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We examined a number-line metaphor presented using interactive multimedia as a
means of helping students build connections between an arithmetic procedure and
their existing conceptual knowledge. Elementary school children learned to add and
subtract signed numbers through a computer-based multimedia program over 4 train-
ing sessions. Participants received 64 example problems presented only in symbolic
form (single-representation [SR] group) or in symbolic, visual, and verbal forms
(multiple-representation [MR] group). In Experiment 1, compared to the SR group,
the MR group (a) showed a larger pretest-to-posttest gain for high-achieving students
but not for low-achieving students, (b) showed a greater gain on difficult problems but
not easy problems, (c) learned faster during training, and (d) showed a greater pre-
test-to-posttest reduction in the use of conceptual bugs reflecting conceptually confu-
sion between negative signs and subtraction operators. In Experiment 2, high spatial
ability students in the MR group outperformed low spatial ability students on pre-
test-to-posttest gain. Productive learning with MRs is strongest when working mem-
ory is not overloaded, so cognitive load and MR theories can be reconciled.

What does it mean to understand a computational procedure in mathematics? For
example, what can be done to help students make sense out of procedures for addi-
tion and subtraction of signed whole numbers, such as 2—-5=__ ?Inthisstudy we
examine the classic instructional proposal (Brownell, 1928, 1935; Resnick & Ford,
1981) that students understand arithmetic procedures by mentally linking them
with appropriate concrete models.

There is a growing consensus among cognitive scientists and mathematics edu-
cators that learning of computational procedures is an active process in which stu-
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s seek 10 make sense out of the to-be-learned procedures by constructing
de? 4 models (English, 1997; Grouws, 1992). In this study we focus on the num-
rﬂeﬂline 55 an appropriate model or grounding metaphor for signed arithmetic be-
pef it has been implicated as a central conceptual structure underlying
cavs _matical cognition (Case & Okamoto, 1996). Based on recent advances in
0t cdia learning (Mayer, 1997), we examine the effects of depicting the exe-
mu'on of computational procedures as computer-supponed visual and verbal rep-
oot ntaﬁons of movements along a number line.
es° athe remainder of this section, we examine the questions of why to use meta-
o foster learning of mathematical procedures, which metaphors are the best
pho 0 use, and how to use metaphors within 2 computer-supported multimedia
Onf/i onment to foster meaningful learning. We then provide a cognitive theory of
e’ .dia learning to guide our understanding of how people process multiple

i
rr;l)resentations (MRs), and we derive predictions based on the theory.
f

WHY USE METAPHORS TO TEACH ABOUT
ARITHMETIC PROCEDURES?

WO views of Metaphors

etaphors may be viewed as unnecessary adjuncts to serious mathematics learning
essential ‘nstructional tools for fostering mathematical understanding. For ex-
2 recent review of mathematics textbooks revealed two predominant types
; pstruction for signed computation: (a) abstract and disembodied approaches
a emphasize symbol manipulation based on seemingly arbitrary rules such as, “If
ner are two minus signs, then add the numbers,’j and (b) concrete and embodied
appfoaChes that metaphorically relate computation to concrete models such as
Jking along a path (Mayer, Sims, & Tajika, 1995). Interestingly, the first ap-
proaCh’ focusing on presenting problems mainly in symbolic form, dominated U.S.
texlbOOks’ whereas the second approach, relating the symbolic representation to
aphic’ and text-based models, was rare in U.S. textbooks (Mayer et al., 1995).
have metaphors been ignored in traditional mathematics education?
5500 (1992a) showed how traditional mathematics instruction is based on the
Conception of “teaching children to be doers rather than thinkers” and thereby
. ConSiderably underestimates what children can learn” (p. 57). Similarly, Sowder
(1992) observed that “students are not disposed to make sense out of numbers” be-
S “they do not see school mathematics as 2 sense-making activity” but rather
p ,“collection of facts and rules to be memorized” (p- 20). Bassok (1997) also
d owﬁd how school children “Jearn that, while in school, they will fare better if
& completely ignore their world knowledge” (p. 222) so they learn to apply

Computational procedures blindly.

of
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The decision to use metaphors in mathematics education may depend on one’s
conception of learning in general, and learning of computational procedures in
particular. For example, the search for ways to help students learn computational
procedures can be influenced by whether one views learning as rule building (An-
derson, 1993; Newell & Simon, 1972), in which learners apply general rules to
problems, or learning as model building, in which learners construct mental mod-
els of problem situations (English, 1997; Fuson 1992a, 1992b; Goswami, 1992;
Halford, 1993; Hiebert & Carpenter, 1992; Kintsch & Greeno, 1985). The
rule-building view has a long and influential history in both psychology and edu-
cation, dating back to the classic work of Thorndike (1913) on learning cognitive
skills by drill and practice and reflected in the modern work of Anderson (1993) on
representing mathematical skills as general production rules.

In contrast, the model-building view can be seen in classic Gestalt theories of
mathematical problem solving (Wertheimer, 1959), in Piaget’s (1952) theories of
the development of mathematical competence, and in Brownell’s (1928, 1935)
meaning theory of arithmetic, which emphasized the role of concrete manipulatives
(Resnick & Ford, 1981) and is reflected in modern research on the situational con-
text of mathematical cognition (Nunes, Schliemann, & Carraher, 1993). According
to the model-building view, leamning is a constructive process of sense making in
which learners make connections between new information and existing conceptual
models. The model-building approach is based on a “move away from the traditional
notion of reasoning as abstract and disembodied to the contemporary view of rea-
soning as embodied and imaginative” (English, 1997, p. vii).

Metaphor as an Aid to Mathematical Understanding

For the last 25 years, scholars have repeatedly argued for the value of metaphors as
aids to cognition (Gentner & Stevens, 1983; Lakoff & Johnson, 1980; Ortony,
1993; Vosniadou & Ortony, 1989), with special emphasis on the role of metaphors
as aids to scientific and mathematical understanding (English, 1997; Glynn, Duit,
& Thiele, 1995). English (1997) argued that metaphor—especially when combined
with imagery—can support students’ construction of mental models that are funda-
mental to mathematical reasoning but noted that “insufficient attention has been
given to the important role these play in mathematical reasoning” (p. 4). English
posited that “image-based reasoning in mathematics ... has not received the atten-
tion it deserves largely because mathematics traditionally has been viewed as a
purely abstract discipline” (p. 10).

The strongest form of the learning-as-model-building view is reflected in
Lakoff and Johnson’s (1980) contention that “our ordinary conceptual system ...
is fundamentally metaphorical in nature” (p. 3), and English’s (1997) proposal that
“reasoning with metaphors is considered a fundamental way of human thinking
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and communication” (p. 7). Accordingly, the model-building view is particularly
relevant for mathematics learning: “Metaphor is central to the structure of mathe-
matics and to our reasoning with mathematical ideas,” and “metaphorical reason-
ing can assist students in their interpretations of formal mathematical language”
(English, 1997, p. 7). Alexander, White, and Daugherty (1997) stated that “analog-
ical reasoning is foundational to learning, in general, and to early mathematics
learning in particular” (p. 117).

In summary, the rationale for using metaphors in mathematics instruction is
that metaphors can be aids to mathematical understanding. In this article, we adopt
a model-building view and seek to understand how multimedia environments can
introduce metaphors that foster the construction of appropriate mental models in
young learners.

WHICH METAPHOR TO USE FOR TEACHING ABOUT
ARITHMETIC COMPUTATION?

It is one thing to acknowledge the potential of metaphor as an aid to mathematical
understanding, and it is quite another to identify the appropriate metaphor to help
youngsters understand computational procedures for addition and subtraction of
signed numbers. Fortunately, several converging research programs suggest that
the most likely candidate for an appropriate metaphor is the number line. A number
line consists of a line with numbers as discrete points along the line; in its most com-
plete form O is at the center with consecutive positive integers to the right and de-
creasing as consecutive negative integers to the left. The number-line metaphor is
implicated in developmental research on central conceptual structures underlying
number sense (Case & Okamoto, 1996), linguistic analyses of grounding meta-
phors in arithmetic (Lakoff & Nunez, 1997), and educational research on concrete
manipulatives for understanding arithmetic (Hiebert & Carpenter, 1992).

Number Line as a Central Conceptual Structure

Case and his colleagues (Case & Okamoto, 1996; Griffin, Case, & Capodilupo,
1995) have shown that learning arithmetic procedures such as addition and subtrac-
tion of signed numbers must be tied to the development of children’s central con-
ceptual structures—that is, cognitive representations that the child uses to under-
stand new situations. According to Case and Okamoto (1996), the mental number
line is the central conceptual structure underlying children’s learning of arithmetic.
Importantly, students who enter elementary school without the concept of anumber
line tend to have difficulty in learning arithmetic: “A surprising proportion of chil-
dren from low-income ... families ... do not arrive in school with central cognitive
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structures in place” so “their first learning of addition and subtraction may be a
meaningless experience” (Griffin & Case, 1996, p. 102).

Case and his colleagues (Griffin & Case, 1996; Griffin et al,, 1995) described
instructional activities aimed at fostering children’s development of the concept of
a number line, including playing board games involving moving a token along a
number-line path. Students who received number-line training showed an 1m-
provement in their knowledge of a mental number line, and were more successful
in subsequently learning arithmetic than students who did not receive the training.
In reviewing the beneficial effects of helping students develop a number-line con-
cept, Bruer (1993) noted that students who lack the number-line concept must “try
to understand school math as a set of arbitrary procedures” (p- 90). Bruer further
noted that “for mathematics to be meaningful, conceptual knowledge and proce-
dural skills have to be interrelated in instruction” (p. 90). According to this line of
research, the corresponding conceptual knowledge for arithmetic procedures is the
mental number line.

Number Line as a Grounding Metaphor

In their linguistic analysis of metaphors that promote fnathematical cognition,
Lakoff and Nunez (1997) showed that a grounding metaphor helps a student to re-
late mathematical ideas to everyday experience, and a fundamental grounding met-
aphor for understanding arithmetic procedures 1s “arithmetic is motion” (p. 37).
According to the arithmetic-is-motion metaphor, “pnumbers are locations on a
path,” “the mathematical agent is a traveler along that path,” “arithmetic operations
are acts of moving along the path,” and “the result of an arithmetic operationis alo-
cation on the path” (p. 37). Furthermore, according to the arithmetic-is-motion met-
aphor “addition of a given quantity is taking steps ... forward,” whereas “subtrac-
tion of a given quantity is taking steps ... backward” (p. 37). The evidence for this
assertion is derived from linguistic examples that entail the idea of moving along a
number line: “How close are these two numbers? 37 is far away from 1897 12. The
result is around 40. Count up to 20, without skipping any numbers” (p- 37).

Lakoff and Nunez’s (1997) analysis reveals that all grounding metaphors are
not equally useful for understanding addition and subtraction of signed numbers.
For example, a commonly used metaphor to explain signed arithmetic 1s the idea
that a negative number 18 made of anti-matter (Lakoff & Nunez, 1997; Mayer et
al., 1995), such that 3 + _3 = 0 means that the -3 annihilates the 3. Lakoff and
Nunez (1997) concluded that the anti-matter metaphor is not a good grounding
metaphor for signed arithmetic but the number line is:

The easiest natural extension of one of the grounding metaphors to negative numbers
is the motion metaphor ... addition and subtraction of negative numbers can then be
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given a relatively easy extension of the metaphor: when you encounter a negative
number, turn around in place. (p- 39)

In searching for a metaphor for arithmetic, English (1997) suggested “a line
metaphor to represent our number system” in which “numbers are considered as
points on a line” (p. 8). English proposed that practice in coordinating visual and
symbolic representations is needed to help students ground arithmetic procedures
within the number-line metaphor: «“Although it can be an effective metaphor for
our number system, the number line is a complex representation requiring students
to integrate two forms of information, namely, visual and symbolic” (p. 8). Al-
though widely recognized as the best available grounding metaphor for addition
and subtraction of signed numbers, the number-line metaphor has limits. For ex-
ample, if a student views arithmetic as moving along a series of discrete stepping
stones, he or she may have difficulty learning to add and subtract fractions.

Number Line as a Concrete Manipulative

Following earlier work by Brownell (1928, 1935) on the role of concrete
manipulatives, Hiebert and Carpenter (1992) and Fuson (1992b) have shown how
mental representations——including concrete manipulétives——are at the heart of
mathematical cognition. However, for concrete manipulatives to be effective, they
must make sense to students—a requirement that can be met through active discus-
sion and experimentation. Resnick (1983) has reviewed research showing that “by
the time they enter school most children have already constructed a representation
of number that can be appropriately characterized as a mental number line” (p.
110-111). This informal knowledge can be used to accomplish a “considerable
amount of arithmetic problem solving” (p. 111). It follows that a number line is a
primary candidate fora concrete manipulative in teaching of arithmetic procedures.

For example, Lewis (1989) developed an instructional program to help college
students represent arithmetic word problems in which students translated the prob-
lem into a graphic representation on a number line. Students learned to place let-
ters on a number line, corresponding to variables in the problem. The training
resulted in substantial improvements in mathematical problem solving as com-
pared to students who did not receive instruction in how to use a number-line dia-
gram. More recently, Brenner et al. (1997) developed a program to help middle-
school students translate word problems and tables into graphs—a sort of
two-dimensional number line. Students who received this experience showed
greater improvements in their mathematical problem-solving skills than students
who received conventional instruction.

In using a concrete manipulative, “the teacher is in effect creating a metaphor
for the child to use as an assimilation paradigm” (Davis & Maher, 1997, p. 100);
furthermore, these “representations——sometimes mental and sometimes on pa-
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per—make it possible to think about some idea which might otherwise be labeled
as new” (p. 114).

HOW TO HELP STUDENTS BUILD LINKS BETWEEN
CONCEPTUAL AND PROCEDURAL KNOWLEDGE?

In this research we focus on one aspect of meaningful mathematics learning: en-
couraging students to integrate new arithmetic procedures with their existing con-
ceptual knowledge. To accomplish this goal, we rely on the role of metaphor in
learning, and, in particular, we focus on the number line as a central conceptual
structure, grounding metaphor, or assimilating paradigm. In this section, we de-
scribe one implementation of the number-line metaphor within a com-
puter-supported multimedia environment. We are intrigued by the possibility that
multimedia can offer a powerful environment for helping students build connec-
tions among MRs of arithmetic problems. In particular, we examine how multime-
dia environments can help students build connections between formal computa-
tional procedures using symbols—that is, rule-based symbol manipulation—and
informal conceptual knowledge about moving along a path—that is, visual and ver-
bal representations of the procedure. In choosing to focus on computer-supported
learning, we recognized that the number-line metaphor can be used in a variety of
educational venues, and we do not purport that there is anything magical about mul-
timedia per se. Instead, we seek to understand the conditions under which students
build and coordinate MRs in a multimedia environment.

How can we use multimedia environments to help students build connections
between mathematical procedures and their existing conceptual knowledge? Mul-
timedia environments can introduce students to MRs of the same concept or proce-
dure (such as presenting text, graphics, animations, sound, and video) and allow
students to manipulate and coordinate these MRs within computer microworlds
(Mayer, 1997). Moreover, multimedia environments have the capability of creat-
ing dynamic representations of constructs that are frequently missing in the mental
models of novices (Kozma, 1991). In this study, we examined the cognitive conse-
quences of learning to solve 64 signed arithmetic problems presented in one form
of representation (i.e., symbolic) or three coordinated forms of representation (i.e.,
symbolic, visual, and verbal) within an interactive multimedia environment.

Learning an Arithmetic Procedure
With a Single Representation

Students may learn an arithmetic procedure, such as adding and subtracting signed
integers, by working on example problems presented in a standard single form. Fig-
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ure 1 shows selected frames from an example problem presented only in symbolic
form (single-representation [SR] group). In the first frame, the student selects one
of eight problems to solve from a problem menu. In the second frame, a problem ap-
pears using only numerals, signs, and operator symbols, and the student is asked to
type in a numerical answer using a keypad. In the third frame, if the student types in
the correct numeral (and sign, if negative), a smiling bunny appears on the screen
along with the a large “YES” and the completed number sentence. In the fourth
frame, if the student types in the wrong number, the student is given the chance to
try again (by typing on the keypad) or to see the correct number. If the student clicks
on “Try Again,” the second frame appears again; if the student clicks on “See Solu-
tion,” the correct numerical answer appears in the box. In the fifth frame, after ei-
ther producing or asking to see the correct number, the student returns to the prob-
lem menu, with a check now placed next to the completed sample problem. The
instructional program designed for the SR group uses the most common format of
arithmetic instruction in the United States—that is, the traditional, practice-based
sessions in which students were only presented with the symbolic representation of
a number sentence such as 2 ——3 =____and had no additional instruction or expla-
nation (Mayer et al., 1995).

Learning an Arithmetic Procedure With MRs

In contrast to learning with an SR, students may learn by seeing and coordinating
MRs. For example, Figure 2 shows selected frames from an example problem pre-
sented in symbolic, visual, and verbal form (MR group). First, the student selects
one of eight problems to solve from the same problem menu as for the SR group (as
shown in the first frame of Figure 1). Then, as shown in the first frame in Figure 2,
the student sees the problem presented in symbolic form (as 4 —-5= ) andabox as
in the SR group. In addition, however, the screen also contains a number line show-
ing integers from —9 to 9 with a bunny standing at the 0 point and a simulated joy-
stick consisting of four alternatives that make the bunny face to the left, face to the
right, jump forward one step, or jump backward one step. The student may click on
any combination of the four joystick options and instantly see the resulting change
in the bunny on the number line; the student is instructed to try to figure out the
problem by moving the bunny along the number line using the joystick. When the
student is ready to answer, the student types in a numeral (and negative sign, if
needed).

If the student’s answer is correct, the bunny appears along with a large
“YES” as in the SR group; in addition, this is followed by an animated sequence
that consists of four major steps. First (in the second frame in Figure 2), the
symbol “4” is highlighted, on-screen text appears stating “FIRST: FIND MY
STARTING POINT 4 means GO TO 4,” and then (in the third frame) the bunny
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moves to position 4 on the number line. Thus, the learner sees how the first step
in the procedure can be represented in symbols, words, and pictures. Second (in
the fourth frame), the minus sign is highlighted, on-screen text appears stating,
«GECOND: FIND THE OPERATION — means FACE LEFT,” and then (in the
fifth frame) the bunny turns to face the left side of the screen. Third (in the sixth
frame), the symbol “~5” is highlighted, on-screen text appcars stating, “THIRD:
FIND HOW TO JUMP -5 means JUMP BACK 5 STEPS,” and then (in the sev-
enth frame), the bunny makes five jumps to the right. Finally (in the eighth
frame), the entire number sentence “4 ——5 = ” is highlighted, the bunny stands
on the 9 position, and on-screen text says “The answer is 9.” At this point, the
student may click on “See Solution Again,” which repeats this four-step ani-
mated sequence, or on ‘“Back to Menu,” which takes the student back to the
menu frame (as shown in the last frame of Figure 1).

If the student’s answer is not correct, the student may click on “Try Again”
(which returns the student to the first frame in Figure 2) or “See Solution” (which
presents the same four-step animated sequence as depicted in frames 2 through 8 in
Figure 2). After either producing or asking to see the correct answer, the student re-
turns to the problem menu as in the SR group (fifth frame in Figure 1). The instruc-
tional program designed for the MR group is one possible instantiation of the
mathematics reform literature’s calls for infusing MRs based on the number-line
metaphor in the teaching of arithmetic procedures. The contrast between SR and
MR programs resides in the fact that the former provides students with symbols
and no further explanations, whereas the latter provides students with symbols
plus additional visual and verbal explanations intended to help students advance
their understanding and learning.

TWO APPARENTLY OPPOSING THEORIES OF
MULTIMEDIA LEARNING

Although research in learning with MRs ina multimedia environment is still evolv-
ing, recent studies in the area of instructional design have started to show the ten-
sion between two seemingly opposing theories: MR theory, which builds on
Paivio’s dual-coding theory (Clark & Paivio, 1991; Paivio, 1986) and cogni-
tive-load theory, which builds on Baddeley’s (1992) model of working memory.
Although MR theory suggests that teaching with more representations facilitates
and strengthens the learning process by providing several mutually referring
sources of information (Kozma, Russell, Jones, & Marx, 1996; Mayer, 1997,
Mayer & Anderson, 1991), cognitive-load theory suggests that the mental integra-
tion of the disparate sources of information may generate a heavy cognitive load
that is detrimental to learning (Chandler & Sweller, 1991; Sweller, 1988, 1989;
Sweller, Chandler, Tiemey, & Cooper, 1990).
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Cognitive load may be affected either by the intrinsic nature of the material to
be learned (intrinsic cognitive load) or by the instructional design used to teach the
material (extraneous cognitive load). Intrinsic cognitive load is dependent on the
amount of interactivity of the material to be learned (Marcus, Cooper, & Sweller,
1996), which is a function of the number of elements that have to be processed si-
multaneously in working memory. On one hand, tasks low in interactivity have el-
ements that can be learned independently and serially. On the other hand, tasks
high in interactivity can not be understood unless several elements are held and
processed simultaneously in working memory. Extraneous cognitive load is solely
the result of a particular instructional design and occurs when the design imposes a
load that bears little relation to the learning process. For example, Sweller (1988)
found that to use means—ends analysis—which requires the learner to consider the
initial problem state, the future goal state, and the difference between the two
states—the operator needed to reduce the difference, and the resulting subgoals
impose heavy demands on working memory. The alternative method of providing
the students with worked examples has proved to be significantly more efficient in
many studies (Cooper & Sweller, 1987; Paas, 1992; Trafton & Reiser, 1993; Zhu
& Simon, 1987).

MR theory and cognitive-load theory seem to have opposing predictions and,
therefore, different practical implications. Whereas MR theory encourages the de-
velopment of multimedia programs that concurrently present the same concepts or
procedures in several forms, cognitive-load theory encourages the development of
multimedia programs that do not overload the learner with too much redundant
concurrent information.

A goal of this study is to examine the apparent conflict between MR theory and
cognitive-load theory. To accomplish this goal, we compared the cognitive conse-
quences of learning how to add and subtract signed numbers in an interactive mul-
timedia environment when example arithmetic problems were presented solely in
symbolic form (SR group) or in symbolic, visual, and verbal forms (MR group).
According to MR theory, students trained with example problems presented in
three different forms encode the material more deeply than those trained with
problems in only symbolic form. Thus, the MR group should show better pre-
test-to-posttest gains in solving signed arithmetic problems than the SR group.
Cognitive-load theory predicts the opposite result. The high interactivity of the
material involved in the learning process entails a high intrinsic cognitive load, so
extra forms of representation will add to the total amount of cognitive load, result-
ing in less learning. According to cognitive-load theory, students in the SR group
should outperform students in the MR group on pretest-to-posttest gain in solving
signed arithmetic problems.

Our study adds an extraneous cognitive load by using MRs in a multimedia en-
vironment. We chose material that is very high in element interactivity, that is, it is
not possible to understand how to add and subtract signed numbers by solely learn-
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ing the elements involved in sequence. Only by simultaneously studying the spe-
cific interaction of each operand and operation can a student successfully build a
model to solve all problem types, so the instructional material is high in intrinsic
cognitive load. When the material to be learned is already high in intrinsic cogni-
tive load, adding extraneous cognitive load may be detrimental to learning by ex-
hausting the working memory capacity. Therefore, the task of addition and
subtraction of integers provides the necessary learning conditions to test the impli-
cations of cognitive load theory.

PREDICTIONS
Predictions Based on MR Theory

Based on MR theory, students who learned with MRs should show a greater im-
provement in their ability to add and subtract signed numbers than students who
learned with an SR. We measure improvements in three ways: pretest-to-posttest
gains in the number of correct answers in solving 18 signed arithmetic problems,
the pattern of improvement in the number of correct answers for 16 equivalent ex-
ample problems across the four learning trials, and changes in the types of strate-
gies (or bugs) used to generate incorrect answers on the pretest and posttest. Thus,
MR theory predicts that compared to the SR group, the MR group will show alarger
pretest-to-posttest gain, faster rate of learning across the four learning sessions, and
more pretest-to-posttest transitions from conceptually poor to conceptually rich
bugs for incorrect answers. These effects may be particularly strong for difficult
problems because these offer the most room for improvement.

Predictions Based on Cognitive-Load Theory

A straightforward interpretation of cognitive-load theory generates the opposite set
of predictions, that is, the SR group should improve more than the MR group on
each of the dependent measures. If the amount of information presented in the MR
treatment overloads working memory, learning may be hindered. If the SR treat-
ment does not overload working memory and provides sufficient information for
learning the procedure, it can produce better learning than the MR treatment on
each of the three measures described previously.

Predictions Based on MR Theory Combined With
Cognitive-Load Theory

Can the two competing theories be reconciled? Based ona combination of MR and
cognitive-load theory, a third set of predictions is that the positive effects of MR
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learning should be strong for high-achieving students or high-spatial students but
not for low-achieving or low-spatial students. The rationale for this set of predictions
about arithmetic achievement is that higher achieving students have already auto-
mated their basic arithmetic skills and, therefore, have more cognitive resources (o
create the connections among the visual, verbal, and symbolic representations. In
contrast, lower achieving students must devote some of their limited working mem-
ory resources to learn the basic arithmetic operations, leaving less resources for
making connections among MRs. The rationale for this set of predictions about spa-
tial ability is that high-spatial students do not need to use cognitive resources to hold
images in working memory, so they may devote those limited resources to building
connections among visual, verbal, and symbolic representations. In contrast,
Jow-spatial ability learners must devote more cognitive resources to holding images
of the bunny’s movement in working memory, so they have less resources to use on
building connections among MRs. Overall, the best strategy for low-achieving and
low-spatial ability learners may be to focus only onthe symbolic form of representa-
tion, a tactic that would render the SR and MR treatments equivalent.

EXPERIMENT 1

Our purpose in Experiment 1 was to examine the cognitive consequences of learn-
ing how to solve signed arithmetic problems in an interactive multimedia environ-
ment under two different methods of instruction. One group of students (SR group)
studied 16 problems in each of four training sessions with the symbolic number
sentence being the only representation available. Another group of students (MR
group) studied the same problems in four training sessions but had (a) the same tra-
ditional symbolic representation used for the SR group, (b) a visual representation
that uses a number line and a computer animation to show how the symbolic num-
ber sentence relates to a bunny’s movements along the number line, and (¢) a verbal
representation that uses written explanatory text that has the bunny describe in
words how the symbols relate to its movements along the number line.

METHOD
Participants and Design

The participants were 60 sixth-grade students from an elementary school in South-
ern California who lacked substantial prior knowledge about addition and subtrac-
tion of signed numbers. Sixth graders were selected for the study to ensure their
lack of familiarity with the material because the topic of addition and subtraction of
signed numbers is not taught until seventh or eighth grade in their school district.
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Overall, students at the school ranked in the 90th percentile on statewide assess-
ments of mathematics achievement, indicating that in spite of their lack of knowl-
edge of signed arithmetic, students generally possessed good arithmetic skills.
Fourteen lower achieving and 16 higher achieving students served in the SR group;
13 lower achieving and 17 higher achieving students served in the MR group. All
students took a pretest and posttest consisting of easy and difficult problems, so
comparisons of problem type are within-subject comparisons.

Materials

For each participant, the paper-and-pencil materials consisted of a pretest and a
posttest. These tests were identical and consisted ofa8.5-x 11-in. sheet of paper con-
taining 18 problems involving addition and subtraction of single-digit signed inte-
gers (listed in Table 1). Two problems of each of the following types were included:
addition of two positive (P) numbers (P + P), addition of two negative (V) numbers
(N+ N), addition of a positive to anegative number (N + P), addition of anegativetoa
positive number (P + N), subtraction of two positive numbers (P P), subtraction of
two negative numbers (N—N), subtraction of a positive from a negative number (N —
P),and subtraction of anegative fromapositive number (P—N). Finally, two transfer
problems in which one of the operands was the number zero were also included. The
firsteight problem types were classified as easy or difficult based on amedian split of
the proportion of correct answers given at pretest for each problem type (as listed in
Table 1). The four easy problem types were P+ P, N+ P, P+ N, and P— P; the four dif-
ficult problem types were N+ N, N- P, P— N, and N—- N.

For each participant, the computer-based materials consisted of a series of four
3.5-in., high-density floppy disks. Each disk contained an interactive computer
program that corresponded to one of the four training sessions labeled with the
training session date, the student’s name, and the treatment group that the student
belonged to (SR or MR). All disks contained two sets of 8 single-digit
signed-arithmetic problems representing the same types as used on the tests, that
is, (P + P), (N+ N), (N + P), (P+N), (P~ P),(N-N), (N~ P), and (P — N}. The first
8-item problem set for each training day was labeled as “Level 1” and the second
set as “Level 2. Although the two sets of 8 problems were identified by different
level numbers, the degree of difficulty of the problems was the same. Within each
level, problem types were randomly ordered. The 16 problems contained in each
of the four training sessions were identical for the SR and MR groups and are
shown in Table 1. The computer program contained in the floppy disks was de-
signed to create a personal log in the same disk that recorded all students’ interac-
tions during the training session (e.g., the typed in answers to the problems, the
buttons clicked on the screen, and the exact time of each event). The programs
were developed using Director 4.04 (Macromedia, 1994).
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The apparatus consisted of 30 Macintosh computer systems that included either
a 10-, 12- or 15-in. monitor and an average 40-megabyte internal hard disk. The
computers were located in an elementary school’s computer laboratory.

Procedure

One sixth-grade class was randomly assigned to be the treatment group, and the
other sixth-grade class served as the control group. The distributions of student
abilities and gender in the classes were equivalent as it is the school’s policy to cre-
ate equivalent classes at each grade level. Both classes had identical mathematics
curricula and signed arithmetic was not covered in either class. Each student
learned individually at a computer station during the training sessions SO No
whole-class instruction was involved in the study.

First, students were given a paper-and-pencil pretest during regular class time.
Students who scored at or below the median (i.e., 50% correct) on the pretest were
classified as low achieving and students who scored above the median were classi-
fied as high achieving.

Second, all students participated in each of the four training sessions held on
different days over a 2 week period during regular class time. Each session was
held in the school’s computer laboratory, with each student seated at a Macintosh
computer system. Students in the SR group were trained through a SR floppy disk,
and students in the MR group were trained through a MR floppy disk. For each
group, the disks were on computers in the school laboratory, prior to the student’s
arrival.

During each session for the SR group, students solved the 16 signed-arithmetic
problems, working at their own rates in an interactive environment. First, as shown
in the first frame of Figure 1, a main menu listing the first 8 problems in symbolic
form (e.g., 4 ——5 = __) appeared on the screen. The learner could then select a
problem by clicking on it. Then, as shown in the second frame of Figure 1, the se-
lected problem appeared on the screen in symbolic form, prompting the learner to
type in an answer. If the answer was correct, as shown in the third frame of Figure
1, the words “Yes! The answer is ___" appeared on the screen and learner could
click on “Back to Menu” to go back to the main menu of problems. The fourth
frame of Figure 1 shows the feedback given for a wrong answer: The words
“Sorry! This is not the correct answer” appeared on the screen and the learner
could either click on the button “Try Again” (to enter a new answer) or on the but-
ton “See Solution” (to be shown the correct answer). After presenting the correct
answer, the program allowed the learner to move back to the main menu by press-
ing the “Back to Menu” button. Any time the student returned to the main menu,
the list of the eight problems with a check mark added next to the completed prob-
lems appeared as shown in the fifth frame of Figure 1.
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When given the main menu, the learner could select any of the eight problems,
including those that were already checked. After selecting each of the first eight
problems at least once, the learner could move on to the next set of problems by
clicking on the “Done” button. The same procedure applied to the second set. After
the learner completed the two sets of problems, the session ended.

Figure 2 shows selected frames from an example problem presented to the MR
group. When a learner clicked on a problem, in addition to the symbolic form, a
number line appeared with a bunny rabbit facing forward and standing on the 0
point (as shown in the first frame). Also, four buttons on the lower right part of the
screen allowed the participant to move the bunny rabbit in four different combina-
tions: face right and jump forward, face right and jump backwards, face left and
jump forward, or face left and jump backwards. When the learner entered the cor-
rect answer, the words “Yes, the answer is __” appeared on the screen as in the SR
group, and this was followed by an animated sequence that consisted of four major
steps. For example, for the problem 4 ——5=__, the 4 became highlighted and the
words “FIRST: FIND MY STARTING POINT 4 means GO TO 4” appeared in a
bubble above the bunny (in Frame 2); the bunny hopped to 4 on the number line (in
Frame 3); the minus sign became highlighted and the words “SECOND: FIND
THE OPERATION — means FACE LEFT” appeared in a bubble above the bunny
(in Frame 4); the bunny turned to face left (in Frame 5); the -5 became highlighted
and the words “THIRD: FIND HOW TO JUMP -5 MEANS JUMP BACK 5
STEPS” appeared in a bubble above the bunny (in Frame 6); the bunny hopped
backwards five steps to 9 on the number line (in Frame 7); and the words “The an-
swer is 9” appeared in a bubble above the bunny and the answer “9” appeared on
the screen (in Frame 8). The rest of the procedure was identical to that of the SR
group. After viewing the animation, the learner could either click on the button
“See Solution Again” or on the button “Back to Menu.” If the answer was wrong,
the words “Sorry! This is not the correct answer” appeared on the screen and the
learner could either click on the button “Try again” (to enter a new answer) or on
the button “See Solution” (to be shown the correct answer and its respective ani-
mation). Any time the student returned to the main menu, the list of eight problems
with a check mark added next to the completed problems would appear. After se-
lecting each of the first eight problems at least once, the learner could move on to
the next set of problems by clicking on the “Done” button. The same procedure ap-
plied to the second set. After the learner completed the two sets of problems, the
session ended.

In all, both groups solved the same 64 problems, working independently, at
their own rates and with the sole feedback of the computer program. The MR
group received symbolic, visual, and verbal feedback, whereas the SR group re-
ceived only symbolic feedback. After completing the four training sessions, all
participants were given the paper-and-pencil posttest in their regular classrooms
on a subsequent day.
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Scoring

Pretest-to-posttest gain.  For each student, we subtracted the number of
correct answers on the pretest from the number of correct answers on the posttest to
yield a pretest-to-posttest gain score.

Session-by-session learning score.  For each student, we tallied the num-
ber of correct answers on each of the four training sessions to examine the gain from
session to session.

Pretest-to-posttest change in arithmetic bugs. ~ To better, understand the
cognitive processes involved during the students’ training sessions, we also con-
ducted an analysis of their strategies (Siegler & Jenkins, 1989) on problems in
which they gave the wrong answer. The novelty of signed numbers for sixth-grade
students is the ambiguity of the same symbol to referto a subtraction operation and
a negative number. Students that are in the process of learning the difference be-
tween the minus symbol as representing subtraction and as representing the sign of
a number will have a tendency to confuse the two concepts. Consequently a “nega-
tive-bias effect” is expected to occur, in which the student treats the negative sign as
a subtraction operator. Our analysis of arithmetic bugs applies only to problems
containing an addition operator with two negatively signed numbers (N + N) or a
subtraction operator and one negatively signed number (N — P, P—N). In our study,
we assessed this bias by adding up for each student all the wrong answers where the
negative sign in an operand was misinterpreted as an operator. For example, for the
problem -8 +—1=__, ifastudent gaveasa result either a 7 or a—7, the answer was
labeled as a negative-bias bug; an answer of 9 was labeled as a conceptually good
bug because it did not reflect a negative bias. For the problem-3-1=___,anan-
swer of 2 or —2 indicated a negative-bias bug, whereas 4 indicated a conceptually
good bug. For the problem 7 —-2=__, 5 0or -5 reflected a negative-bias bug
whereas -9 was a conceptually good bug. Thus, the good bug is not based on funda-
mental misconception of the meaning of a negative sign as a subtraction operator.
Errors based on negative-bias interpretations suggest less understanding of the ad-
dition and subtraction of signed numbers than ones in which the operation is ap-
plied correctly.

RESULTS
Pretest-to-Posttest Gains

According to MR theory, the MR group should show a larger pretest-to-posttest
gain than the SR group; cognitive-load theory makes the opposite prediction, and
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FIGURE 3 Proportion correct on pretest and posttest by single representation (SR) and multi-
ple representation (MR) groups for difficult and easy problems—Experiment 1.

the hybrid theory predicts that the benefits of MR learning will be greatest for
high-achieving students. Although the mean pretest-to-posttest gain by the MR
group was greater than that of the SR group (Ms = 4.10 and 2.97, SDs = 2.80 and
3.68, respectively), the difference failed to reach statistical significance, F(Q1,56)=
1.29, MSE = 10.32, p > .20.

Given our suspicion that students had the most room for improvement on diffi-
cult problems (and may perform near the ceiling on easy problems), we reanalyzed
the pretest-to-posttest gaindataina2 x 2 analysis of variance (ANOVA) including
treatment group (MR vs. SR) and problem difficulty (easy vs. hard) as factors. Fig-
ure 3 summarizes the scores in each treatment group for easy and difficult prob-
lems. For difficult problems, the mean pretest-to-posttest gain was 2.40 for the MR
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group (SD = 1.52) and 1.37 for the SR group (SD = 2.19); for easy problems the
mean pretest to posttest gain was 1.17 for the MR group (SD = 1.70) and 1.30 for
the SR group (SD = 2.07). An ANOVA revealed a significant interaction between
group and problem difficulty, (1, 56) = 4.24, MSE=10.21, p <.05; supplemental
Tukey tests with p < .05 confirmed that the MR group gained significantly more
than the SR group for difficult problems, but the groups did not differ on easy
problems.

Although these results tend to support MR theory, adding cognitive-load theory
allows us to test an important prediction concerning the issue of for whom an MR ex-
perience would be productive. In particular, a hybrid theory predicts that the MR
group will show a superiority over the SR group for high-achieving students but not
for low-achieving students. Figure 4 summarizes the pretest-to-posttest gain scores
for high- and low-achieving students in each treatment group. For high-achieving
students, the mean gain for the MR group was 3.94 (SD =3.07) and the mean gain for
the SR group was .88 (SD = 2.42); for low-achieving students, the mean gain for the
MR group was 4.31 (SD = 2.50) and the mean gain for the SR group was 5.69(SD=
3.27). An ANOVA with group and achievement level as factors and gain as the de-
pendent measure revealed a significant interaction between group and achievement
level, F(1, 56)=12.33, MSE = 98.7, p < .01; supplemental Tukey tests withp <.05
confirmed that the MR group gained significantly more thari the SR group for higher
achieving students, but the groups did not differ for lower achieving students.

We interpret the interaction as showing that the MR treatment produced better
learning than the SR treatment for high-ability learners but not for low-ability
learners. Low-ability learners, by definition, started at a low level of performance
on signed-arithmetic problems; low-ability students showed equivalent improve-
ments in the SR and MR groups, but mainly on easy problems and only up to the
starting level of the high-ability learners. Given that the focus of the multimedia
lesson was on understanding the complex problems, it is not surprising that the
MR treatment was not particularly more effective than the SR treatment in promot-
ing learning of the easy problems for the low-ability learners. In contrast,
high-ability learners, by definition, started at a relatively higher level of perfor-
mance—roughly equivalent to the final level of the low-ability learners; with room
for improvement mainly in learning to solve difficult problems, the SR treatment
resulted in no further improvement whereas the MR treatment produced substan-
tial improvement. Consistent with the focus of the multimedia instruction in the
MR treatment, the MR treatment was particularly effective for students who had
already mastered the basics of signed addition with easy problems. Thus, although
three groups show pretest-to-posttest improvements, the improvements of
low-ability students in the SR and MR groups reflect starting nearer to the “floor”
and mainly learning to solve easy problems, whereas the improvements of the
high-ability students in the MR group reflect starting nearer to the “ceiling” and
mainly learning to solve difficult problems.
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Session-by-Session Learning

According to MR theory, the MR group should learn faster than the SR group,
whereas cognitive-load theory makes the opposite prediction. Finally, by combin-
ing the two theories we can predict that the MR group will learn faster than the SR
group for high-achieving students but not for low-achieving students. The left panel
of Figure 5 summarizes the scores on each session in each treatment group. For Ses-
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FIGURE 4 Proportion correct on pretest and posttest by single representation (SR) and multi-
ple representation (MR) groups for high-achieving and low-achieving students—Experiment 1.
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FIGURES5 Proportion correct on each learning session by single representation (SR) and multiple
representation (MR) groups for all, high-achieving, and low-achieving students—Experiment 1.

sions 1 to 4, the mean number of correct answers on each session was 9.96, 11.07,
11.10,and 11.77, respectively for the SR group (SDs = 3.31,2.63,2.67,and 3.13, re-
spectively); and 9.70, 12.63, 12.83, and 12.70 for the MR group (SDs = 2.49, 2.31,
2.18, and 2.82, respectively). An ANOVA with group (SR vs. MR) as a be-
tween-subjects factor and training session as a within-subject factor revealed a sig-
nificant interaction, F(3, 168) =4.09, MSE=10.78,p < .01, consistent with the ob-
servation that students in the MR group learned significantly faster than students in
the SR group. These results are consistent with the predictions of the MR hypothesis.

Although MR theory is consistent with the foregoing results, cognitive-load
theory suggests an important additional prediction concerning individual differ-
ences in the effectiveness of MR training. In particular, a hybrid theory (i.e., based
on MR theory and cognitive-load theory) predicts that the MR group will leamn
faster than the SR group for high-achieving students but not for low-achieving stu-
dents. Therefore, we conducted an ANOVA for each ability group separately on
the session-by-session scores with group as between-subjects factor and session as
a within-subjects factor. The middle panel of Figure 5 summarizes the scores on
each learning session for high-achieving students in each treatment group. For
high-achieving students, the mean scores on sessions 1 through 4 were 11.24,
11.88, 11.88, and 12.53, respectively, for the SR group (SDs =3.29, 2.29,2.34,and
2.85, respectively) and 10.18, 13.12, 13.77, and 13.35, respectively, for the MR
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group (SDs =2.24, 1.62, 1.64, and 2.85, respectively). The right panel of Figure 5
summarizes the scores on each learning session for low-achieving students in each
treatment group. For low-achieving students, the mean scores on Sessions 1
through 4 were 8.31, 10.00, 10.08, and 10.77, respectively, for the SR group (SDs
=12.59,2.74, 2.81, and 3.30, respectively) and 9.08, 12.00, 11.62, and 11.85, re-
spectively, for the MR group (SDs = 2.75, 2.94, 2.26, and 2.64, respectively). The
ANOVA conducted on the session-by-session scores for high-achieving students
revealed a significant interaction between group and session, /1 (3,96)=6.09, MSE
= 13.58, p <.01, consistent with the interpretation that MR students learmned faster
than SR students. In contrast, the ANOVA conducted on the session-by-session
scores for low-achieving students failed to produce a significant Group x Session
interaction, F(3, 72) = .59, MSE = 1.89, p > .50, suggesting that the groups did not
differ in their pattern of improvement. Overall, these results are most consistent
with a combination of MR and cognitive-load theories.

Pretest-to-Posttest Changes in Arithmetic Bugs

MR theory predicts that a comparison of the type of errors at pretest and posttest
would show that students in the MR group learned to choose better strategies than
students in the SR group. Figure 6 summarizes the number of negative-bias bugs on
pretest and posttest in each treatment group. At pretest, the mean number of nega-
tively biased answers was 1.40 (SD = 1.45) for the MR group and 0.90 (SD = 0.85)
for the SR group; at posttest, the MR mean number of negatively biased answers
was reduced to 0.53 (SD = 0.68), whereas the SR mean number of negatively biased
answers was unaltered at 0.90 (SD = 1.24). An ANOVA was conducted with group
(SR vs. MR) as the between-subjects factor, test (pretest vs. posttest) as a
within-subjects factor, and number of negatively biased answers as the dependent
measure. The ANOVA provided evidence for a significant interaction between
group and test, F(1,58)=4.97, MSE=5.63,p <.05. Consistent with the MR theory,
students in the MR group reduced their negative bias from pretest to posttest signif-
icantly more than did students in the SR group.

EXPERIMENT 2

Consistent with MR theory, the results of Experiment 1 showed an advantage of
MR instruction over SR instruction across three different dependent measures: The
MR group learned more (on difficult problems), learned faster, and reduced more
of their negative-bias bugs than did the SR group. An important additional result
consistent with cognitive-load theory is that, in general, these effects were stron-
gest for high-achieving students. Overall, the results of Experiment 1 are consistent
with a hybrid theory in which learning with MRs is more effective than learning
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FIGURE 6 Mean number of negative-bias bugs on pretest and posttest by single representa-
tion (SR) and multiple representation (MR) groups—Experiment 1.

with an SR mainly when the learner’s working memory is not overloaded by the in-
structional presentation. We conducted a second experiment to examine in more
detail the role of cognitive load in learning with MRs. In particular, we examined
the effectiveness of MR training (as in Experiment 1) for students who scored high
or low in spatial ability and for students who scored high or low iIn memory span.

According to cognitive-load theory, low spatial ability students may be less
able than high spatial ability students to take advantage of the presentation of MRs.
When visual and verbal material are presented contiguously, cognitive load results
from the need to hold and manipulate the visual representation in working memory
while making the respective integration with the verbal representation (Mayer &
Sims, 1994). Low spatial students must devote many cognitive resources to hold-
ing the images in working memory, leaving inadequate cognitive resources for the
process of integrating the images with verbal representations. In contrast, high
spatial ability students can hold images in working memory without expending
many cognitive resources, allowing them to use their cognitive resources for the
process of building connections among representations. Although spatial ability
has been defined in several ways (Carroll, 1993; Lohman, Pellegrino, Alderton, &
Regian, 1987), we have focused on spatial visualization in our study. This aspect
of spatial ability is most relevant to learning from complex animations and can be
measured by testing students’ abilities to mentally rotate or fold two- or
three-dimensional objects (Mayer, 1997). Based on the hybrid theory combining
cognitive-load and MR theory, we predicted that high spatial students would bene-
fit more from our MR treatment than would low spatial students.

According to cognitive-load theory, working memory capacity is limited in
both duration and capacity (Miller, 1956; Simon, 1974). When students are re-
quired to solve problems that exceed their working memory capacity, learning
may be hampered (Sweller, 1988, 1989). According to capacity theories of com-
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prehension (Just & Carpenter, 1992), capacity constrains comprehension, and it
does more for some individuals than for others. Students with larger capacity are
better able to maintain and coordinate MRs in working memory than are students
with low capacities. Congruent with this view, we predicted that students with
high working memory span would be better able to take advantage of learning in
high cognitive-load conditions imposed by our MR presentation than would low
working memory students. The overarching goal of Experiment 2 is to examine
how individual differences in spatial ability and working memory capacity affect
learning with MRs in a multimedia environment.

METHOD
Participants and Design'

The participants were 26 sixth-grade students from the same population as Experi-
ment 1. All students took a pretest and posttest and participated in four training ses-
sions, so pretest-to-posttest comparisons and session-by-session comparisons are
within-subject comparisons.

Materials

For each participant, the paper-and-pencil materials consisted of a pretest, a battery
of four cognitive tests, and a posttest. The pretest and posttest were identical to
those described for Experiment 1. The cognitive tests were Part 1 of the Paper
Folding test, Part 1 of the Cube Comparisons test, the Auditory Letter Span test, and
the Number Comparison test from the Kit of Factor-Referenced Cognitive Tests
distributed by the Educational Testing Service (Ekstrom, French, & Harman,
1976). In the Paper Folding test, the student must imagine that a sheet of paper has
been folded in a certain way, a hole is punched through all thicknesses of the paper
at a certain point, and then the sheet is unfolded. The folding and punching are indi-
cated on the left side of the sheet, and the student must select which of five unfolded
sheets is the result. In the Cube Comparisons test, the student must tell whether two
cubes are the same or different; if the cubes match if one were rotated, then the cor-
rect answer is “same”’; however, if they don’t, then the correct answer is “different.”
In the Auditory Letter Span test, students are read 15 numbers, one by one, digit by

'Experiment 2 originally included a second group of sixth graders who received the SR treatment as
in Experiment 1. However, the teacher provided an in-class unit on addition and subtraction of signed
numbers immediately prior to the study, so data for this group could not be used. All other students in Ex-
periment 1 and 2 had no prior training in addition and subtraction of signed numbers.

B e ]
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digit. Inmediately after each number is read, the student has to write down as many
digits as he or she can remember. The number of digits in the numbers vary from 3
to 13. Finally, in the Number Comparison test, the student is presented with pairs of
numbers and must decide whether or not the two numbers are the same or not by
putting an X between them when they are different. For example, for the pair 73845
73855, the student should put an X on the line between the numbers. Each test
was printed on an 8.5- x 11-in. sheet of paper. For each participant, the com-
puter-based materials consisted of a series of four 3.5-in., high-density floppy disks
identical to those used for the MR group in Experiment 1. The apparatus was the
same as in Experiment 1.

Design and Procedure

First, students were given a paper-and-pencil pretest during regular class time. Stu-
dents who scored at or below the median (i.e., 50% correct) on the pretest were clas-
sified as low achieving, and students who scored above the median were classified
as high achieving.

Second, students took the battery of four cognitive tests, which were adminis-
tered following the pretest. For each test, students read instructions that included a
worked-out sample problem. The first test was the Auditory Letter Span test. After
students read the instructions, they were read the numbers from the test. Immedi-
ately after each number was read, the students had to write down as many digits as
they could remember. Once done with the last number, students were instructed to
put their pencils on the desk and wait until the experimenter collected all the test
sheets. The next tests were the Number Comparison test, the Cube Comparisons
test, and the Paper Folding test, administered, respectively, in this order. For each
test, after students had read the instructions, they were given 3 min to complete as
many test items as possible. When the 3 min were over, students were instructed to
stop writing, put their pencils on the desk, and wait until the experimenter col-
lected all the test sheets.

Third, all students participated in each of the four training sessions held on dif-
ferent days over a 2-week period during regular class time, as in Experiment 1.

Finally, after completing the four training sessions, all students were given the
paper-and-pencil posttest in their regular classrooms on a subsequent day.

Scoring

Pretest-to-posttest gain.  For each student, we subtracted the number of
correct answers on the pretest from the number of correct answers on the posttest to
yield a pretest-to-posttest gain score.
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Spatial ability score. ~ For each student, we tallied the number of correct an-
swers on the Cube Comparisons test and on the Paper Folding test. After standard-
izing each score, a composite spatial ability score was computed for each partici-
pant by adding both scores. For purposes of analysis, 11 students who scored above
the mean were classified as high spatial ability, and 15 who scored at or below the
median were classified as low spatial ability.

Memory span score.  For each student, we tallied the number of correct an-
swers on the Auditory Letter Span test and on the Number Comparison test. After
standardizing each score, a composite working memory span score was computed
for each participant by adding both scores. For purposes of analysis, 11 students
who scored above the mean were classified as high memory span, and 15 students
who scored at or below the mean were classified as low memory span.

RESULTS

« Do high spatial ability students who receive MR training learn addition and
subtraction of signed numbers better than low spatial ability students who receive
MR training? Based on ahybrid theory combining cognitive-load and MR theories,
we predicted that high spatial ability students who trained with MR would outper-
form low spatial ability students who trained with MR. Consistent with this predic-
tion, the high spatial ability students produced a significantly greater pre-
test-to-posttest gain (M =4.46, SD = 3.24) than did the low spatial ability students
(M=0.67,SD=4.73),t24)=2.29,p < .05. Our prediction that high spatial ability
students in the MR group would outperform low spatial ability students was con-
firmed.

« Do high working-memory span students who receive MR training learn ad-
dition and subtraction of signed numbers better than low working-memory span
students who receive MR training? Also congruent witha hybrid theory combining
cognitive-load and MR theory, we predicted that high working-memory span stu-
dents who learned with MRs in a multimedia environment would outperform low
working-memory span students who learned in the same way. Although the mean
pretest-to-posttest gain by the high working-memory span group was greater than
the mean pretest-to-posttest gain of the low working-memory span group (Ms =
3.55and 1.33,SDs=4.03 and 4.74, respectively), the difference failed to reach sta-
tistical significance, #(24)=1.25,p> .20. One explanation for the failure to confirm
our prediction is that our measure of working memory capacity may have been in-
adequate. Most of the past research has focused on working memory as the storage
of information for retrieval after a brief interval. The two tests that we used to mea-
sure memory span are congruent with this view. However, more recently the view
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of working memory has been broadened to include not just the storage of items for
later retrieval but also the storage of partial results in complex sequence computa-
tions such as language comprehension (Just & Carpenter, 1992). Our study re-
quired students to quickly process text, symbols, and an animation. In this frame-
work, a better way to assess working memory capacity might be to use listening or
reading span tasks, devised to simultaneously draw on the processing and storage
resources of working memory (Daneman & Carpenter, 1980).

Overall, the results of Experiment 2 provide important new evidence that expe-
rience in an MR treatment is more effective for students with high spatial ability
than for students with low spatial ability. In short, Experiment 2 clarifies for whom
MRs are most helpful and helps to show how instruction with MRs is influenced
by the ability of learners to handle the cognitive load imposed by processing infor-
mation in multiple forms.

DISCUSSION

The goal of this study was to explore the cognitive implications of training students
with MRs in a high-cognitive load situation. MR theory proposes that when solving
an arithmetic problem, instructional methods that promote the use of MRs (i.e.,
symbolic, visual, and verbal) are more likely to aid in the learning process than in-
structional methods that rely on SRs (i.e., symbolic). Cognitive-load theory claims
that when learners are required to mentally integrate disparate sources of mutually
referring information such as text, symbols, and animations, such split-source in-
formation may create a heavy cognitive load that disrupts learning. Therefore,
when using multimedia instructional methods we are faced with a trade-off prob-
lem. On one hand, multimedia can facilitate learning by representing concepts in
more than one modality. On the other hand and congruent with cognitive-load the-
ory, the more representations offered for the same procedure, the heavier the cogni-
tive load and the harder the learning. Our study provided evidence that learning ina
multimedia MR environment benefits higher achieving and high spatial ability stu-
dents the most, although lower achieving and low spatial ability students do not
learn significantly more from MRs than from an SR. These findings have important
theoretical and practical implications.

The significantly larger gain with MR over SR for the high-achieving group of
students can be theoretically accounted for by integrating cognitive-load and MR
theories. Given that the amount of resources in working memory is limited, and
given that the high-achieving group had already made some information auto-
mated (they were mastering relatively better the symbolic representation for the
problems at pretest), they should consume less of the memory resources than the
low-achieving group. Thus, they are able to benefit from MR presentations that re-
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quire more cognitive load than SR presentations. Comparatively, the
low-achieving group had to use more resources in working memory to build the
symbolic representation than the high-achieving group. Because their cognitive
load was high even with the SR treatment, lower achieving students are likely to
experience overload in the MR treatment. As a result, adding extra visual and ver-
bal explanations did not help them. Moreover, the results suggest that lower
achieving and low spatial ability students are either ignoring, or unable to process,
the additional information. This analysis shows how two seemingly competing
theories (MR and cognitive load) can be reconciled.

It should also be noted that cognitive-load theory does not predict that the addi-
tional information is harmful per se. In a recent review, Sweller and his colleagues
(Sweller, van Merrienboer, & Paas, 1998) addressed some instructional design is-
sues related to worked examples. For example, it is important to determine if the
additional information that is provided in a worked example is redundant or if it 1s
essential for understanding the primary source of information. In worked exam-
ples with multiple sources of redundant information, the additional information
can have negative consequences by forcing the students to split their attention be-
tween them. On the other hand, when worked examples present extra sources of in-
formation that are needed for the lesson to be intelligible, then the additional
information can have positive consequences (Sweller, 1993). In our studies, the
MR groups were given worked examples with full verbal and visual explanations
that made explicit the procedure of how to solve an arithmetic problem success-
fully. The SR groups, instead, were not provided with any type of explanation. Al-
though cognitive-load theory would predict better learning from nonredundant
worked examples than from conventional problem-solving practice, it was found
in this study that only the higher achieving and high spatial ability students did
benefit from the explanations. These results suggest that even when the additional
explanations can be helpful to advance students’ learning by providing detailed
worked examples, students need to be equipped with the necessary cognitive re-
sources to process the explanation.

The strategy analysis showed a strong negative sign bias for both groups at
pretest. Despite this fact, evidence was found that providing an MR model to
solve problems allowed the treatment group to significantly lower the bias at
posttest, whereas providing an SR model left the bias intact for the control
group. A possible interpretation of these results can be made through mental
models theory (Johnson-Laird, 1983). This theory claims that in the process of
creating a mental model, people might fail due to limitations in working mem-
ory capacity or to the influence of prior knowledge. In the context of our study,
sixth-grade students have already built a model to solve addition and subtraction
of natural numbers. Therefore, the original negative bias at pretest might be
caused by trying to interpret the new model for signed numbers through their
prior knowledge of natural numbers. That is, a negative sign preceding a number
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is interpreted according to its meaning in the old model that is subtraction. Pro-
viding an MR model to the treatment group proved to help make their bugs
petter. After the training sessions, even for the problems that were not yet
jearned, the MR group used significantly better strategies than the SR group.
Their errors were at least showing an understanding of the difference between
the subtraction operation and the negative sign of a number. This suggests that
MR training not only produced quantitative differences in performance (mea-
sured by the larger mean gain score) but also produced qualitative differences in
their learning. Students in the MR group are in the process of building a success-
ful model to add and subtract integers. Students in the SR group are instead
making the same type of errors that they had before training.

Experiment 2 provided evidence for an advantage to learn from MRs for higher
spatial ability students. Given that working memory appears to be a limiting factor
in the integration of multiple sources of mutually referring information, this result
is not surprising. Individuals who are better able to hold and manipulate visual rep-
resentations in memory will especially benefit when the mapping of text, symbols,
and complex animations is required. Our results then, confirm the capacity theo-
ries of comprehension in the area of mathematics learning with multimedia.

On the practical side, this study provides results with direct instructional impli-
cations. First, it provides empirical support for using MRS to help students learn
mathematical procedures. When designing educational software, an interactive
computer-based learning environment enables better learning when it includes
symbolic, visual, and verbal representations that are coordinated in time rather
than solely symbolic representations.

Second, the benefits of using MRs for example problems are strongest on diffi-
cult problems and for students who already have a good knowledge of the basic
arithmetic of natural numbers. This suggests that in the teaching of mathematics,
the ideal learning situation might be to first bring the lower achieving students to a
higher level of proficiency on the symbolic representations so that they can benefit
more fully from the multimedia, multirepresentational environment.

Third, for instructional material to be effective, it must consider the role that in-
dividual differences can play in the learning process, especially if learners are re-
quired to integrate multiple sources of mutually referring information. To
understand materials that are high in element interactivity, such as mathematics, it
is important to design the materials in a manner that minimizes cognitive load. A
high cognitive-load environment may have positive learning effects only when
students possess the necessary cognitive resources to process simultaneously in
working memory the MRs. Spatial ability is a potential indicator of successful
learning in such environments. Other indicators, such as reading span, should be
analyzed in future research.

Finally, more research is needed on learning from multimedia environments. It
is possible that some of these results do not generalize to other domains or to mate-
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rials that are low in interactivity. Future research should extend this study to new
areas requiring mental integration between disparate sources of information.
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