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The aim of this book is to advance our understanding of how humans think.
It seeks to do so by putting forth a theory of human problem solving, along with
a body of empirical evidence that permits assessment of the theory.

No single work advances understanding very far. The aims of a scientific
work are limited by the formal character of the theory, by the phenomena it
encompasses, by the experimental situations it uses, by the types of subjects it
studies, and by the data it gathers. Of course, a theory may speak beyond its initial
base—all scientists hope for just that. But science is a series of successive approx-
imations. Not all things can be done at once, and even if one aspires to go far, he
must start somewhere. If one aims at covering all of human thinking in a single
work, the work will necessarily be superficial. If one aims at probing in depth,
then many aspects of the subject, however important, will be left untouched.




THE SCOPE OF THE BOOK

Our first task, then, is to indicate the scope of this work—what it includes
and what it deliberately excludes. The boundaries need not be carefully marked;
but the central focus should be made clear.

Figure 1.1 attempts to compress in one diagram many of the dimensions

FIGURE 1.1

dimensions of variation of the human system




along which the total human system can vary. Its purpose is to demark the par-
ticular portions included in the present work, not to provide a new or total view.
The focus of the diagram is the individual human being. He is a system consisting
of parts: sensory subsystems, memory, effectors, arousal subsystems, and so on.
It makes little difference for immediate purposes that we are unsure just what
is the most appropriate way to enumerate the subsystems. We can limit study—
and we will—to one or a few parts.

Task Dimension. A human behaves in a number of different classes of situations,
which we will come to call task environments. In the figure, we have represented
these in a single dimension, but clearly a whole geography is intended: a human
does mathematics, he walks, he interacts with his fellow man, he drives cars, he
makes love, he argues, he buys food, he dies.

Performance-Learning-Development Dimension. Holding the task environment
constant, we usually distinguish a human who is performing a task from one who
is learning to perform a task, or one who is developing with respect to a task.
Within the first group, those who are performing, we can focus on successively
smaller acts, so that we need not even be concerned with an entire performance.
It is not important that the distinctions are imperfect. (For example, it is often
impossible to distinguish with confidence between learning and maturation.)
The distinctions among these three kinds of activities are to some extent correlated
with time scale, and we have so depicted them.

Individual-Difference Dimension. A single man may be viewed as a member of
various populations. Each man differs—both in systematic ways and simply by
virtue of his unique genetic endowment and historical fate—from all other men.
Differences dependent on age are strongly related to development and are indicated
along the temporal axis. But cultures also differ, and within a culture various demo-
graphic variables, such as socioeconomic status, isolate distinct populations.
More broadly, of course, Man is only one among innumerable species, and so the
vertical axis extends to other organisms.

The Book’s Focus

From the many directions of variation expressed or implied in Figure 1.1
limited regions can be carved out for attention: the development of intelligence
as a function of organismic level (in the evolutionary sense); the learning
of personal roles in social groups of college students; and so on. Each region
provides a starting point for investigation and description; each leaves out most
of the human phenomena.

The present study is concerned with the/performance of intelligent adults
in our own culture. The tasks discussed are short (half-hour) moderately difficult
problems of a symbolic nature. The three main tasks we use—chess, symbolic
logic, and algebra-like puzzles (called cryptarithmetic puzzles)—typify this class
of problems. The study is concerned with the integrated activities that constitute
problem solving. It is not centrally concerned with perception, motor skill, or what
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are called personality variables. The study is concerned primarily with performance,
only a little with learning, and not at all with development or differences related
to age. Finally, it is concerned with integrated activities, hence deemphasizes the
details of processing on the time scale of elementary reactions (that is, half a second
or less). Similarly, long-term integrated activities extending over periods of days
or yéars receive no attention.

These restrictions on the scope of our study delineate a central focus, not a
set of boundaries. Thus, the possibility that learning is taking place cannot be
excluded in complex tasks that last tens of minutes. Likewise, it is an empirical
question, not a matter of definition or fiat, to what extent perceptual mechanisms
are important in problem solving—although limiting our investigation to symbolic
tasks helps to restrict the importance of perception. Again, how the basic mecha-
nisms of immediate memory and immediate processing affect integrated behavior
at the next higher level is an open question. One recent author on cognitive proces-
ses (Neisser, 1967) has taken the description of the immediate processing mecha-
nisms as the important first task, devoting only a last chapter of his book to the
integrated level of behavior that is central to this volume.

Information Processing Theory

The reasons for our choices are various and largely opportunistic (although
with an opportunism that has lasted twenty years and thus may constitute philo-
sophic conviction). For several decades psychology, responding to different op-
portunities and convictions, focused on learning, lower organisms, and tasks that
are simple from an adult human viewpoint. Within the last dozen years a general
change in scientific outlook has occurred, consonant with the point of view rep-
resented here. One can date the change roughly from 1956: in psychology, by the
appearance of Bruner, Goodnow, and Austin’s Study of Thinking and George
Miller’s “The magical number seven”; in linguistics, by Noam Chomsky’s “Three
models of language”; and in computer science, by our own paper on the Logic
Theory Machine.

As these titles show, the common new emphasis was not the investigation of
problem solving, but rather the exploration of complex processes and the accep-
tance of the need to be explicit about internal, symbolic mechanisms. Nor do all
four of these works stem from a specific common lineage, unless it be the whole of
applied mathematics and technology: control theory, information theory, opera-
tional mathematics including game theory and decision theory, computers and
programming. These topics emerged in World War II and ramified through the
late forties and early fifties in many directions, the new approach to the study of
man being only one.

We ourselves, through the forties and early fifties, were largely concerned
with human organizational behavior and were influenced strongly by the growing
technologies just mentioned. But the specific opportunity that has set the course
of the present work is the development of a science of information processing
(now generally termed computer science). Thus, this study is concerned with think-



ing—or that subspecies of it called problem solving—but it approaches the subject
in a definite way. It asserts specifically that thinking can be explained by means
of an information processing theory. This assertion requires some explanation.

The present theory views a human as a processor of information. Both of
these notions—information and processing—are long-established, highly general
concepts. Thus, the label could be thought vacuous unless the phrase information
processing took on additional technical meaning.

One may try to provide this meaning by saying that a computer 1s an instance
of an information processor. This would suggest that the phrase is a metaphor:
that man is to be modeled as a digital computer. Metaphors have their own good
place in science, though there is neither terminology nor metatheory of science to
explicate the roles of metaphors, analogs, models, theories and descriptions, or
the passage from one category to another (Simon and Newell, 1956). Something
ceases to be metaphor when detailed calculations can be made from it; it remains
metaphor when it is rich in features in its own right, whose relevance to the object
of comparison is problematic. Thus a computer can indeed be a metaphor for man;
then it becomes relevant to discover whether man is all bits on the inside.

But an alternative to metaphor is at hand. An abstract concept of an informa-
tion processing system has emerged with the development of the digital computer.
In fact, a whole array of different abstract concepts has developed, as scientists
have sought to capture the essence of the new technology in different ways (Minsky,
1967). The various features that make the digital computer seem machinelike—its
fast arithmetic, its simply ordered memory, its construction by means of binary
elements—all have faded in the search for the essential. Thus, in this book we will
introduce a suitable abstract information processing system to describe how man
processes task-oriented symbolic information. This is not the most abstract possible
way to describe an information processing system, but it is tailored to our scientific
needs.

An information processing theory is not restricted to stating generalities
about Man. With a model of an information processing system, it becomes mean-
ingful to try to represent in some detail a particular man at work on a particular
task. Such a representation is no metaphor, but a precise symbolic model on the
basis of which pertinent specific aspects of the man’s problem solving behavior
can be calculated. This model of symbol manipulation remains very much an
approximation, of course, hypothesizing in an extreme form the neatness of discrete
symbols and a small set of elementary processes, each with precisely defined and
limited behavior. This abstraction, though possibly severe, does provide a grip on
symbolic behavior that was not available heretofore. It does, equally, steer away
from physiological models, with their concern for fidelity to continuous physiologi-
cal mechanisms, either electrical, chemical, or hormonal. Perhaps the nonphys-
iological nature of the theory is not as disadvantageous as one might first believe,
for the collection of mechanisms that are at present somewhat understood in neu-
ropsychology is not at all adequate to the tasks dealt with in this book. We could not
have proceeded to construct theories of human behavior in these tasks had we
restricted ourselves to mechanisms that can today be provided with physiological
bases.
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The Choice of Scope

We have brought out the general grounding of our work in computer science
to explain the limitation of our aims—asserting that this limitation is really an
opportunity, since information processing systems provide our first precise notion
of what symbols and symbol manipulation could mean. However, once we have
chosen to study symbolic systems in a technical and precise way, many alternative
paths still remain open along both the task dimension and the performance-
learning-development dimension. Something needs to be said of our choices
here.

Relation to Artificial Intelligence. The most important influence upon our choice
of tasks such as chess and symbolic logic is the development of the field of artificial
intelligence. This is the part of computer science devoted to getting computers
(or other devices) to perform tasks requiring intelligence. As will become clear, a
theory of the psychology of problem solving requires not only good task analyses
but also an inventory of possible problem solving mechanisms from which one can
surmise what actual mechanisms are being used by humans. Thus, onezpust work
with task environments in which artificial intelligence has provided the requisite
array of plausible mechanisms.{The task areas represented in this book satisfy these
conditions: game players, theorem provers, and puzzle solvers constitute a large
fraction of the existing artificial intelligence systems. Many other task areas that
are attractive on other grounds have not yet been studied extensively from the
standpoint of artificial intelligence, hence are less useful for our purposes than those
mentioned above.

On two counts the previous paragraph is insufficient to explain our choice
of tasks. First, it assumes that artificial intelligence moves independently of
psychology. This is demonstrably not the case. Much of the work in artificial
intelligence started from psychological concerns. Second, and more important,
the explanation simply raises the new question of why artificial intelligence
research should take up the types of tasks represented in this book and not

others.
A partial answer is that many other tasks have in fact been worked on.

Language processing is an example. But while there has been a great deal of work
in linguistics, almost all of it has focused on grammatical analysis (competence),
rather than on the use of language (performance). Programs dealing with semantics
and pragmatics are fewer, more recent, and somewhat less developed than the prob-
lem solving programs represented here. Thus, we will have little to say about
language processing behavior as such. However, we shall see that our theory of
problem solving has strong implications for what the linguist calls the deep struc-
ture of language.

Pattern recognition is another area in which there has been much work, both
theoretical and empirical, even more extensive than the body of work upon which
we draw. We make little use of this research here, because! sequential, integrated
behavior is at the heart of most thinking, while most artificial intelligence pattern
recognition machines are built around the single act of recognition. While many



of the schemes do involve some sequential processing, none of them is adequate
for modeling genQral sequential behavior.

There are gnany kinds of thinking that one might like to study: designing a
house, discovering a new scientific law, preparing a law case, arguing over political
parties, creating new music, daydreaming while watching the clouds, preparing a
five-year economic plan, and so on. {Detaﬂed theories of these and many other
kinds of thinking are largely beyond the current state of the art. Of course, there
have been investigations into some of these areas, many of them still in midstream.
Only their incomplete state and our limits of space and energy have inhibited us
from including some of them in this work, since they are in fact part of the same
story we wish to tell. )

Emphasis on Performance. Turning to the performance-learning-development
dimension, our emphasis on performance again represents a scientific bet. We
recognize that what sort of information processing system a human becomes de-
pends intimately on the way he develops. The kernel from which development
starts—say, the neonate——already contains a genetically determined set of mecha-
nisms of immense compiexnty How complex they are is easily appreciated by
anyone who follows the acts of self organization that take place in the embryo
as it progresses to the neonatal starting position. Still, by common scientific assent,
the emerging system is remarkably content-free, and without the powers of
integrated action shown by the normal adult. Many constraints on the nature of
the fully developed system arise from the requirement of self organization—help
from the external environment (say via language) can only be used after the system
has developed itself to a point where it is capable of such assimilation. Yet, ac-
knowledging this, it still seems to us that we have; too imperfect a view of the
system’s final nature to be able to make predictions from the development process
to the characteristics of the structures it produces.

Similar remarks apply to learning. Humans learn continuously, and much
that they do involves using in obvious ways information gathered for a specific
purpose, rather than solving difficult problems like those studied in this book.
One enters a department store: “Where do I find men’s suits ?” “Third floor, down
the center aisle and to your right”; “Thank you”; and off one goes, following
directions. Several phenomena here are closely allied to the interests of this book:
language production and reception; deciding to ask for information to solve a
problem; following directions, once assimilated; perhaps (if the directions were
imperfect) solving some smallish subproblems along the way. Certainly this is the

behavior of an information processing system. But the task in this case is carefully .

contrived to permit simple learning to substitute for most of the work of problem
solving. o

Learning is a second-order effect. That is, it transforms a system capable of
certain performances into a system capable of additional ones (usually better ones;
usually accomplished without losing much of the preexisting performance capa-
bility; and usually integrated with existing capability so they can be evoked on
appropriate occasions). The study of learning, if carried out with theoretical preci-
sion, must start with a model of a performing organism, so that one can represent,
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as learning, the changes in the model.! The mathematization of learning theory
in the last decade shows this very well (Atkinson, Bower, and Crothers, 1965).
In the prototype version of mathematical learning theories, the organism Is rep-
resented by a set of probabilities of occurrence of a fixed set of responses; learning
involves changes in these probabilities under the impact of experience.

_The study of learning takes its cue, then, from the nature of the performance
syste‘m.‘iﬁlf performance is not well understood, it is somewhat premature to study
learning. Nevertheless, we pay a price for the omission of learning, for we might
otherwise draw inferences about the performance system from the fact that the
system must be capable of modification through learning. It is our judgment that
in the present state of the art, the study of performance must be given precedence,
even if the strategy is not costless“i‘_Both learning and development must then be
incorporated in integral ways in the more complete and successful theory of human
infortggtion processing that will emerge at a later stage in the development of our
science.

Other Omissions. The omission of both sensory and motor skills, and many
aspects of perception, from our study is perhaps plausible on the surface: we are
concerned with central symbolic activities. Nevertheless, at least one scientist,
Bartlett, in Thinking (1958), made motor skills the key metaphor for attempting to
understand thinking. And a whole school, the Gestaltists, have used perception as
the touchstone of central activity (Wertheimer, 1945). On the perceptual side, a
basis for our choice has already been indicated: our concern with sequential
behavior. However, as even this book will reveal, the boundary between perceptual
and symbolic behavior may not be maintainable for long, especially if work pushes
in the direction of better models of the immediate processor.

On the motor side the situation is peculiar. Bartlett chose to compare thinking
with motor skills precisely because he felt sequential behavior was central both in
thinking and in motor skills, where it had been studied intensively. Our own feeling
is that, while there has been much experimental investigation, motor skills have not
yet found a mechanistic representation having anything like the power of the infor-
mation processing representation exploited here. Furthermore, motor skills seem
in considerable part to be nonsymbolic—and that makes them a poor model for
a system where symbols are central.

Our final choice is to exclude motivational and personality variables—what
Abelson (1963) covered in part by the term “hot cognition.” We omit them by reason
of convictions, not about the importancehgfwimimportance of the phenomena,
but about the order in which theory should develop. Many motivational and emo-
tional phenomena operate through the lens of the cognitive system, as the work of
Schachter and Singer (1962) and others has indicated. A plausible scientific strategy
is to put our cognitive models in order before moving to these other phenomena.
Our one exploratory foray in the direction of motivation and emotion was precisely
in this vein (Simon, 1967a).

1 For empirical purposes, of course, one can always get by for a while by talking in
the language of experimental protocols—simply describing the changed behavior in the
experimental situation.



With this general explication of the scope of this study, we can now turn to 9
a brief overview of the type of theory we will be presenting and the types of prob- Introduction
lems that are central to it.

THE SHAPE OF THE THEORY

The theory proclaims man to be an information processing system, at least
when he is solving problems. What that means, and how it can be brought to terms
with the real world, are questions to consider in extenso. However, the theory has a
certain gross shape that can be characterized briefly. We say of Newtonian mechan-
ics that it is axiomatic and deductive; of classical astronomy, that it is empirical,
but not experimental; of biochemistry, that it consists in part of a large catalog of
mechanisms; of intelligence testing, that it deals with the human as a static collec-
tion of traits or factors; of a part of sociology, that it deals with humans as ideal
types. Such statements do not convey the content of a theory, nor how successful
it is; they give an overall framework within which the pieces of the theory fit as it
is assembled sequentially. The statements also suggest, sometimes, what issues will
be important—what problems the theory will have to contend with repeatedly.
Let us try now to provide such a picture of the shape of the present theory.

A Process Theory

The theory posits a set of processes or mechanisms that produce the behavior
of the thinking human. Thus, the theory is reductionistic; it does not simply provide
a set of relations or laws abouf behavior from which one can often conclude what
behavior must be. (The elementary processes and their organization, of course,
are not explamed reduction is always relative.) Thus the theory purports to exylaln
behav10£z—and not just to describe it, however parsimoniously (Newell, 1969a)
(We are aware that some would dispute such a distinction, viewing all causal
explanations as simply descriptions.)

The processes posited by the theory presumably exist in the central nervous
system; they are internal to the organism. Nothing in our theory says they are in
the central nervous system, but massive physiological evidence indicates that is
clearly where they belong. We do not speculate on the physiological correspondences
of mechanisms presented in this book. Because of the gap that still exists between
physiological and behavioral science, nothing would be served by such speculation.
There do not yet exist plausible physiological localizations (even in mechanism,
much less in physical space) for immediate memory, the symbol (that is, the
engram), or the act of adding two plus two. Without these, nothing much of phys-
iological interest can be said about the material in this book. Furthermore, the
search for such physiological mechanisms needs no motivation from the present
theory (John, 1967).

As far as the great debates about the empty organism, behaviorism, interven-
ing variables, and hypothetical constructs are concerned, we take these simply as
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a phase in the historical development of psychology. Our theory posits internal
mechanisms of great extent and complexity, and endeavors to make contact be-

tweern thein and the visible evidences of problem solving. That is all there is to it.

A Theory of the Individual

The technical apparatus for conceptualizing information processing systems
leads first of all to constructing particular programs that accomplish particular
tasks. When applied to psychology, this procedure leads naturally to constructing
information processing systems that model the behavior of a single individual in a
single task situation. Full particularity fi,s,the rule, not the exception. Thus, it be-
comes a problem to get back from this particularity to theories that describe a class
of humans, or to processes and mechanisms that are general to all humans.

This situation is just the reverse of the one faced in earlier psychological
theorizing. Indeed, a terminological line is usually drawn just to distinguish clinical
efforts that deal with the individual in all his uniqueness (idiographic) from efforts
of experimental psychology to deal with an individual only as an intersection of
statistically defined populations (nomothetic).

The reversal of the usual emphasis gives the present theory a quite distinct
flavor. Thus, individual differences is not a topic that is tacked on to the main body
of our theory. On the contrary, we never use grouped data to test the theory if
we can help it. The models describe individuals, so that the hard part is to say with
precision what is common to all human information processgfs. With this approach
it does not seem natural to assume that human behavior is fundamentally stochas-
tic, its regularities showing up only with averaging (as in statistical learning
theory); rather, Freud’s dictum that all behavior is caused seems the natural one,
and only reluctantly do we assign some aspects of behavior to probabilistic genera-
tors. '

This aspect of the theory, highly visible against the contrasting background of
experimental psychology, is really just a consequence of viewing the human as a
complex mechanism (of whatever kind) whose parts and connections can ultimately
be deciphered. This point of view is accepted in most of science outside psychology
without question or comment.?

A Content-Oriented Theory

In 1955 McClelland wrote an article decrying psychology’s abstraction from
content. The opposition then was between content and process: by attempting only
to describe basic universal processes used by humans (say, in learning), psychology
was ignoring a major part of its domain.

The present theory is oriented strongly to content. This is dramatized in the
peculiarity that the theory performs the tasks it explains. That is, a good informa-

2 Cf. the relation of the general theory of geological processes to the specific hy-
pothesis of continental drift, or to the character of the Moon’s surface.



tion processing theory of a good human chess player can play good chess; a good
theory of how humans create novels will create novels; a good theory of how chil-
dren read will likewise read and understand. There is nothing mysterious in this.
The theories explain behavior in a task by describing the manipulation of informa-
tion down to a level where a simple interpreter (such as a digital computer) can
turn the description into an effective process for performing the task. Not all ver-
sions of the theory are carried so far, of course. Nevertheless, in general, the theory
can deal with the full content of a task.

The attention paid to content in information processing theories should not
be contrasted with concern for process, which is how the matter appeared to Mc-
Clelland. The contrast fails because it is of the nature of information processes to

ot

deal with content. It is almost tautological that one can talk of something as con-i‘

tent only if processes exist that treat it as information-—that is, discriminate on the
basis of it. B

Of course, {here 1s no compelling evidence that the kinds of content that infor-
mation processing theories demonstrably handle typify the entire range of content
handled by humans. No information processing systems now exist that understand,
say, a poem—that is, that can fully assimilate its content. Faith that this might be
done goes well beyond the evidence presented in this book and elsewhere in the
artificial intelligence literature. Each reader must make his own extrapolation of
the evidence.

The importance of the orientation toward content is twofold. On the one hand,
it removes a barrier toward extension of the theory On the other hand,;’ff Content
more message than medium—then information processing theories have oppor-
tunities for describing human behavior verldrcally ‘that are foreclosed to theories
unable to cope with content. -

A Dynamically Oriented Theory

An information processing theory is dynamic, not in the sense in which that
term is used in depth psychology, but in the sense of describing the change in a
system through time. Such a theory describes the time course of behavior, ichar-
acterizing each new act as a function of the immediately preceding state of the or-
ganism and of its environment.

The natural formalism of the theory is the program, which plays a role directly
analogous to systems of differential equations in theories with continuous state
spaces (for example, classical physics). In information processing systems the state
is a collection of symbolic structures in a memory, rather than the set of values of
position and momentum of a physical system in some coordinate system. Further-
more, a program generally specifies a discrete change in a single component of the
state (that is, in just one symbol structure) at a moment in time, whereas a differen-
tial equation system specifies infinitesimal changes in all coordinates simulta-
neously. But these are details of the formalism, dictated by the underlying nature of
the system under study.

All dynamic theories pose problems of similar sorts for the theorist. Funda-
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mentally, he wants to infer the behavior of the system over long periods of time,
given only the differential laws of motion. Several strategies of analysis are used,
more or less, in the scientific work on dynamic theory. The most basic is taking a
completely specific initial state and tracing out the time course of the system by
applying iteratively the given laws that say what happens in the next instant of time.
This is often, but not always, called simulation, and is one of the chief uses of
computers throughout engineering and science. It is also a mainstay of the present

work.
A second strategy is to solve the differential laws to yield an expression

describing the state of the system at each point in time as a function of the initial
state, represented symbolically. This is the classical act of integrating the laws
of motion. It is only rarely successful for systems of any complexity—even for dif-
ferential equation systems, where analytic techniques are most developed. It cannot
be used as yet with theories like those in this book.

Complete detailed solutions are not always necessary (or even illuminating).
The theorist of dyn(amic theories often spends his time trying to circumvent solving
the system explicitly. One standard approach is to explore the steady state solu-
tions of the system—the places where the laws of motion say that nothing changes.
Another is to explore the asymptotic behavior—what happens in the long run.
A more general tack is to\prdv‘e that some property of the system is invariant over
time—that it holds despite variation in other aspects of the system. In the systems
of classical physics, conservation of energy, momentum, and angular momentum
provide examples of such invariants.

All the above strategies show up in the study of information processing
systems. Limitations on mathematical technique keep most of the analyses informal
and heavily empirical,’ but the underlying motivation is dictated by the basic
dynamic character of the theory.

An Empirical, Not Experimental, Theory

There is no lack h*orientation towards the data of human behavior in the
theory presented in this book. Yet we employ little experimental design using
control groups of the sort so familiar in psychology. Because of the strong history-
dependence of the phenomena under study, the focus on the individual, and the
fact that much goes on within a single problem solving encounter, experiments of
the classical sort are only rarely useful. Instead, it becomes essential to get enough
data about each individual subject to identify what information he has and how he
is processing it. This method leads, in conjunction with the content orientation,
to emphasizing the use of verbal behavior as data, because of its high output rate.
Thus, the analysis of verbal protocols is a typical technique for verifying the
theory, and in fact has become a sort of hallmark of the information processing
approach. The nature of the theory leads also to a continuing search for new

3 But see, for example, Ernst, 1969; King, 1969; Minsky and Papert, 1969; Pohl,
1969; and Robinson, 1965, for a few indications that formal analysis can be applied
successfully to the kinds of IPS’s considered in this book.



sources of data that can be conjoined to existing data to ease the problem of
identification. The use of data on gross eye movements, briefly reported in Chapter
7, is a case in point.

A Nonstatistical Theory

It is difficult to test theories of dynamic, history-dependent systems. The satura-
tion with content—with diverse meaningful symbolic structures—only makes
matters worse. There 1s not even a well-behaved Euclidean space of numerical
measurements in which to plot and compare human behavior with theory. Thus, this
book makes very little use of the standard statistical apparatus. Theory and data
are compared, and some attempts are made to measure and tabulate such com-
parisons. But our data analysis techniques resemble those of the biochemist or
archaeologist more than those of the agricultural experimenter.

Sufficiency Analysis

The theory tends to put a high premium on discovering and describing
systems of mechanisms that are sufficient to perform the cognitive task under
study. Producing a system capable of performing provides a first approximation,
taking into account, of course, gross limitations on the human’s ability to process
information—processing rate, immediate memory, and so on. If an information
processing system meeting these constraints can be devised that does the task,
one then attempts to develop a revised system that has higher fidelity to specific
data on human processing.

The emphasis on sufficiency is still rather foreign to psychology. Almost
never has it been asked of a psychological theory whether it could explain why
man was capable of performing the behaviors in question. Concern with sufficiency
arises, of course, not just in the present theory, but within the whole development
of which this theory is a part. Thus, it is a current lively question in psycholinguistics
whether the mechanisms of classical S-R learning theory are sufficient to account
for the child’s learning of language (it being concluded, not surprisingly, that they
are not).

To take sufficiency as a first requirement of a theory is simply to; adopt a
particular approximating sequence in science’s progress (h choice not without
consequences, however). Since not all things can be done first, a particular theo-
retical orientation gets some of its flavor from what it puts first.

These characteristics of the theory, although neither systematically nor
completely described, should help the reader assimilate the development of the
theory through the book without being too surprised at the emergence of certain
features and the (otherwise curious) absence of others. It remains to provide a
plan of the book before beginning in earnest.

13
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The book is divided into five parts. The first lays the technical groundwork
for the remainder. Each of the subsequent three parts takes up a different task
environment: first a type of puzzle called cryptarithmetic, then a form of elementary
symbolic logic, and finally chess. The fifth and last part states the theory in com-
prehensive form.

Chapter 2, the first of the preparatory chapters, defines an information proc-
essing system (IPS). This is done in a somewhat axiomatic way in order to make
clear what concepts are involved.

Chapter 3 considers the nature of the task environment and its role in a
psychological theory. It takes up the major issue of ‘whether a theory of problem
solving (or thinking, or learning) is really a theory about human beings or a theory
about the nature of the task environment. ‘Of course, the total system always
includes both environment and organism. But in a highly adaptive and intelligent
organism the boundary becomes obscured. Most of the chapter is devoted tO
clarifying this question. A part of the chapter deals with more detailed questions of
how task environments and problems are represented in information processing
terms.

Chapter 4 discusses that species of information processing system that solves
problems, especially problems stated in the representations introduced in Chapter
3. The notions of generate-and-test, of selective search, and of heuristics (devices
that aid discovery) are introduced. We consider the assessment of task difficulty and
introduce various tasks as concrete examples. A substantial fraction of the chapter
is devoted to a detailed examination of the Logic Theorist (LT), a venerable pro-
gram that was the first theorem-proving program. LT incorporates many of the
lessons we wish to draw, and serves to consolidate the notions of the three chapters
of Part I by providing a specific example of an information processing system
operating in a task environment to solve problems.

Chapter 5 starts Part 11, on cryptarithmetic, with an analysis of the task. It
exhibits various representations of the task and analyzes the behavior of various
problem solvers.

Chapter 6 provides the first analysis of human problem solving. A particular
subject, S3, tackles a single cryptarithmetic problem, DONALD + GER ALD =
ROBERT. From a protocol of his verbal behavior we make an extensive analysis;
then we describe a method for plotting his search behavior (the Problem Behavior
Graph), and a way of representing his program as a production system (2 kind
of information processing system to be defined in Chapter 2). Since this is the first’
chapter that deals with protocol data, it contains a good deal of methodological
discussion.

Chapter 7 continues the analysis of human behavior in the cryptarithmetic
task. We examine the behavior of four other subjects, and to do so we introduce
another tool of analysis: the episode. As a final piece of evidence for the theory, We
study yet one more subject, for whom we have eye movement data as well as verbal
data.

Chapters 8,9, and 10, comprising Part I1I, deal with a particular task in



elementary symbolic logic in the same manner as Part II dealt with cryptarithmetic.
Chapter 8 discusses the task environment, including a program called the General
Problem Solver (GPS) that has long figured in work on simulation. Chapter 9
discusses attempts at simulating with GPS two fragments of protocols. Chapter 10
moves back to a broader base, giving analyses of various subjects working on
various logic tasks, and examining a number of aspects of their behavior.

Chapters 11, 12, and 13, comprising Part IV, deal with chess. As in the two
previous empirical parts, the first chapter (11) provides a task analysis; the second
chapter (12) concentrates on the empirical analysis of an individual protocol; and
the third chapter (13) provides a broader view of human problem solving in chess.

Chapter 14 constitutes the whole of Part V. It attempts to state[égtheory of
human problem solving that encompasses the phenomena that have emerged in the
three separate task areas. Although the investigations in the book have been strictly
limited to the areas of cryptarlthmetlc logic, and chess, the theory has a more
substantial scope.

We have made no attempt in the body of this book to provide the historical
context for our work beyond references to research on which we have drawn
directly. Instead we have recorded in an historical appendix our picture of the
relation of the work reported here to the broader trend of events during this
century in psychology and other relevant disciplines.

This, then, is the plan we shall follow: first, technical apparatus for analyzing
problem solving behavior; next, application of the apparatus to three task environ-
ments and to empirical data of human problem solving behavior in each; finally, a
comprehensive statement of the theory of human problem solving.

15
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The behaviors commonly elicited when people (or animals) are placed in prob-
lem solving situations (and are motivated toward a goal) are called Q@Mr
rational. These terms denote that the behavior is appropriate to the goal in the light
of the problem environment; it is the behavior demanded by the situation.

Now if there is such a thing as behavior demanded by a situation, and if a
subject exhibits it, then his behavior tells more about the task environment than
about him. We learn about the subject only that he is in fact motivated toward the
goal, and that he is in fact capable of discovering and executing the behavior called
for by the situation. If we put him in a different situation, he would behave dif-
ferently.

Problem solving situations in which motivation is not in question and emotion
is not aroused would therefore seem austere surroundings in which to study psychol-
ogy. They would appear rather more suitable for investigating the structure of task
environments than the nature of behaving organisms. Indeed, one modern social
science, economics, has erected an impressive structure for predicting certain
human behavior on the foundation of a single psychological postulate. By assuming
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that economic man is always motivated to maximize his utility (or, in some ap-
plications, his profit), and that he is always able to discover and execute the max-
imizing behavior, we can infer the actions of economic man from the structure of
the choices with which he is confronted.

By this stratagem, economics is able to avoid a concern with the psychology
of decision making, and to turn, instead, to an analysis of the environment of
choice—markets, cost functions, and the like. Likewise, economics finesses ques-
tions of value and preference by placing the economic actor’s utility function among
the given data of the problem, rather than among the behavior variables to be
explained and predicted.

Now consider a standard paradigm for an experiment in concept attainment.
A sequence of stimuli is presented to a subject, who is asked to classify each as an
instance, or noninstance, of a concept (as yet unknown to him). He is informed
whether each reply is right or wrong. The conditions of the experiment are carefully
arranged so that the subject will be motivated to perform the task well—say, to
guess the concept from as few stimuli as possible. If the conditions of the experi-
ment do not achieve appropriate motivation—if the subject refuses to try the task,
is obviously inattentive, or undertakes to spoof the experimenter—we would not
regard it as an experiment in concept attainment. We would also reclassify the
experiment if it turned out that the subject could not discriminate among the stimuli
because the light was too dim or because his eyes could not resolve the differences
among them. In these cases, we would call it an experiment in visual sensation or,
possibly, in perception.

For the properly motivated subject, however, there presumably exists an opti-
mal strategy—a strategy that will disclose the concept in the minimum expected
number of trials. (We presuppose that a set of possible concepts is given—this is
usually defined by the experimental instructions and the situation.) If the situation
is not too complicated, the optimal strategy can sometimes be deduced by means
of principles drawn from information theory (Hovland, 1952). It would be perfectly
possible for the psychologist to follow the route of the economist: to construct a
theory of concept formation that depended on no characteristic of the subject other
than his being adequtely motivated to perform well. It would be a theory of how
perfectly rational man would behave in that task environment—hence, not a psy-
chological theory but a theory of the structure of the task environment.

In a few cases psychology has in fact begun to explore this route. The applica-
tions of statistical decision theory to experiments on choice under uncertainty
fit precisely into the mold of formal economic thinking (Edwards, Lindman, and
Phillips, 1965). In psychology, however, the deductions from premises of rationality
about how rational man would behave are almost always accompanied by experi-
ments on how laboratory man does behave. The discrepancies between behavior
and predictions from the rational model are often large; they tend to vanish only
when the rational behavior is transparently obvious, and not always even then.
(We may well ask, “Obvious to whom?” If the subject does not behave rationally,
we may take this fact as the definition of the rational behavior’s not being obvious
to him!)

It is precisely when we begin to ask why the properly motivated subject does
not behave in the manner predicted by the rational model that we recross the



boundary again from a theory of the task environment to a psychological theory
of human rationality. The explanation must lie inside the subject: in limits of
his ability to determine what the optimal behavior is, or to execute it if he can
determine it. In simple concept attainment experiments, .for exampl.e, the most
important mechanism that prevents the subject from adopting an efficient strategy
is usually the limit on the number of symbols he can retain and manipulate in
short-term memory. To the extent that this is true, such experiments are ex-
periments to reveal the structure of human short-term memory, and it is for this
reason that cognitive strain plays such a central role in the Bruner-Goodnow-
Austin (1956) explanation of concept attainment phenomena.

In summary, then, when we study a properly motivated subject confronted
with an intellective task, we are observing intendedly rational behavior or behavior
of limited rationality (Simon, 1947). Our examination of such behavior will lead to

two kinds of knowledge:

1. To the extent that the behavior is precisely what is called for by the
situation, it will give us information about the task environment. By
observing the behavior of a grandmaster over a chessboard, we gain
information about the structure of the problem space associated with the
game of chess.

2. To the extent that the behavior departs from perfect rationality, we
gain information about the psychology of the subject, about the nature of
the internal mechanisms that are limiting his performance.

Just as a scissors cannot cut paper without two blades, a theory of thinking
and problem solving cannot predict behavior unless it encompasses both an anal-
ysis of the structure of task environments and an analysis of the limits of rational
adaptation to task requirements. We shall attempt such a two-bladed theory here,
but we shall have to place bounds on the undertaking. A complete theory of task
environments would have to cover all of human knowledge—natural science,
practical arts, games, fine arts, and what not. We have no stomach (yet) for such a
quixotic undertaking. Nevertheless, we will devote much more attention through-
out the book to the analysis of the task environment than is customary in psy-
chological works.

The term task environment, as we shall use it, refers to an environment coupled
with a goal, problem, or task—the one for which the motivation of the subject is
assumed.’ It is the task that defines a point of view about an environment, and that,
in fact, allows an environment to be delimited. Also, throughout the book, we shall
often distinguish the two aspects of the theory of problem solving as (1) demands of
the task environment and (2) psychology of the subject. These shorthand expressions
should never seduce the reader into thinking that as a psychologist he should be
interested only in the psychology of the subject. The two aspects are in fact like
figure and ground—although which is which depends on the momentary viewpoint.

! There could of course be several such goals; the complication can be ignored
here.
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Because the task environment plays such a large role in the theory of problem
solving, this chapter examines in detail a number of issues relating to it. The first
section discusses how the external environment is to be represented. The second
section considers how the subject represents a problem internally, and introduces
the concept of a problem space, which we will use throughout the book. These
two sections, then, focus on very general issues of the relations between experi-
menter and environment (i.e., the task environment) and the subject (i.e., his prob-
lem space).

The chapter’s third and fourth sections carry further the treatment of problems
and problem spaces. The third section draws upon the description of an informa-
tion processing system provided in Chapter 2 to show, by example and in some
detail, how a problem space is to be represented in an IPS, and how the processes
of the IPS operate on such a representation to solve problems. The fourth section
moves from the detail of the examples to a more general characterization of prob-
lem spaces, introducing two very broad classes of problem representations: set
representations and search representations. This classification will provide the
foundation for a discussion, in the next chapter, of the dependence of the structure
of problem solving methods upon the structure of the problem space.

The chapter’s fifth, and final, section returns from viewing internal representa-
tions—problem spaces—to considering again what it means for a task environment
to impose demands upon a problem solver. The conclusions from this discussion
will be important in justifying the techniques we use in later chapters to abstract
from detail when we describe task environments and when we compare subjects’
behavior with the behavior demanded by the environment.

REPRESENTATION OF THE EXTERNAL ENVIRONMENT

FIGURE 3.1
Necker cube

In talking about the task environment we must maintain clear distinctions
among the environment itself (the Kantian Ding an sich, as it were), the internal rep-
resentation of the task environment used by the subject (the problem space),
and the theorist’s “objective” description of that environment. This is the classical
problem in psychology of defining the effective stimulus.

Consider a typical demonstration in perception—the Necker cube. A two-
dimensional geometric figure drawn on a sheet of paper (Figure 3.1) is shown to the




subject, and he is asked, essentially, to interpret it in three dimensions (translate:
to construct an internal representation of the stimulus as three-dimensional).
For almost all subjects, two such representations are possible—there are two ways
of interpreting the stimulus on the retina as if it were produced by a three-dimen-
sional object “out there in the real world.” In fact, of course, neither interpretation
is veridical, for the experimenter knows (as does the subject) that the geometric
object producing the retinal stimulation is “really” two-dimensional. Now the
distinction we wish to maintain is the distinction between the way or ways the sub-
ject interprets the Necker cube, and the actual stimulus provided by the experi-
menter.?

In the case at hand, and many like it, there is no serious difficulty in describing
the stimulus itself as it impinges on the sense organs of the subject. In the case of the
Necker cube, all that is required is to describe (or better, to exhibit) the two-
dimensional figure, to state (or exhibit) the conditions under which it is presented to
the subject (size, distance, illumination, and so on), and to quote (or exhibit) the
verbal instructions that are given to the subject.

Even in this instance, the amount and fineness of detail required for veridicality
can in the last analysis only be determined empirically. For example, small imper-
fections in the figure—slight departures from linearity, or nonuniform color of the
surface—might, under some circumstances, turn out to be important. The experi-
menter’s intonations in reading the instructions to the subject could sometimes
be relevant. Any deséﬁption of the stimulus—short of exhibiting the actual ex-
perimental setup—involves abstraction, hence the possibility of omitting detail
that affects the subject’s behavior. (Even total exhibition involves abstraction—it
just pushes the responsibility off on the observer.) Of course this difficulty, while
present in principle, is not always of practical importance. In practice, the Necker
cube stimulus can easily be described without leaving out aspects of the situation
that will turn out to affect significantly the responses of the subject.?

If the stimulus had been, say, a van Gogh painting instead of a Necker cube,
no veridical verbal description would have been possible. Here, exhibiting the actual
stimulus, under the actual lighting and other conditions of the experiment, would
be the only way of guaranteeing that it was properly characterized. For purposes
of some experiments a good color photographic reproduction of the painting
might suffice, but it is easy to conceive of experiments where such a reproduction
would be a wholly different stimulus from the painting itself. And even if the color
photograph were the actual stimulus, we would still have no satisfactory way of
describing the stimulus except by reproducing it accurately. It could not be de-
scribed in words.

It is instructive to try to explain why we can describe some stimuli verbally,
but not others—why we can describe the Necker cube, but not a van Gogh painting

? We are using the Necker cube in the service of a methodological discussion. There
is also a large literature on the psychology of the Necker cube, some of which contributes
directly to the points made here (e.g., Gregory, 1966; Simon, 1967b).

3 We can use this criterion as the basic test for the veridicality of the description of
a stimulus: it is veridical if a stimulus built from the description (by one skilled in the
art) produces the same behavior in subjects as the original stimulus did.
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or even a reproduction of one. A necessary condition for a stimulus to be de-
scribable is that it can and will be encoded in highly simplified form by any subject
exposed to it. If we know the language that will be used in the encoding, then we
also have sufficient conditions for a description, for we can describe the stimulus
in that same language. But if different subjects encode the stimulus in different
languages, we cannot construct a single description that is guaranteed to be
veridical for all; for a stimulus reconstructed from the description may alter prop-
erties of the original stimulus that are ignored by the language of the description
but are not ignored by other encoding languages subjects may use.

In the case of the Necker cube, for example, we can describe the stimulus
adequately on the assumption that each subject will handle the figure as an ar-
rangement of line segments and plane figures bounded by line segments. We
must assume that if there are very slight irregularities in the heaviness or directions
of the lines, he will ignore them, retaining and using only the information that a
certain distribution of ink is a straight line joining points A and B.

The vast body of experience—in the laboratory and in everyday life—with
subjects’ interpretations of line drawings gives the experimenter assurance that his
descriptions of such stimuli (i.e., describing them as line drawings) are veridical.
If he were to experiment with subjects from other species than his own (or perhaps
even from other cultures), he would have less reason for assurance. If the subject
were a frog, for instance, the experimenter would be rash to describe the stimulus
in terms of lines (Lettvin, Maturana, McCulloch, and Pitts, 1939). All sorts of
alternative encodings are conceivable. The difficulties that have been encountered
in designing pattern-recognizing devices for two-dimensional stimuli provide
concrete evidence that representation of the stimuli in terms of lines requires a
nontrivial encoding scheme. Only a subject whose inborn physiological mechanisms
provide such a scheme, or who has acquired one by learning, will perceive a Necker
cube as made up of a few line segments.

What we have said about visual stimuli applies equally well to verbal stimuli,
including experimental instructions. A printed report of verbal instructions will be
a veridical description of the stimulus only if the sound waves striking the subjects’
ears when the instructions are read to them will be encoded as words in the language
of the printed description. (Of course, veridicality requires more than this—in
particular, that inflections and intonations omitted from the printed version do not
affect the subjects’ behaviors significantly.)

To say, then, that the stimulus can be described adequately means that we can
predict the vocabulary of elements and relations the subject will use in his initial
encoding of it. The description no longer refers exclusively to the stimulus; it
postulates something also about the first stages of processing that the stimulus will
undergo as it is perceived by the subject. This does not mean, of course, that the
subjects’ encodings are verbal—that the word “line” appears in a subject’s encoding
of the Necker cube. It does mean that the subject’s initial encoding of the Necker
cube stimulus must be composed of elements, however represented, that corre-
spond to the lines in the drawing.

It need not be assumed, however, that the initial encoding of the stimulus will
bear any close relation to the way in which it is represented internally in the subject’s
processing of it at some later stage. The stimulus may—and usually will—be



subjected to further transformations as the subject seeks a convenient internal
representation—one that he can process relatively easily. (E.g., the subject trans-
forms the Necker cube internally into a representation of a 3-dimensional object.)
Our next section will examine these further transformations into the problem
space, the way in which the subject represents the problem internally once he has
perceived the stimulus.
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INTERNAL REPRESENTATIONS: THE PROBLEM SPACE

Even more difficult than describing the stimulus is finding a neutral and

objective way of talking about the responses of the subject, including his internal

thinking_responses, as he goes about dealing with the stimulus situation. Our
description of his behavior will necessarily be molar rather than molecular—we will
not be tempted to refer to the space-time coordinates of his body parts and the
sound waves emanating from his mouth. But that is not the main source of diffi-
culty. We shall find it necessary to describe not only his actual behaviors, but the
set of possible behaviors from which these are drawn; and not only his overt
behaviors, but also the mﬂmmmmwhat don’t correspond
to possible overt behaviors. In sum, we need to describe the space in which his
problem solving activities take place. We will call it thef problem space.)

This is not a space that can yet be pointed to and described as an objective fact
for a human subject. An attempt at describing it amounts, again, to constructing a
representation of the task environment—the subject’s representation in this case.
The subject in an experiment is presented with a set of instructions and a sequence
of stimuli. He must encode these problem components—defining goals, rules, and
other aspects of the situation—in some kind of space that represents the initial
situation presented to him, the desired goal situation, various intermediate states,
imagined or experienced, as well as any concepts he uses to describe these situations
to himself.

Example of an Internal Representation

A specific example will help delineate the exact nature of the difficulty, and will
provide a starting point for our discussion of how to obviate it. We consider, as
our problem situation, a two-person game (number scrabble) having the following
rules: A set of nine cardboard squares (pieces), like those used in the game of
Scrabble, is placed, face-up, between the two players. Each piece bears a different
integer, from 1 to 9, so that all nine digits are represented. The players draw pieces
alternately from the set. The first player who holds any subset of exactly three
pieces, from among those he has drawn, with digits summing to 15, wins. If all
the pieces are drawn from the set without either player obtaining three whose digits
sum to 15, the game is a draw. Thus, if the alternate draws are 2, 7; 5, 8;4, 6; 9,
the first player wins, since 2 + 4 - 9 = 15, If the alternate draws are 5, 2; 8, 6;
7,3; 1, 9; 4, neither player wins, since no combination of three digits selected from
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the set (5, 8, 7, 1, 4) sums to 15, nor does any combination of three selected from the
set (2, 6, 3, 9).

The description, just given, of number scrabble constitutes a description of the
stimulus confronting each player that is adequate for all practical purposes. It is
objective in the sense that it simply (if only grossly) describes the visual and aural
stimuli actually presented to the subjects when the game is explained to them. But
the subiect’s| task environment contains more than just this stimulus. It contains
also the various possibilities that exist fgrmmgmwjor, changing
the stimulus. How can we represent these possibilities objectively?

One possible representation is provided by the game tree. Every possible play
of the number scrabble game can be represented by a permutation of the nine digits.
We can represent the set of permutations as a tree, arranged according to the first
digit selected; then, among those branches having the same first digit, arranged
according to the second digit; and so on. The tree contains a total of 91—352,880—
terminal branches. A few initial branches are shown in Figure 3.2. (Some of these
branches are inessential, in cases where the game would end before the ninth move.)
Since the game is a game of perfect information with a finite (large but not
enormous) game tree, an optimal strategy can in fact be devised with only a finite
number of calculations. The strategy is based on the well-known minimax principle
of game theory. The player simply examines all the branches of the game tree,
and assigns to each terminal the value, to him—win, draw, or lose. He then works
backward, assigning to each branch the best of the outcomes (win, draw, or lose)
for the subbranches at nodes where it is his turn to move, and the worst of the
outcomes for the subbranches at nodes where it is his opponent’s turn to move.

But in examining internal representationé‘zre we safe in limiting ourselves to
the alternatives contained in the game tree Y Consider the following situation. The
players have made the initial moves 3, 5; 9, 7. The first player now calculates what
his next move shall be. He has already drawn the digits 3 and 9, which together
total 12. A winning strategy would be to draw the number which, when added to
this total, yields 15. The appropriate move for this strategy is readily calculated:
it is 15 — 12 = 3. So the first player wishes to consider the winning sequence
3,5;9,7; 3. .

1t will be objected immediately (and correctly) that 3 is not a legal move here,
because a 3 has been drawn previously, and each digit appears on only one piece.
Presumably the player will check for the legality of his move, and will discover that
3 is not available. (If actual physical pieces are used, he will discover it, if in no
way. from his failure to find 3 among the pieces remaining in the ce@verthe-
less, we must not exclude the possibility that the player will actually carry through
the calculation of subtracting 12 from 15, get 3 as his result, and g_rll_xjhglg_i_my@
that the move 3 is not available.mmry of the subject’s

“thought processes, and to refer in that theory to the set of behaviors he considers,
we must include in that set even behaviors that, though considered, prove infeasible,
illegal, or in some other way impossible. We must, so to speak, represent the
subject’s wishes and dreams as well as his more realistic thoughts. There is no es-
sential reason, of course, why such considerations should remain covert. If, in our
example, the player said, “Oh, there is no 3,” we would thereby have concrete

CW outside the game tree.




FIGURE 3.2

game tree for number scrabble

Recoding of Representations

The situation where the subject considers alternatives beyond those included
in the game tree or other representation of the genuine behavior possibilities is not
the only one that makes it difficult to describe the task environment objectively.
Another whole set of difficulties arises out of the fact that the subject may recode the
situation completely.

Consider the familiar game of tic-tac-toe. There is a three-by-three array of
blank squares. Players occupy squares alternately, marking the square occupied by
a O or X, respectively. The first player who attains a horizontal, vertical, or diago-
nal sequence of three of his symbols wins. If the whole array is filled without either
player’s attaining such a sequence, the game is a draw.

Now it is true, although not obvious, that the game of tic-tac-toe is formally
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62 equivalent to the game of number scrabble that we described earlier. (We wonder
PRELIMINARIES  [OW many Feaders, almost all of whom have surely played tic-tac-toe, were aware
of this equivalence before we mentioned it.) To see this, we construct the magic
square whose rows, columns, and diagonals each sum to 15, as shown in Figure 3.3.

FIGURE 3.3

magic square for tic-tac-toe
2171 6
9511
41318

L

If we played tic-tac-toe on this magic square, whenever a player attained a
horizontal, vertical, or diagonal row, he would possess a set of three numbers
adding to 15. The construction of the magic square assures this. The converse 1s
also .cue, as can be verified by enumeration: any player occupying three squares
that add to 15 will find that these squares lie in a horizontal, vertical, or diagonal
row. Thus, the formal equivalence of the two games has been proved.

e T e

To say that the two games arc formally equivalent does not say that a person
who knew a good strategy for playing oWable of trqpsferrilg,\-‘\
he strategy immediately to the other./ Tic-tac-toe experts will readily persuade
themselves that this is not at all easy.

The following is generally regarded as a good strategy for the first player in
tic-tac-toe. Since the game is a draw when viewed from a game-theoretic standpoint,
good means here a strategy that will guarantee a draw and that will give the op-
ponent as many opportunities as possible of making a losing mistake. We outline
the strategy as a production system (Figure 3.4). We do not show details of the
patterns to be detected on the board, which are familiar to all tic-tac-toe players.
<own—winning—pattern> is a line with two of the player’s marks and one blank.
<opponent—winning-pattern> is the same, but with the opponent’s marks rather

FIGURE 3.4
production system for playing tic-tac-toe

tic-tac-toe-strategy:

side-to-move = opponent — Stop.

<own-winning—pattern> (= blank-square) — play (blank-square).
<opponent-winning—pattern> (= blank-square) — play (blank-square).
(own-forking-pattern) (= intersection-square) — play (intersection-square).
center = blank — play (center).

{opponent-on-side> — find corner = blank; play (corner).
{opponent-on-cornery —> find opposite of corner; play (opposite).

NowkwNE




than the player’s. (own-forking-pattern) contains two lines, each with one of
player’s mark and two blanks, intersecting in a single blank square. Playing in
the intersecting square creates two {own-winning-pattern)’s, thus forking the
opponent.

How would a player, knowing this tic-tac-toe strategy, play number scrabble ?
We assume the players are not allowed pencil and paper to assist their memories.
If the player is gifted with a certain amount of visual imagery, he can proceed as
follows. He memorizes the array of numbers in the magic square. Then as he, or
his opponent, draws a numbered piece in the number scrabble game, he visualizes
the corresponding O or X on the square. In this way, he can detect two-in-a-row
situations, and can distinguish center, side, and corner locations as required in order
to apply the strategy. We have verified that this is a feasible method for at least
some subjects.

An alternative method would be to translate the tic-tac-toe strategy into the
language of the number scrabble game, and learn to apply the new strategy directly
in that game. The translation of the strategy is fairly straightforward. Winning
move is redefined as triplet adding to 15, blocking as taking the number needed by
the opponent to complete such a triplet, forking move as move creating two pairs
each of which belongs to a triplet still completable. For center square, we read 5;
for corner square, even number; for side square, odd number other than 5. Finally,
we translate square opposite as ten’s complement of—i.e., the number, X, such that
square + x = 10. Strategy for tic-tac-toe can be translated word-for-word into the
equivalent strategy for number scrabble. For example: “If the opponent then
occupies a corner square, occupy the opposite corner” becomes “If the opponent
then takes an even number, take its ten’s complement.” We leave the rest of the
translation as an exercise for the reader.

Finding an Objective Representation
e

The games of number scrabble and tic-tac-toe provide us with {ﬁéample of 2>

very simple problem situation where subjecty can (and occasionally do) represent
the task internally in quite different ways\How shall the experimenter talk about the
task ? Since the two games are formally equivalent, it is not clear which, if either,
of the descriptions we have presented should be chosen to represent the problem
space. Any player could use either representation (or some other) when playing
either game. He could use a combination of them—for example, representing
number scrabble as tic-tac-toe on a magic square, as we outlined earlier. And, as
we have also seen, he can use a representation that permits him to i es
that are not legal moves in the actual game.\It would seem that the experimenter’s °
description of the task environment, whatever representation he uses for that s
_ description, would be no less subw playe1:§a/I:Io particular description
appeais to have claim to complete or exclusive veridicality.

Rather than try to untie this Gordian knot, we might ask whether we can cut
it. Perhaps it is not necessary, in constructing and testing a theory of problem solv-
ing, for the experimenter to use an explicit representation of the task environment.
What are some of the other possibilities?

63

Task
Environments



64

PRELIMINARIES

-«

One possibility is to omit a description of the objective problem space, but to
incorporate in the theory hypotheses about the internal representation the subject
will himself use for the problem space. This possibility exists because the behavior
of the subject cannot depend on what the problem really is—neither he nor we
know that—but only on what the stimulus is. Hence it is the stimulus, including the
feedback the subject receives from the environment as a result of his behavior in
the problem situation, not the real problem, that should enter as an independent
variable if we wish to predict the representation. Even in situations where we wish
to predict how differences in problem statements affect ability to solve the problem,
we need not describe the external task environment, but Mand
feedback rules. "

A somewhat different possibility, a pragmatic one in this case, is to construct
a hypothetical problem space that is objective only in the sense that all of the rep-
resentations that hu iects in fact use for handling the problem can be

@e ed as specializations In this larger space. This solution operates as follows:
Consider a large number of subjects placed in a task environment and allowed to
study and analyze that environment over a long period of time. Presumably, they
will devise a number of representations for characterizing the environment, and
the representations they use will change over time. If we allow enough time, the rate
at which they generate new representations will gradually decrease, and presently
additional ones will appear rarely if at all. We shall equate the real environment
with the whole set of representations generated up to the time when this asymptote
is reached, together with the mappings that define the relations of each of the
representations to the other@fh this strategy the experimenterflgn?ows, for all
practical purposes, this entire set of representations and mappings.*

What does this latter requirement amount to from a pf’é&féﬁﬁ standpoint?
First, it is important only in situations where subjects do, in fact, employ a number
of internal representations, and where the theory is concerned with which rep-
resentation they employ, or how they acquire a representation. Of course, most
situations that are interesting for a theory of thinking and problem solving have
these characteristics.

Second, the requirement can be satisfied approximately by studying situations

X E’vhere the complexity is great relative to the time available to subjects for analyzing

it. Then the experimenter, even if he is no more intelligent than his subjects, can
meet the requirement by devoting much more time to the analysis of the situation
than is available to any subject (or alternatively, by withholding from them
some of the information that is available to him about the structure of the
environment). .

In the studies in this book, we conform reasonably with this strategy for two
of our tasks, cryptarithmetic and elementary logic, but fall short with the third,
chess. We are, in fact, somewhat handicapped in studying the behavior of masters
and grandmasters in chess, since we cannot attain a better understanding of the
task environment than such subjects.

4 It is conceivable that for a formally given IPS one could develop a formal theory of
all representations of a given task. However, no such theory has yet come forth for any
interesting task environment.



Inducing the Subject’'s Problem Space

Since the theories that will be discussed in this book include in their structure
explicit descriptions of the central processes and memory contents of the subjects,
these theories, in effect, assert what the subjects’ representations will be. To the ex-
tent that different problem spaces would lead to different behavior in the face of the
experimental task, these assertions are empirically testable.

Let us consider a simple example from the number scrabble game. Suppose
we were to hypothesize that a particular subject was using the magic square rep-
resentation in choosing his moves—that is, that he visualized his choices, and his
opponent’s, as lying in rows and columns in the square. Now suppose that the sub-
ject, having already drawn the numbers 9 and 3, said something like: “That makes
12. I need 3 to make 15,” and then searched for a 3 among the pieces remaining to
be chosen. This behavior would provide rather conclusive evidence that the hy-
pothesis was wrong—that the subject was not using the magic square representation,
but some kind of arithmetic problem space. For 9 and 3 do not lie on a row, column,
or central diagonal of the magic square; hence a subject using that representation
would not treat those numbers as a possible basis for a winning triad.

In later chapters of this book we shall present various examples of inferences
that predict the behavior of the subject from his (hypothesized) representatjon, and
then test the prediction by comparing it with the actual behavior./Hypotheses
about internal representations will, in fact, be a major source of the predicti
and parsimony of our theor@Fcr the assumption that a particular problem space
is being used generally has many consequences for behavior, hence permits many
predictions. Moreover, if we are willing to assume (1) that the number of representa-
tions available to human subjects is not enormous—is, in fact, quite modest—and
(2) that the same representations are used in performing a considerable range of
tasks, then the parsimony of the theories is greatly enhanced.

Representations and Linguistic Deep Structure

We are now in a position to see more clearly the meaning of the assertion in
the previous chapter that the internal representations employed by the IPS are to
be regarded as the > deep structures postulated by modern structural linguists.
Language is usually discussed in a context of interpersonal symbol processing—
speaking (writing) and listening (reading). But there has also been much incon-
clusive discussion in psychology about the role of language in internal symbol
processing—in thinking. John Dewey (1910, p. 170) has described the alternative
views as well as anyone:

Three typical views have been maintained regarding the relation of
thought and language: first, that they are identical; second, that words are
the garb or clothing of thought, necessary not for thought but only for convey-
ing it; and third . . . that while language is not thought it is necessary for
thinking as well as for its communication. When it is said, however, that
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thinking is impossible without language, we must recall that language includes
much more than oral and written speech. Gestures, pictures, monuments,
visual images, finger movements—anything consciously employed as a
sign is, logically, language.

The difficulties, we submit, in choosing among these views, stem from ambigu-
ity of the term “language.” The position implicit in the analysis of this book can be
summed up as follows:

1. The generation or processing of symbol structures that are isomorphic
with the strings of natural language or with their surface structures (in
the linguist’s meaning of that phrase) is inessential to human problem
solving of the kinds we examine.

2. The internal symbol structures that represent problems and information
about problems are synonymous with the linguist’s deep structure. If
“language” means deep structure, then language is essential to thinking
and problem solving.

Inysum, paraphrasing Dewey: (1) The surface structure of language, and
language strings, are the garb or clothing of thought, necessary not for thought but
only for conveying it. (2) While linguistic deep structure is not thought, it is
necessary for thinking—-

To the extent that the problem representations we shall postulate do, in fact,
explain the problem solving behavior of human beings, the claim that the struc-
tures embodying these representations are linguistic deep structures gains strong

support. For if this were not so and if language is implicated in thinking, then we

would have to postulate ¢ distinct set of deep structures, holding the meanings of the
surface structures, carried along t &l with the “nonlinguistic”

problem representations. But this is an unnecessarﬁﬁmparsimonious multiplica-
tion of hypothetical entities that has no evidential support. We prefer the simpler
course that identifies deep structures closely with semantics, hence with the internal
symbol structures that are the media of thought.

The theories of deep structure that have been sketched by linguists (up to the
present time¢ no more than sketches are available) generally associate individual
deep structures with individual sentences of the surface strings. In contrast, the
internal structures we shall postulate for problem solving situations generally
constitute lw_!__ml_i_gmghmd—mnwihat do not factor in any simple
way into components that are isomorphic with single sentences. These complex
internal structures, extending far beyond sentence boundaries, provide a promising
route toward explaining how@text can determine the meanings of otherwise
ambiguous natural language stri@The exploration of this route, however
tempting, cannot be undertaken in this book. The early work by Lindsay (1961,
1963) gives some general indication of what we mean by this brief allusion, and
provides the reader with a starting point if he wishes to undertake the exploration
himself.




THE CONTENT OF A REPRESENTATION

In developing our tic-tac-toe and number scrabble examples of possible prob-
lem spaces, we have already been drawing implicitly on the assumption that the
subjects in our experiments behave like information processing systems of the sort
that we described in Chapter 2. We need now to consider in more detail how an IPS
can store and process problem space representations. The game of number scrabble
again provides a simple example of how this can be done.

Our concern at present is not with hypothesizing specifically how human
subjects in fact represent this problem, but with providing a concrete illustration
of how an IPS can represent it—how it can encode the elements of the problem
space into symbol structures, and how it can operate on these structures to ac-
complish the processing required to play the game.

Objects will be represented by symbols; sets of objects will be represented by
lists. The relations between various objects and sets of objects will be represented by
associations. Moves will be represented by processes, which modify the internal
symbol structures in correspondence with the way the moves would modify the
external sets of objects or their relations. In addition, for the IPS to play, other
processes are needed to test the representation for certain features and to embody
various strategies of play.

Figure 3.5 gives the details of the representatlon The basic objects are players
(two) and pieces (nine). There are three sets: unmoved-pieces, pieces-of-player-1,
and pieces-of-player-2. Each player has an association (attribute: own-pieces) to
the set of his pieces. Each piece has an association (attribute: integer) to the name of
the integer (from 1 to 9) on that piece.

Thus, at the beginning of the game, the sets of pieces-of-player-1 and pieces-of-
player-2 are empty, while the set of unmoved-pieces contains all nine of the pieces.
A move is a process that removes one piece from the list of unmoved-pieces and
adds it to the list of own-pieces of the player who is moving. Besides the basic pro-
cess for moving, some processes are needed for manipulating integers: sum, which
adds up two integers to produce a third (their sum); and complement, which takes
an integer as input and produces the difference between it and 15 as output (thus,
more accurately, 15’s-complement).

The three processes listed in Figure 3.5 are taken as primitive, but they can also
be expressed as programs in terms of still more primitive processes for manipulat-
ing and testing lists and associations. In Figure 3.6 we give programs for all three.
The arithmetic is of the “counting fingers” variety, since we do not wish to introduce
a full array of arithmetic processes; still, it gets the job done. The processes used
in Figure 3.6 are_truly primitive s that we have not introduced any other repre-
sentation in terms of which we could discuss how they are realized.

With this representation of number scrabble we can express how a player could
discover, for example, whether he had an immediately winning move. Figure 3.7
shows the program. We have used a generator of all pairs from a set. This produces,
as element, a list of two symbols. Again, we could take this as primitive (as we have
taken generate as primitive). However, Figure 3.8 does show a process for realizing
generate-pairs.
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FIGURE 3.5

symbol structures and primitive processes for tic-tac-toe

68

own-pieces
player-1 own-pieces pieces-of-player-1: (piece-3 piece-6)
player-2 —— = pieces-of-player-2: (piece-5)
unmoved-pieces: (piece-1 piece-2 piece-4 piece-7 piece-8 piece-9

) 0
integer ) next

piece-1 —— = |

integer
piece-2 — >

)2
integer next
piece-3 — > 3

integer next

pieced — ™ 4
integer ) next

piece-S — ™5
integer next

piece-6 — = 6
integer next

piece-7 — =1
integer next

piece-8 —_ = 8
integer ) next

piece:9 — = 9
) next

12

) next
13

) next
14

) next

move piece for player
sum (integer-1, integer-2)
complement (integer)

In Figure 3.7 it might appear costly, in terms of processing time, to have to
repeat the subprocess (lines 2-6) for each pair on the list of own-pieces. However,
this list would never have more than three members (if the player has already made
four moves, his fifth move is forced); hence, there would never be more than six
such pairs. Actually, a more efficient process would consider only pairs that con-
tain the most recently moved piece, since the others would already have been
considered on a previous move. With this added refinement, three pairs, at most,
would have to be examined.

On the other hand, with this representation, somewhat more processing is
required to determine if the player has a forking move—i.e., a move that sets up
two possible winning moves for the next round, hence cannot be countered by the
opponent. Figure 3.9 gives the program. The processing cost for finding forking
moves in this way may be large. Three generators are nested: the first generates

pairs of pieces from the list of own-pieces, the second and third generate pieces from



2.
3.
sum (integer-1, integer-2):
1.
2.
3.

4.
5.

move piece for player:
1.

delete piece from unmoved-pieces,

if fail stop move and report illegal;

find own-pieces of player;
insert piece on result.

initialize count to be 0;
initialize total to be integer-1;
test if count = integer-2,

if true stop and report total;
find next of count (= count);

find next of total (= total),
go to 3.

complement (integer):
1.
2.
3.

initialize count to be 0;
initialize total to be integer;
test if total = 15,

if true stop and report count;
find next of count (= count);
find next of total (= total),

go to 3.

FIGURE 3.6
basic processes for number scrabble

FIGURE 3.7
program for finding winning move

1
2.
3.
4
5

make-winning-move for player:

generate-pairs own-pieces of player (= (first second)):
sum (integer of first, integer of second);
complement (sum);
generate unmoved-pieces:

test if integer of unmoved-piece = complement,

if false continue generation;

move unmoved-piece for player,
stop process.,

stop and report no move.

the list of unmoved-pieces. On the first player’s fourth move, for example, the three
nested generators involve consideration of a maximum of 6 x 3 x 3 = 54 cases,
and if the branch is reached, yet another generator is called into operatlon

"Considef, on the other hand, how thic forking moves could be discovered with )
the tic- tac toe representatlon ‘Weco associate with each piece the rows, col-

, the lists of three pieces, or triads) to which it belongs. 69
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FIGURE 3.8

program for generate-pairs

FIGURE 3.9

generate-pairs list: subprocess:
1. generate list (= first-element):
generate remainder-list of first-element (= second-element):
construct (first-element second-element);
apply subprocess to result,
if stop-generate stop process and report stopped. .,
stop and report completed.

Pl

program for finding forking moves

70

make-forking-move for player:
1. generate-pairs own-pieces of player (= (first second)):
2 generate unmoved-pieces (= potential-fork):
3. sum (integer of first, integer of potential-fork);
4. complement (sum);
5 generate unmoved-pieces:
6 test if unmoved-piece = potential-fork,
if true stop;
7. test if integer of unmoved-piece = complement,
if true stop generation.,
if completed stop;

8. sum (integer of second, integer of potential-fork);
9. complement (sum);
10. generate unmoved-pieces:
11. test if unmoved-piece = potential-fork,
if true continue generation;
12. test if integer of unmoved-piece = complement,

if true stop generation.,
if completed stop;
13. move potential-fork for player,
stop process. .,
stop and report no move.

For each piece on the unmoved-piece list, we look for those rows, columns, and
diagonals for which one of the remaining pieces is on the unmoved-piece list, the
other on the player’s own-pieces list. If there are two such triads, the piece gives a
forking move. (In addition, triads already blocked could be marked, further cheap-
ening the search.) This is clearly a much simpler process than the one previously
described.

Now there is nothing that prevents us, in the number scrabble representation,
from storing in memory the lists of triads associated with each move, and hence
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making it possible to use essentially the same process for finding forking moves 71
45 we used in the tic-tac-toe representation. EEL the presence or absence of this Task
information, _in readily accessible form, is precisely the crux of the difference in Environments
representatic{g—s}For the human being playing number scrabble, these lists are not
in fact available, unless he explicitly goes to the trouble of writing them down or
memorizing them. In tic-tac-toe, the lists are directly available in the visual diagram,
which can be scanned rapidly along rows, columns, and diagonals. L B

In summary, let us return to a point made earlier about thefrequisite level of
déi—z;ildih describing information processing. As long as the processes being discussed
are 'éiﬁite definite and elementary, it can often simply be assumed that there exists
some encoding of the objects into symbol structures and some straightforward
programs adapted to that encoding that will accomplish the processing and produc
the indicated information as output (in an _glﬂp_pﬂggpggggpnggglmg))y When the exist- ’
‘ence of such an encoding and such programs can be postulated, it is not necessaryto | -
specify the details of either encoding or programs. [~ 7"

" We have given an explicit specification here for number scrabble to illustrate
exactly what is involved in such a description of structure and processes. We will
also provide such specifications at several other places throughout the book, where
the specific encoding of objects or operations becomes important. But generally we
will float above this level of detail. The fact that running computer programs exist |
for various tasks provides a continuing guarantee that the lower, more detailed
levels of specification have been made explicit in many cases and could be in others.

The ability to abstract from detail partly reflects the simple hierarchical
structure of information processing. However, it also reflects the power of lists and
associations as general-purpose representations for encoding information. If,
perchance, we had started with a linearly addressed memory, such as is found in a
standard computer, we would have faced questions about how particular task
environments could be encoded. The representation in terms of list structures and
associations is particularly convenient in making it possible to add additional
information to memory without destroying the information already encoded into
the representation. It thereby greatly simplifies the representation task.

SOME CLASSES OF PROBLEM SPACES

So far we have proceeded almost entirely by example in characterizing rep-
resentations of problem spaces and problems. It is time now to view matters more
broadly and, abstracting from the detailed structure of either the IPS or its specific
problem representations, characterize problem solving tasks in more general terms.
Taking this broader view will give us a better picture of the whole area. It will
also provide essential vantage points for the treatment of problem solving in the
next chapter. Let us indicate briefly the nature of the connection.

In our illustrations of problem spaces we have already introduced important
abstractions. Implicitly, the problem spaces have all been defined in relation to
task goals, and the representations have been restricted to aspects of the total
environment that were task-relevant. For example, we did not specify the physical
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dimensions of the pieces used in number scrabble, or their color. Reader and
authors automatically assumed that such properties were irrelevant to the goal.

However, since the relation of problem space to goal has thus far been left
implicit, we have not had to state explicitly what a problem is, and what the inter-
dependence is between task environment and goal. This interdependence is crucial
—as we have already seen—for separating the task-relevant from the task-irrelevant
components of the task environment, so that only the former need be incorporated
in the problem space. The interdependence is crucial, also, in enabling the processes
that the IPS has available—which must, after all, be provided to it in advance of
its meeting a specific problem—to be brought to bear upon the tasks posed by these
specific task environments. By introducing a general typology of problem spaces,
we take the first step toward showing how general methods, associated with these
types, can be used to solve specific problems. The demonstration will be continued
in Chapter 4.

What Is a Problem ?

A person is confronted with a problem when he wants something and does not
know immediately what series of actions he can perform to get it. The desired object
may be very tangible (an apple to eat) or abstract (an elegant proof for a theorem).
It may be specific (that particular apple over there) or quite general (something to
appease hunger). It may be a physical object (an apple) or a set of symbols (the
proof of a theorem). The actions involved in obtaining desired objects include
physical actions (walking, reaching, writing), perceptual activities (looking, listen-
ing), and purely mental activities (judging the similarity of two symbols, remember-
ing a scene, and so on).

In this book, the objects we shall mainly be concerned with are systems of
wols—for example, proofs of theorems or English sentences. The actions we
shall examine are mainly manipulations of symbol structures. Restricting the dis-
cussion to symbolic entities and processes does not severely limit our analysis of
problem solving, except—at“rts—ptr“ ’—I’Elcalmg the physiological
aspects of sensory and motor “skills, especially those requiring real-time action and
coordination). For the crucial activities, at least in human problem solving of any
complexity, are symbol-manipulating activities that take place centrally. This is
true even when the desired object and the required activity are physical—e.g.,
going to the orchard to pick an apple.

Consider the problem of finding a proof for a theorem—say, a theorem in
elementary symbolic logic. The objects in this problem, theorems and other logic
expressions, are composed of symbols. We represent them internally as list struc-
tures, like those we introduced in the last chapter. A proof is a sequence of axioms
and theorems, terminating in the theorem to be proved. Hence, a proof may be
represented as a list of list structures—which is itself a list structure. The task of
finding a proof for a theorem is, then, a task of finding a list structure with ap-
propriate characteristics.

Instead of defining directly what it means most generally for a human to have
a problem (or for any organism or device to have one), let us try the following
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strategy.(To have a problem implies (at least) that certain information is given to
the problem solver: information about what is desired, under what conditions, by
means of what tools apd operations, starting with what initial information, and with
access to what resources\The problem solver has an interpretation of this informa-
tion—exactly that interpretation which lets us label some part of it as goal, another
part as side conditions, and so on. Consequently, if we provide a representation for
this information (in symbol structures), and assume that the interpretation of these
structures is implicit in the program of the problem solving IPS, then we have
defined a problem. Thus, we say with any textbook on Euclidean plane geometry:

Given: A general triangle, ABC.
Prove: The three lines bisecting its angles
intersect in a common point.

This is a problem, provided that the problem solver has (implicit) not only infor-
mation defining triangle, bisecting, and so on, but also appropriate interpretations
of Given and Prove. In the appropriate context (e.g., a homework assignment)
the problem solver will come to “have” the problem stated above—and will be
found diligently at work on it some time before the next class period (assuming he
is appropriately motivated).

We need not make special provision for a separate representation for each
particular problem. Insteaa@cén define representations that cover large classes
of prdbl@L\Likewise, we need not assume that the problem is presented by means
of English language statements. This would imply capabilities of understanding
natural language that are beside the main issue. Instead, we can define our general
representations directly in terms of the essential symbol structures (deep structures).
We will introduce two such general representations: the set representation and the
search representation. We have no guarantee that all problems can be represented
in one of these two forms. It is always possible that some important classes of
problems have not yet been represented.

Set Representation of a Problem

A problem proposed to an information processing system is well defined if
a test exists, performable by the system, that will determine whether an object
proposed as a solution is in fact a solution.’ By performable we mean, more
specifically, performable with a relatively small amount of processing effort.

Consider the problem of constructing a symbolic expression having the char-
acteristics p,, p,, ..., p,. If the system has a set of relatively simple tests for
determining whether any expression does or does not have each of the char-
acteristics, p;, this is a well-defined problem.

In most cases it is possible to define a set of objects—the set of possible
solutions—that contains the solution or solutions. Where the solution is a symbolic
expression, we can take as this set the set of “all possible” symbolic expressions.

> The notion of a well-defined problem was proposed by McCarthy (1956).
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When we need to be more precise, we may define it as the set generated by a certain
enumerative procedure from an alphabet of elementary expressions. Hence, in
set-theoretical terms, a problem may be characterized as follows:

Given a set U, to find a member of a subset of U having
specified properties (called the goal-set, G).

We will call this the set representation of a problem, although either of the longer
terms sel-theoretic representation or set-predicate representation would have been
equally appropriate. We have already commented on the phrase having specified
properties. In the sections that follow we shall have more to say about what is meant
by given and find.

Three reasons (not the only ones) why problems are problems are that: (1)
the original set, U, of possible solutions given to the problem solver can be very
large (it is often immense®), (2) the actual solutions, G, can be dispersed very widely
and rarely throughout it, and (3) the cost of obtaining each new element and testing
it can be very high (e.g., the search for the Northwest Passage). Thus the problem
solver zg;really given the set of possible solutions; instead he is given some process
for gererating elements of that set (all or some of them) in some Sﬁiﬁf{'Such a
generator has properties of its own, not usually specified in stating the problem—
e.g., there is associated with it a certain cost per element produced, it may or may
not be possible to change the order in which it produces the elements, and so on.
The test that a given element has the desired properties also has costs and times
associated with it. The problem can be solved if all of these costs are not too large
relative to the time and computing power available for solution.

In some cases, a problem that is characterized set-theoretically can be decom-
posed into a number of subproblems, each of which can be characterized in the
same way. Consider how we might represent the problem of solving a crossword
puzzle. Take as U all possible arrays of letters of the English alphabet that will
fill the white squares of the puzzle. The subset G comprises those arrays in which
all consecutive linear horizontal and vertical sequences of letters form words that
satisfy the specified definitions.

Decomposed into subproblems, the crossword puzzle may be described thus:
There are n problems, 1 =1,...,1n. Take as U, the set of all English words. The
subset G, comprises those words that (1) satisfy definition d;, (2) are of length ki,'—7
and (3) at each intersection with a word belonging to one of the other subproblems
(say, at square s;;) have the same English letter as that other word. The last-
mentioned condition on the subset G;, of course, introduces an Eﬁe/r(/igpgndcncy
among the solution sets for the different subproblems.

The respective responsibilities of generators and tests in obtaining and verify-
ing solutions could be divided in different ways. For example, it might be possible
to devise a generator that produced only words satisfying conditions (1) and (2),

6 The term immense was proposed by Elsasser (1958) to stand for numbers so large
that their logarithms were themselves very large [e.g., N is immense if log (N) = 104°).
The numbers we deal with (e.g., 10'2°) are not so large, but do satisfy the same functional
criterion: that no revision of the number from more detailed investigations and assump-
tions can affect the argument at hand.



and then simply to test for satisfaction of (3). As expert crossword-puzzle solvers
know, this is not the only—nor usually the best—procedure. An alternative is to
find a generator that produces only words that satisfy (1) and (3), then test for
satisfaction of (2).

In continuing our discussion of factorization it is time to introduce another
class of problem representations where the role of factorization into subproblems
is even more prominent. We turn now to the search representation.

Search Representation of a Problem

The set representation of a problem, while it is relatively general, is not always
the most convenient characterization. As a first step toward constructing an alterna-
tive, let us describe in detail, in the set-theoretic framework, the problem of finding
a proof for a theorem in Euclidean geometry or elementary symbolic logic. As in
the crossword puzzle example, we will exploit the factorability of the problem into

subproblems.

Discovering the Proof of a Theorem. A proof of a theorem, t, is a symbolic ex-
pression that consists of a sequence of subexpressions (the proof steps). Hence,
the set U is the set of such sequences. A sequence, u, belongs to G, the set of proofs
of t, if it has properties p, and p,, where p, means that each subexpression in u
either is an axiom or is derivable by certain allowable transformations (the rules of
inference) from previous subexpressions in u, and p, means that the final subex-
pression in u is t.

Consider the tests that determine whether p, and p, are satisfied. The tests can
be factored into parts, each of which is concerned with characteristics of only a
portion of u. (1) The test for p, concerns only the characteristics of the final sub-
expression. (2) Let u; be the object comprised of the first i subexpressions of the
sequence u. Then the test for p, can be factored into tests p,,, p,,, and so on, where
P..: is a test on the final subexpression, last(u;), in the sequence u;.

Moreover, these latter tests are relational—they are satisfied if last(u;) stands
in a certain relation to one or two prior subexpressions in u;, the subexpressions
from which it is directly derived. We can regard the sequence u; as having been
generated from the sequence u,_, by the application of an operator, Q,, to the
latter sequence. We can then write:

U = QuQi- (- - - Qu(ue)) - - ) (1)

where u; = Q,(u,_,) means the expression (sequence) obtained from u;_; by apply-

ing to it the operator Q;, and where u, is the sequence of axioms and theorems
given initially.

Thus, we can designate the theorem, t, in several ways. It is the final sub-
expression in the sequence u,. From the right-hand side of equation (1) we see that
it is also the subexpression last(u,), generated by applying the sequence of operators,
Q;, to u,. In order to talk about these different ways of referring to objects, it is
convenient to introduce the terms state language and process language. Symbols
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that designate expressions, elements of expressions, characteristics of expressions,
or differences between expressions belong to the state language for the problem.
Symbols that designate operators for transforming expressions, sequences of oper-
ators, or characteristics of operators belong to the process langugge.

A proof is most simply characterized by using both state and process language.
Thus, u, is a proof of t if last(u,) = t, and if it can be represented in the form of
equation (1), where all the Q; are admissible operators—i.e., operators correspond-
ing to the rules of inference—and where the subexpressions of u, are axioms and
previously proved theorems.

State Space and Action Space. This dual aspect of problem situations is not
peculiar to theorem proving. Problem solutions in most domains are defined by
(1) characteristics of a terminal state, (2) an initial state, (3) conditions on the admis-
sible transformations from one state into another, and sometimes (4) characteristics
of the intermediate states. The state-process distinction is fundamental to under-
standing the behavior of an organism when it seeks a goal object. The internal
representation of the goal object symbolizes it in the state language. What 1s re-
quired is a@of signals (or symbols) in the process language that will transmit
the proper instructions through the motor system to the effectors in order to enable
the organism to attain th@i.e., to change the state to the desired one).
Hence, the state language is relatéd to the operation of the afferent system, the
process language to the operation of the efferent system. The problem is solved by
an appropriate translation of afferent stimuli into efferent responses; and tests
of the solution are applied to new stimuli received through the afferent channels.

In everyday language, the term solution is used in several different ways. Some-
times (e.g., in theorem proving) we call the sequence of expressions, u,, the solution.
Sometimes (e.g., in the organism’s attempt to reach a goal object), we call the se-
quence of operators, Q,, ..., Q. the solution. Sometimes (e.g., in a crossword
puzzle) we call the terminal state, last(u,), the solution. Where it is necessary to
distinguish them, we may call these the solution-path, solution-action-sequence,
and solution-object (or goal-object), respectively. When we use the term solution
without qualification, it will be clear from the context which one of these is intended.

In the course of solving a problem, more than one potential solution path is
sometimes generated. In working forward, for example, more than one admissible
operator may be applicable to u,. Applying each, we obtain paths ug,, U,,, and so
on. Again, in general, more than one admissible operator may be applicable to each
of these, giving Uy, Ugyz» - - - » Yoz 1> Upzz» and so on. In this way a branching tree
of paths (search tree or discovery tree) is obtained, and the terminal branches are
compared with the conditions on last(u,) until one is found that satisfies these
conditions. The path that leads to this branch is a solution path.

Alternative Spaces for Search. In our description of the search representation,
the nodes of the search space have been realizable states of affairs, and the links
between nodes have been the actions that ‘changed '(')m, another. But in

roble ing the Actual search for a solufion need no does not,

nge place in the external environment. ccordingly, the states represented by nodes

of the search space need not COTTespon with realizable states of the outside world,
but can be imaginable states—literally so, since they are internal to the problem



solver. These states may be generated, in turn, by operators that do not satisfy
all the conditions of admissibility. For example, operators may be employed in the
problem space that generate plausible sequences of states, and those sequences
that do not satisfy the admissibility tests may be modified or rejected at later stages
of the problem solving process.

Putting the matter in different terms, the tree of solution action sequences is
only one of a numbe t ith_transformations on a
M structure of the search space that is used is not a property solely
“of the task environment—its states and admissible actions—but depends also on the
problem space and program the problem solver employs.JHe may, for example,
work backward from the desired state, applying operators that are, roughly, the
inverses of the admissible actions, in order to see whether he can discover a path
that leads back to the initial state.

Operators that are not admissible in the external environment may take the
form of conjectures of intermediate states of affairs which, if they could be attained,
would be likely steps toward the final goal. Thus, a chess player might conceive
through search a specific mating configuration, then initiate a new search to find a
sequence of moves to attain this particular checkmate.

Moreover, the solution to the problem of a chess player making a move
is not to discover a whole sequence of future moves, but simply to discover a good
next move. The search tree of subsequent moves that he explores is not a part of
a solution action seguence, but is simply a structure he creates to predict future
cdhééquences, and to evaluate, thereby, the move directly before him.

Still another possibility—search in a planning space—is illustrated by the
crossword puzzle example. At each step of solving a crossword puzzle, a skillful
problem solver may first pose the subproblem of finding a good next problem to
attack. For example, he may look for a particular word, j, whose initial letter or
letters are already known, using this information to simplify the task of the gen-
erator seeking to produce a word satisfying the definition, d,. Thus, at each stage
in constructing the solution object, a subsidiary search is evolved to determine
which generator is to be activated.

In spite of these qualifications and complications, it is true that in many
classes of problems the solution is defined by (1) properties of a solution object,
conjoined with (2) the requirement that the solution object be reached by a path
that can be generated by application of a sequence of operators drawn from a set
of admissible operators (legal moves). In these cases, an elementary problem solv-
ing program might generate possible solution paths, using the admissible operators
to produce sequences of one kind or another. But we must keep in mind that the
problem solver may also make searches in which the states and operators of the
problem space do not correspond with the states and admissible operators of
the external environment.

Further Examples of Problems

To be a bit more concrete about both set representation and search repre-
sentation, let us characterize some other common problems in the terms we have
been using:
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Finding the Combination of a Safe. Take as U all possible settings of the dials of
the safe, and as G those particular settings that open the safe. As safes are usually
constructed, G consists of a single element. If the safe has several dials, a particular
search tree might be produced by trying, for each setting of the first dial, all
possible settings of the others, and so on. As in the crossword puzzle example,
different problem solving techniques might define vastly different search spaces.

Designing a Machine. Take as U the set of all possible parameter values for a
machine design; take as G the subset of parameter values that: (1) satisfy the
design specifications, and (2) meet certain criteria of cost minimization. For cases of
practical interest, the set U will be immense and hence will have to be explored in
somewhat systematic fashion. In early stages of the search, for example, particular
design variables may be bounded, or even fixed, prior to establishing limits on the
other variables. If the priorities are fairly definite, then the search tree will have
hierarchic properties—the branchings at different stages referring to different
classes of design variables.

Programming a Computer to Invert a Matrix. Take as U the set of all possible
sequences of computer instructions, and as G a particular sequence that will
perform the specified matrix inversion. The branching tree of sequences in U also
defines a search tree.

Translating a German Article into English. Take as U the set of all possible se-
quences of English words; take as G the subset of sequences that: (1) satisfy certain
criteria of English syntax and style, and (2) have the same meaning as the German
original. Again, the interpretation in terms of the search representation can be
carried a step further by identifying the elements of the sequences mentioned with
the successive segments of the maze that constitutes a path. However, in all these
examples, the formulation in terms of the sets, U and G, is more general, in the
sense that there are often numerous alternative ways of representing the problem,
so stated, by a maze.

ANALYSIS OF THE TASK ENVIRONMENT

What does it mean to analyze a task environment ? The topics so far discussed
in this chapter and the presentation of an IPS in the prior chapter show what it means
to present a theory of a specific segment of human behavior. A representation of
the problem space is given, comprised of a representation of the environment and
one of the problem. (If needed, a representation of the actual environment, inde-
pendent of the subject’s perception of it in his problem space, may also be given—
say, if the situation involves feedback from the actual environment during the pro-
cess of solution.) Then the IPS is specified. It incorporates the problem space,
not in the sense of spanning its whole extent, but in possessing symbol structures
and programs that provide access to that space via the system’s processes for gen-
eration, testing, and so on. In addition, the IPS incorporates the goal or task, either
explicitly in a symbol structure (with an appropriate interpreter) or implicitly in the




behavior of some of its programs, as we saw earlier in the chapter. The IPS, when 79
set in the environment and giveq the goal, be‘comes a d_etermmate system thgt pro- Task
duces a stream of behavior. This is the theoretical behavior to be compared with the Environments
human’s actual behavior.

All the above is familiar in outline, and we understand generally in what sense
such a theory would explain the empirical events (or would fail to, if the IPS or
task environment were incorrectly posited). But there is an alternative route to
explaining the behavior.-Remembering that-a-problemrsoltver isai adaptiv

I we frlight postulate that the human problem solver produced the behavior that he ‘ \
did because he had to—_lzggﬂlfithe behavior was demanded by the task environ- , * e
{ ment,/This is also an explanation of the behaﬁﬁt*ﬁeﬁvqo*mww onflict
Lzbet/ween the two explanations, assuming that the IPS did in fact solve the problei.
Then the various symbol manipulations that occurred under the control of the pro-
gram constituted an effective means for responding to the demands of the task
environment, with the production of appropriate behavior.

It is a premise of the second kind of explanation—that the behavior corre-
sponds to the demands of the situation—not only that the goal was held by the prob-
lem solver and that he was adequately motivated, but also that he was able to
attain the goal. It might seem, then, that this form of explanation would make few
predictions in cases where the problem solver was unable to solve the problem—
unable to meet the demands of the situation. But this is not entirely so, for one may
explain (or predict) behavior by observing what are the “obvious” things to do to
attain the goal (even though they may be insufficient), and therefore what are the
things that the problem solver, being a bear of little brain, will do.

[t is a cautionary note to (rather than a premise of) the classical kind of process
explanation that the program and symbol structures that are inferred to produce
the problem solving behavior may themselves (be idiosyncratic to the task and

‘ephemeral, being simply what is démanded by the task environment. Thus, quite
different structures and programs would be generated by different tasks. In that
case, the process explanation would show only that indeed the problem solver
could adapt sufficiently to the situation.

We will employ both kinds of explanation in this book. Indeed, as we observed
earlier, one of our main tasks will be to understand what is demanded by the
task environment, so that we can understand—by elimination—what aspects of
behavior are determined by the psychology of the problem solver. The purpose
of this section is to be sure we understand what it means to analyze a task environ-
ment in order to reveal its demands.

It is easy to give an essentially correct definition of a demand of the task
environment: it is a constraint on the behavior of the problem solver that must be
satisfied in order that the goal be attained. Thus, the environment per se does not
make demands: rather the problem or goal makes them via the problem solver’s
commitment to attain it.CThe features of the environment that give rise to these
demands constitute the relevant structure or texture of the environmea (Tolman
and Brunswick, 1935).

Difficulties arise with this definition from the question of the independence
of the demands and task structures from the nature of the problem solver. The
whole point of viewing the environment as making demands is to provide a frame-
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work outside the problem solver to which his behavior can then be related. If
this can be done, it seems natural to make an analysis of the task environment
before looking at behavior. We have organized each of the main empirical parts
of this book in exactly this fashion. Each main task starts with a chapter on task
analysis, followed by chapters on behavior.

But if something’s being a demand is only apparently independent of the
problem solver, and in fact depends on intimate features of his program, then the
factorization into task environment and problem solver is a mirage. The possibility
of such interaction arises from two sources: first, that the problem solver has a
goal; second, and most important, that a bond of necessity underlies the constraints
upon modes of goal attainment.

With respect to the first, the goal, we have eliminated the difficulty by fiat—by
conditioning the concept of demand both on the goal’s being held and on the
problem solver’s being adequately motivated. Both of these side conditions clearly
do depend on the nature of the problem solver, but in the experiments reported
throughout the book they are always satisfied. Furthermore, it is often easy to
know that they are satisfied, for in our culture (at least) people are willing to declare
publicly (either verbally or behaviorally) many of their goals.

Thus the remaining difficulty is to clarify what it means for behavior to be
necessary for a goal. This will require some discussion. We start with an extreme
case where the issues are clear, and then move to the complexities.

Task Invariants
: _— . = 3

We are given three things: an environment, a problem solver, and a_goal
or task. Suppose it is possible to demonstrate that all paths in the environment that
lead to attainment of the goal have a certain property. For instance, any way of
winning tic-tac-toe involves having three-in-a-row. Or, all proofs of a given theorem
from a set of axioms involve the use of a specific axiom. Clearly the behaviors
corresponding to these features—making three-in-a-row or using the specified
axiom—are demands of the task environment. These elements cannot depend on
the nature of the problem solver, because the demands are@ér‘iants&Qf'tfﬁéﬁéitua;tion.
Their invariance is quite independent of the amount of analysis that is required to
reveal them. In the case of tic-tac-toe the invariance is obvious; in the case of the
theorem it may require a difficult proof to establish it. For example, the classic
problems of squaring a circle, duplicating a cube, and trisecting an angle are all
impossible in a given task environment (when the only operators admitted are
constructions with straight-edge and compass), but proof of their impossibility
took many centuries.

These examples raise the issue o@ther the set of admissible operators—and
consequently the tree of reachable states in the problem space—can always be
regarded as a property of the task environment,/independent of the properties of
the problem solving IPS. Consider the task Of crossing a deep chasm with only a
single bridge across it. Going over the bridge would seem to be a demand that the
environment places on any problem solver. But suppose a problem solver arrives
who is provided with a chartered airplane, or who is equipped with wings, is capable



of teleportation, or whatever. For such_a problem solver, the environment no
Jonger demands going over the bridge. (In_the original statement of the problem,
we have smuggled in, it would seem, some-assumptions about the nature of the
problem solvers—that they lack wings, chartered planes, or the capacity for
teleportation.

In the case of a mathematical proof this difficulty does not arise, because the
set of admissible operators is defined formally, and the definition is accepted by
both experimenter and subject. In problems involving actions upon the real world,
possibility and the admissibility of operators are empirical, mtmd_gﬁ\niiignvgl
matters. Pragmatically, however, we can usually take care of the difficulty by draw-
ing the boundary between IPS and environment a little closer to the center of the
IPS, so that capabilities for actually altering the external environment are treated
as properties of that environment and not of the problem solver. Then it becomes
part of the specification of the task environment whether the problem solver has
an airplane, or whether he can acquire one by an action sequence that is open to
him.

We must exercise caution, however, in shifting the boundary between problem
solver and environment. If we remove particular operators and classify them with
the task environment, there is a danger that the problem solver will disappear
entirely, and that there will be no room at all for a theory of him. For example,
how shall we treat the problem solver’s capabilities (and inabilities) for doing
arithmetic? Is it a description of the problem solver that he can do mental mul-

tiplications at a certain speed in solving the problem? Or is this a specification of 9
the environment (as we might want to regard it if there were a question of the -

availability of paper and pencil or desk calculators)? And how shall we treat the
problem solver’s capacity for attempting goals? If we follow the path of assigning
all means to the environment, there will be nothing left of the problem solver: he
will do what he does because all that he is—being means—is specified by the
environment. —
These examples suggest that a suitable way to fix the boundary is to/ regard

posstbilities of actual physical actions as part of the description of the envir(m‘rﬁfé@

but to regard the information processing activities of the problem solver—the
processes for searching through his internal problem space—as describing him.
We must now consider more carefully whether such a strategy provides at least
a usable and pragmatically tenable boundary between IPS and environment.

Adaptivity and Task Demands

The success that an information processing system will experience with prob-
lems of a certain kind can be used to construct a measure of its adaptivity or
intelligence in environments resembling those in which the test problems were set.
Such a measure will be highly predictive of performance in a very similar environ-
ment, less predictive of performance in environments with different characteristics.

To the extent that such a measure is predictive at all over diverse environ-

ments, we might want to call it a measure of general intelli but such a measure
1s not needed for our purposes. We can be content with measures that are specific
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to certain classes of environments; and that consequently permit us to predict
performance in tasks in the appropriate environment, to scale such tasks according
to difficulty, and tgfale IPS’s according to adaptivity, ability, or intelligence in
performing these tasks) All of this corresponds to the common practice in psycho-
metrics.

Now the demands that a particular environment places on an IPS may depend
on intelligence. In our example of the chasm to be crossed, going over the bridge
may be a demand on an IPS of ordinary intelligence. A very much more intelligent
IPS might solve the problem by inventing the airplane (or, less dramatically, by
thinking of the still unusual possibility of chartering one). For him, there is no
demand that he cross the bridge. If, as we proposed earlier, we include all external
action possibilities as part of the description of the environment, then crossing the
bridge is not a demand on either problem solver@'we include only thinkable ex-
ternal actions in the description of the environment, then the environments are not
the same for the two problem solver.s:(

A pragmatic_solution to the dilemma, which preserves for all practical purposes
the concept of demands of the environment, iﬁgassume that all the problem solvers
whose behavior is to be studied are drawn from a reasonably narrow range on
the scale of intelligence If two populations of widely differing intelligence are to
be studied, then the environment (for the same task) must be described differently
for them. In the description of the environment for any given, relatively homogene-
ous, group of problem solvers, only external actions that are thinkable by them
need be included. v

In the search representation of a problem{ the task environment can be
identified with the whole s aths that are accessible to IPS’s of a
specified level of intelligence. {To the extent that intelligence in the problem domain
is scalable along a single dimension, the search space describing the task environ-
ment of a highly intelligent problem solver can be assumed to include, as a subpart,
the smaller and sparser space describing the environment of a less intelligent prob-
lem solver. (Thus, the space for the airplane inventor of the previous example
would contain branches leading to the invention of that alternative; while these
branches would be missing from the search spaces of noninventive problem solvers.)

Once a search space of this kind—a network of possible wanderings, so to
speak—has been specified/ the demands of the environment simply become prop-
erties of the space that are invariant over all paths that lead to a problem solution. | (
It is easy to see that an analogous notion of demands of the environment can be
introduced into the set-theoretical representation of a problem. For present pur-
poses, we can restrict our discussion to the search representation.

It is worth noting that the ability measures that are relevant here reflect the
problem solver’s knowledge of the problem domain in addition to whatever
problem solving aptitudes he may possess. Consider the game of chess, for example.
Although there are no hard data to prove it, there probably is some correlation
between skill in chess—for those who play the game at all—and standard measures
of intelligence. There is undoubtedly a much higher correlation between skill
in chess and chess knowledge (which, in turn, is correlated to some degree with
amount of experience). Chess skill is sufficiently unidimensional so that official
chess organizations assign to players scalar numerical rankings. In the American




system, for example, a class A player h%s a rating between 1800 and 2000, an ex-
pert between 2000 and 2200, a master between 2200 and 2400, and a senior master
over 2400. In a game between two players whose ratings differ by, say, 300 points,
the outcome is predictable to a high degree: the stronger player would probably
not lose more than one game in twenty or more, and not draw more than one in five.

Players of about the same strength see roughly the same things in a given game
situation. Hence the task environment can be described in about the same way for
them, and the demands of the situation can be inferred. Indeed, the idea that a move
is demanded by the situation is a standard part of the chess culture. At master and
grandmaster levels, it is also taken for granted that if enough time is allowed for the
analysis of a position (in difficult cases this may mean hours or days of analysis),
the move that is demanded by the situation can be detected more or less unequivo-
cally. (We will have more to say about these matters as they apply specifically to
chess in later chapters.)

We can now summarize our account of what comprises an analysis of the task
environment. An analysis of the task environment produces|a descripion of the
constraints on behavior that must be satisfied to attain the problem goal at a
sﬂMnce or adaptivi@ For a given level of intelligence, certain:(
paths in the task environment are not available as paths to the goal—they are too,
difficult. Removing these paths, one can then search for the invariant features of\
the remaining paths that do lead to the goal. It

Simplification of the Problem Space

Our approach to task description provides us with at least one valuable by-
product—a technique for vastly simplifying the description of search paths through
the problem space. We consider, again{f{task environment described as a search
space, relative to an IPS of a given level of intelligence.{ As we shall see in the
next chapter, we can measure the difficulty of search through such a space, for an
IPS of given intelligence, by the expected size of his search tree. We can measure
in this same way not only the difficulty for the IPS of an entire search path, but
also the difficulty of any segment.

An IPS, let us suppose, solves a problem by finding a path from A to G, via
B, C, D, E, and F. We can speak of the difficulty of getting from A to G, but also
the difficulty of getting from C to D. Perhaps getting from C to D was easy, but get-
ting from D to E was very hard. With any particular node, say C, in such a search
space, we can associate all the nearby nodes whose attainment is obvious, once
they have reached C, to problem solvers of the specified level of intelligence. How
they traverse these obvious subsegments is often of little interest in explaining their
overall problem solving behavior. Hence, in describing a task domaintn@need not
include the detail of the links connecting a set of nodes that are all obviously
reachable from each oth‘é{/iZInstead, each such set can be treated as a single node
and detail retained onlyTGF the interesting and difficult passageways that separate
one such cluster from another.

In terms of a different metaphor, in describing the terrain of the problem
environment, the detailed topography of flat or slightly rolling plains will have
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little import. What will be interesting and significant is the location and detailed
configuration of the mountain passes. In our later discussions, we will be assuming,
for instance, that our (adult) subjects can simply follow rules at the level of exe-
cuting chess moves or carrying out simple arithmetic processes. We will not con-
sider how these component acts are done—they amount to moving in a plain. If
our subjects had been young children, such assumptions would not have been
viable. Making a legal move in chess can be a problem for a child or for any person
just learning the game; but for our subjects it is not problematic but obvious. We
incorporate such assumptions of obviousness by declaring the legal moves to be
processes that are immediately available to the IPS without calling on its problem
solving apparatus.

Thus, we will eliminate the-obvious in describing our subjects’ behavior and
focus on the difficult and uncertain aspects of their behavior—their progress
overthe high passes and ridges. We will often describe the behavior as a sequence of
episodes, each of which is a succinctly describable segment of behavior associated
with attaining a goal. If the goal is sufficiently easy to attain (or to identify as not
attainable), then we need not be concerned with the detailed behavior of the prob-
lem solver in getting to it. We can treat each episode as a unit, paying attention
primarily to what determines which episodes are initiated and how they are
terminated.

Specificity of Environments and Adaptability

This approach to defining the demands of the task environment, while com-
mitting us to specifying the intelligence of the problem solver, does not commit us
to the assumption that intelligence is generalizable over different task domains. Its
generality remains an empirical question, to be settled by evidence, not definition.
We are thus free to restrict and normalize the domains that we wish to analyze in
any given instance.

Perhaps the most important restriction that we can impose is to choose a series
of problems for a definite class of task environments. Then we only assume a uni-
dimensional ability for, say chess or cryptarithmetic or elementary logic. In
contrast with the task domains covered by intelligence test batteries, these are
extremely homogeneous. Indeed, all three domains put together are still a relatively
homogeneous area. Yet, we will not need even to postulate that the ordering of
problem solvers in chess ability agrees with that in, say, logic. We also use a re-
stricted class of subjects—subjects who are intelligent enough to understand and
accept the tasks, yet not so smart or knowledgeable that the tasks are trivial for
them. :

A second important restriction we can accept 1s to @;pt our analysis to the
subject’s internal representation of the task. Much of the variation—especially
the extreme variation—of response to a task by different problem solvers comes
about from differences among the representations they use. Our analysis of a task
will assume that the problem solvers are using a problem space of a specific char-
acter. If two subjects use radically different problem spaces, we would expect
to make two separate analyses of the task, and perhaps then arrive at correspond-
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- ingly different measures of difficulty and different i I of the task

environment. Our theory of problem solving will in fact give us a good deal of basis
for understanding the nature of intelligence and its relation to the structure of the
problem space. o

A third restriction, already noted, i9\to treat some of the informational re-
sources as aspects of the task environ@ instead of aspects of the problem solvers.
For example, in analyzing the cryptarithmetic task, we may assume that all sub-
jects know that a number of the form B = A + A is an even number; hence, we
may regard this fact as a feature of the task environment rather than a property of
the subject. This again reduces the variance among the problem solvers. In the
tasks we shall examine, our most important technique for reducing intersubject
variance in representation of the task environment is to select subjects who are
naive In certain dimensions—e.g., who have not previously seen the particular
problems we give them, or the specific kind of task we ask them to perform. (In
the chapters on chess we clearly relax this latter requirement of naiveté, though not
the former one. The subjects must be chess players, but the positions given them
must be new to them.)

With these restrictions, as well as the fact that we only need approximate valid-
ity, the assumption of scalable intelligence becomes tenable. The final demonstra-
tion of tvhi‘é’, of course, comes from the analyses that we undertake in later chapters
of the book. All we have done here is to establish the methodological basis for
those analyses.

This chapter has focused on some major issues that arise in defining a task
environment for a human problem solver, viewed as an IPS. The first question is

- how to represent the external environment. We, as experimenters, have no privileged

access to the real world that constitutes the external environment for another
human. Even when we create a laboratory situation, we still must describe the as-
pects of that environment that are relevant for our subjects’ behavior. We saw,
in effect, that our choice of representation amounts to a set of hypotheses about
what encoding will be provided by the subject IPS.

The second question is how the subject will represent the environment dinter-
nally. Here we introduced the key concept of the problem space, which not only
represents the current situation, but also the possibilities for change and trans-
formation of that situation. We noted especially that one must not assume auto-
matically that the subject’s problem space will lie inside a legal problem space as
understood by the experimenter. T

We made these two issues concrete by detailing an explicit representation in
an IPS for both the external environment and the problem space of tic-tac-toe.

The third question isghygw\tO represent problems and their goals. We provided
representations for two large classes of problems: the set-predicate representation
and the search representation. In each representation, the problem solver is viewed
as having certain information, and the definition of the desired solution may be
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resentations—the set-predicate and the search—cover a vast territory, (we left

viewed as a request for specified additional information. Although these t(y:(;rep-
hnot

open the possibility that there are other problem representations that
usefully be subsumed under either of these paradigms)

The final question (returning to the one that opened the chapter) concerns the
relation of task environment to problem solver, and the extent to which either can
be analyzed separately. We posed the issue by observing that the behavior of an
adaptive organism can often be explained as behavior demanded by the task
environment, rather than behavior that flows from the operation of mechanisms
internal to the organism (i.e., from the program of the IPS). At the core of this
environment-centric view is the notion of invariants of the environment—aspects
of behavior that are constant along all paths that Iead to a goal, hence are neces-
sarily exhibited by all problem solvers that are successful. We found that this
environment-centric mode of analysis could be extended considerably if a measure
of adaptivity or intelligence could be assumed to exist, even approximately. We
showed how such an assumption was in fact implicit in the concept of problem
space.

We also introduced the concept of episode, defined as a segment of behavior
devoted to attainment of a goal. If the goal is easy enough (relative to the power of
the problem solver), then the episodes can be derived from analysis of the task
environment and treated as units.

In general, this chapter has had to be content with Mes, introducing
the concepts appropriate to understanding the issues (e.g., problem space, task
invariants), and illustrating these concepts by brief examples. For full under-
standing, task environments must be dealt with in their particularity, and to make
any of these general concepts fully operational requires an analysis of an environ-
ment in detail. We used simple examples and metaphors, precisely because illustrat-
ing the concepts with a real task environment would obscure the broad issues in the
technical particulars of that environment. In three later parts of the book, where we
deal respectively with cryptarithmetic, elementary logic, and chess, the concepts
and issues introduced here will provide the framework for analysis.

However, there is still one more preliminary chapter. Chapters 2 and 3 have
set the stage for a general description of the problem solving activity itself. We have
described the two principal components—the information processing system in
Chapter 2, the task environment in the present chapter. The goal, accepted by the
problem solver, and to be attained in the given task environment, provides the
interface between the two components. In the next chapter, Chapter 4, we consider
in general terms how an IPS goes about solving a problem, then illustrate the
general discussion by an extensive analysis of the behavior of one of the first prob-
lem solving systems that was programmed for a digital computer—the Logic
Theorist.



