal Questions of this Thrust

1. How can we generate accurate cognitive
models of students’ domain-specific
knowledge?

2. What models of domain-general processes
best capture student learning?

– learning & metacognition

– motivation & affect

– social aspects and instructional talk

3. By integrating domain-specific & -general
models into predictive models, how can we
engineer instructional interventions with big
impact?

Next
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Domain-Specific Cognitive
Models

• Question: How do students represent
knowledge in a given domain?

• Answering this question involves deep
domain analysis

• The product is a cognitive model of
students’ knowledge
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Discovering Knowledge
Representations
• Knowledge decomposability hypothesis

– Acquisition of academic competencies can be
decomposed into units, called knowledge
components, that yield accurate predictions about
student task performance & transfer of learning

• Scientific importance: Not obviously true
– “learning, cognition, knowing, and context are irreducibly co-

constituted and cannot be treated as isolated entities or
processes” (Barab & Squire, 2004)

• Practical importance: Optimal instructional design
depends on deep understanding of domain
knowledge
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But with decomposition,

12 KCs for area concepts,

Using learning

curve data to
evaluate
knowledge

component
models

Without decomposition, using

just a single “Geometry” KC,

Upshot: A decomposed KC

model better fits learning data

no smooth learning curve.

a smooth learning curve.
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Future Goals in Discovering
Domain Models
1. Improve model-discovery methods

– Partial Order Knowledge Structures (POKS)

– Exponential-family Principle Component Analysis

2. Improve human-machine interaction
– Better process for task difficulty factor labeling

3. Show models yield improved student learning
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Domain modeling projects
• Domain model discovery algorithm invention

– LFA vs. ePCA (Cen, Singh, Gordon, Koedinger)

– POKS, LFA, vs. PFA (Pavlik, Cen, Koedinger)

– Clustering vs. IRT (Ayers, Nugent, Junker)

– Time series, state-space models

• Computer science issues
– Algorithm invention; software optimization

• Use of tools/algorithms by domain researchers
– Van der Sante, Hausmann in Physics kinematics; Wylie in

English article use; Matsuda in Algebra equation errors;
Perfetti et al in Chinese; Lovett in Statistics

• Models yield improve learning
– Pre-algebra conceptual prerequisites (Pavlik,

Koedinger)
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Focal Questions of this Thrust

1. How can we generate accurate cognitive
models of students’ domain-specific
knowledge?

2. What models of domain-general processes
best capture student learning?

– learning & metacognition

– motivation & affect

3. By integrating domain-specific & -general
models into predictive models, how can we
engineer instructional interventions with big
impact?

Next

22

Models of domain-general
processes

• Learning processes
– SimStudent learns from algebra tutor

(Matsuda et al.)

• Metacognition
– Model of domain-general help-seeking

(Aleven et al.)

• Motivation & affect
– Using classroom observation & data mining

to build detectors of motivation & affect
(Baker)
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Future domain-general
model projects
• Models of learning, SimStudent

– Is “weak” prior knowledge key to both domain-general
learning & learner misconceptions? (Matsuda, Koedinger)

• Longitudinal models of affect & motivation
– Detect affect & motivational behaviors (e.g., gaming the

system, boredom, self-efficacy) over time (Baker)

– Predict metacognition & learning

• Investigate relationships across data sets,
domains, classrooms, teachers, & schools
– Baker, Pavlik, Matsuda, Koedinger
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Focal Questions of this Thrust

1. How can we generate accurate cognitive
models of students’ domain-specific
knowledge?

2. What models of domain-general processes
best capture student learning?

– learning & metacognition

– motivation & affect

3. By integrating domain-specific & -general
models into predictive models, how can we
engineer instructional interventions with big
impact?

Next
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Assistance Dilemma: A

Fundamental Unsolved Problem

• “How should learning

environments balance

information or assistance

giving and withholding to

achieve optimal student

learning?”
– Koedinger & Aleven, 2007

desirable

difficulty;

germane

load

undesirable

difficulty;

extraneous

load

Low

assistance

(more

demanding)

scaffoldcrutch

High

assistance

(less

demanding)

Good

learning

outcome

Poor

learning

outcome
Instructional

support

•Row 1 illustrates how higher levels of instructional assistance can sometimes be a “crutch” that harms learning, but other times be a “scaffold” that bootstraps learning.   Row 2 illustrates how lower levels of assistance (or inversely greater imposed dem

ands on students) can sometimes lead to poorer learning and other times lead to better learning. A long line of research on “cognitive load theory” (e.g., Sweller, Van Merriënboer, & Paas, 1998) suggests how some typical forms of instruction, like homewor

k practice problems, put “extraneous” processing demands (or “extraneous load”) on students that may detract from learning.  Another line of research on “desirable difficulties” suggests ways in which making task performance harder during instruction (red

ucing assistance), for instance, by delaying feedback, enhances learning (Schmidt and Bjork, 1992).  And even within cognitive load theory, some task demands (e.g., increased problem variability) elicit “germane” rather than “extraneous” cognitive load an

d lead to better learning.

•Long-standing notions like zone of proximal development (Vygotsky, 1978), aptitude-treatment interactions (Cronbach & Snow, 1977), or model-scaffold-fade (Collins, Brown, & Newman, 1990) suggest that instructional assistance should be greater for beginnin

g learners and be reduced as student competence increases.  So, what’s the dilemma?  Why not just give novices high assistance and fade it away as they become more expert. The theoretical problem, the dilemma, is that current theory does not predict how m

uch assistance to initially provide nor when and how fast to fade it. It does not provide predictive guidance as to when an instructional demand is “germane” or “extraneous”, “desirable” or “undesirable.” The Assistance Dilemma remains unresolved because 

we do not have adequate cognitive theory to make a priori predictions about what forms and levels of assistance yield robust learning under what conditions.

•In Koedinger et al. (2008), we outlined the following steps toward resolving the dilemma:

•1. Decompose: Identify and distinguish relevant dimensions of assistance, like giving lots of example solutions vs. withholding them (problems), giving vs. withholding immediate feedback, giving low vs. high variability examples. 

•2. Integrate: For each dimension: Collect, summarize, and integrate the relevant empirical and theoretical results from the research literature.

•3. Mathematize: For each dimension: Characterize a set of conditions and parameters that can be used as part of a precise theoretical model that makes computable predictions about robust learning efficiency. 

•4. Test: Use the model to make a priori predictions about what level(s) of assistance under what conditions yield the greatest robust learning efficiency.  Test those predictions in laboratory and in vivo experiments. 

•

•A key goal of PSLC’s theory wiki is to get researchers working together, both within PSLC and within the broader learning science and education research community, to perform the gargantuan effort implied by steps 1 and 2.   illustrates how we have carrie

d out steps 3 and 4 with respect to the “practice spacing” dimension of assistance (Koedinger et al., 2008; Pavlik & Anderson, 2005).   

•Figure .  In the lower left is the assistance curve for the practice-spacing dimension.  The top-level equation that generates the curve is shown above where effm is the y-axis and m is the y-axis.  Other equations, not shown, map from m to the variables 

that have m as subscript: pm, gm, and tm.

•An output of step 3 is a mathematical function (or set of functions) that can produce an “assistance curve”.  As shown on the left in , this curve has an inverted-U shape for most reasonable values of the parameters in the equation (shown on the right).  

Consistent with notions like zone of proximal development described above, we suspect this inverted-U form will characterize most assistance dimensions.  But, the key to resolving the assistance dilemma is creating the mathematical equations and parameter

s that generate the inverted-U in way that is consistent with cognitive theory and with available empirical data.   

•Drawing on a number of PSLC projects and data from many domains, we have made considerable progress on a second dimension of assistance, the example-problem dimension -- see the Coordinative Learning section.  The generation of the mathematical equations 

for this dimension (step 3) are being driven in part by our SimStudent model (Matsuda et al., 2008) -- see the Data Mining, Knowledge Representation, and Learning section.  More generally, use of the Assistance Dilemma has driven analysis and interpretati

on of many other PSLC projects, some of which are described below (e.g., in the Interactive Communication section).

Need predictive theory: when does assisting
performance during instruction aid vs. harm learning

26

General plan of attack for the

immense challenge

1. Decompose: Identify & distinguish relevant

dimensions of assistance

• On-going: Practice spacing, practice timing, study-test,
example-problem

• Potential: Concrete-abstract, do-explain, immediate-
delayed feedback, low-high variability, block-space, …

2. For each(!) dimension

1. Integrate: Collect & integrate relevant literature

2. Mathematize: Characterize conditions, parameters,
equations in precise predictive model

3. Test: Make a priori predictions & test in experiments

Inverted U for practice-
interval dimension
• Precise predictive formula

effm =  efficiency of robust learning

 pm*bsuc*gm = learning from success

(1-pm)*bfail*gm = learning from failure

pm (tm+ fsc) = success time

(1-pm)ffc = failure time

m = activation of fact

pm = probability of recall success

bsuc = gain from success

bfail = gain from review after failure

gm = long-term increase in activation

tm = time of recall

fsc = time for success

ffc = time for failure
28

General form of assistance
formula

For each learning event:

Robust learning efficiency gain =
p * benefit-of-success + (1-p)*benefit-of-failure

p * cost-of-success + (1-p)*cost-of-failure

p = Probability of success during instruction
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Future Engineering Modeling
projects

• Instantiate equation & fit to data sets
for 4 dimensions (Pavlik, Koedinger)
– Practice spacing, practice timing, study-test, example-

problem

• Collect missing data on example-
problem dimension (Salden, Aleven,
McLaren)
– Parameterize adaptive example-fading

• Collect missing data on do-explain
dimension (Wylie, Mitamura, Koedinger)
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Summary of Anticipated
Outcomes
1. Cognitive models of domain-specific knowledge

– Machine learning: New discovery algorithms, efficiency

– Learning science:
– Produce better cognitive models for most of 90+ units/chapters across

LearnLab courses

– Use models to design provably better instruction

– Conduct in vivo experiments to verify

2. Models of domain-general processes in learning
– High fidelity SimStudent models that predict which of alternative

instructional approaches yields better learning

– Models (detectors) of motivation and affect that capture student’s
states accurately and create adaptive instruction

3. Engineering models
– Specify Assistance Dilemma formula for ~ 5 dimensions

– Show match to learning data

– Generate and test novel predictions/instructional treatments
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Possible Questions for the AB

• What aspects of the domain modeling are potentially
interesting to the broader cognitive/learning science or
psychometric audiences?

– This is a quantitative approach to domain analysis -- can it
be coupled with qualitative approaches like protocol or
discourse analysis?  Pros and cons?

• For some of us, the Barab quote is hard/impossible to
make sense?

– What does it mean? How to make progress in the field?

– Better demonstrates of integrative knowledge
components?

– Better demonstrations of interactions with affect?

• Feedback on Assistance Dilemma agenda

– Is this too big?  Will this have traction?

– Need to address cross dimension as well as within?


