LANGUAGE LEARNING IN A SPECIAL EDUCATION ENVIRONMENT

Oscar Saz (CMU Post-Doc) PSLC-CF

Overview

- Brief introduction: Language learning in special education
- Development of computer tutors for speech therapy in Spanish (requirements, engineering solutions and results)
- Study of lexical inaccuracies in Spanish native speakers with development disorders

Introduction

- B.Sc. in Telecommunications Engineering by the University of Zaragoza in 2004.
- □ Ph.D. by the University of Zaragoza in 2009.

Introduction

- Dissertation entitled: "On-Line Personalization and Adaptation to Disorders and Variations of Speech in Automatic Speech Recognition Systems"
 - Experiments on ASR in oral-driven devices for handicapped people
 - Development of speech therapy tools for Spanish

Introduction

Currently:

- 2-year scholarship funded by the Spanish Ministry of Education
- Sponsored by the Fulbright Program
- Work with Maxine Eskenazi at LTI-CMU
- Project oriented towards L2 speech training tutors which take into account the confusability of words

- Collaboration with the Public School for Special Education "Alborada" in Zaragoza
- Communicative disabilities create more dependency and discrimination than any other disability
- Great interest in Augmentative and Alternative Communication (AAC)

- □ AAC
 - catedu.es/arasaac

Challenges:

- Dealing with mid-to-severe cognitive disorders (plus development and social disorders)
- Special affections in the language
- Uniqueness of every student
- Difficulty in reaching the student with formal activities (game-like approach)

This leads to:

- Extensive one-on-one sessions
- Not enough time per student

- Computers seen as possible solution:
 - Very motivational and attractive
 - Allows for out-of-class work

- Open questions
 - Robust speech processing?
 - Allows personalization?

Development of computer tutors for speech therapy in Spanish (requirements, engineering solutions and results)

Comunica

- Since 2005, UZ has been working in "Comunica": set of Windows-based tutors for Spanish speech therapy
 - PreLingua: Training in the production of voice
 - Vocaliza: Phonological/pronunciation training
 - Cuentame (beta): Training of language through scenarios

Vocaliza: requirements

- Able to motivate oral productions
 - Encourage correct speech

Suitable for use of therapists, parents and children

Extensive use of AAC technologies

Continuous use of multimodality

Application architecture

Application front-end

- Proposed activities
 - Isolated words: Prompt and repeat
 - Riddle game: Prompt riddle, see 3 possible answers, respond
 - Sentences: Prompt and repeat
 - Evocation(extra): Blank screen, say any word, it appears on screen

ASR is used in all activities to decode the utterance

- Configuration
 - Therapist inserts activities
 - Therapists creates users, decides which activities to use for each one

- □ Free distribution of the tools via <u>www.vocaliza.es</u>
- Reaching thousands of users in Spain and Latin
 America
- Got a lot of feedback, new ideas and proposals
- People create their own materials with them

- ASR is a reliable feedback
 - There is a correlation between the number of lexical mispronunciations in a word and the reject ratio of the ASR to recognize that word.
 - Students do not have phonetic awareness, so ASR provides a direct feedback

- Short study on L2 learning
- Vienna International School
- □ New version: VocalizaL2

- Study data:
 - 12 students (native of English, German, Dutch, French, Icelandic, Swedish, Tamil and Urdu) + L2 English + L3 German
 - 11 years old
 - 5 weekly sessions, 45-minute session.

- Comments about the tool:
 - Positive about the interface
 - High motivational value
 - Less shy than in class
 - Awareness of the phonetic feedback in the tool
 - "Cheap" synthetic voice
 - Sometimes weird feedback (lack of robustness)

- Specific experiments:
 - Students raise performance in the second trial
 - Students raise performance in further sessions (new words)
 - When text prompt was removed->More difficulty for the students

Unfortunately, no labeled data

Study of lexical inaccuracies in Spanish native speakers with development disorders

Corpus

- 14 young speakers with cognitive, development and/or social disabilities (e.g.: Down Syndrome)
- 11-21 years old
- Vocabulary of 57 isolated words
- 4 recordings per word (in different days)

Corpus

- Perceptual lexical labeling by humans
- □ Procedure:
 - Listen to one of the utterances
 - Ask the human to rate each phoneme in the word as:
 - 0-deleted
 - 1-mispronounced
 - 2-correct
 - Have 3 different humans rate each word
 - Final decision: Majority vote

- □ Results found:
 - 17% of errors (10% subs | 7% del)
 - □ 50% of the words affected
 - Speakers are consistent in their (mis)pronunciations:
 87% of consistency
 - With a high interlabeler agreement (80-90%)

- What is the origin of the errors?
 - No malformations in the articulation organs
 - No hearing or perception problems
 - Lack of consciousness of their errors

Is there anything specific in the phonology of cognitive disabled speakers?

□ What about manner and point of articulation?

- □ So, what defines the production of errors?
- Context and position in the syllable
 - Spanish uses mostly the -CV- structure
 - -CVV-
 - -CVC-
 - -CCV-
 - -CVVV-
 - -CCVC-
 - -CCVV-

- □ 3 cases of study:
 - \square Vowels /i/, /u/ and their glides /j/, /w/
 - lapiz vs p<u>i</u>ano
 - Consonants in onset vs consonants in cluster
 - caramelo vs cabra
 - Consonants in onset vs consonants in coda
 - <u>l</u>avadora vs arbo<u>l</u>

□ Glide case

□ Onset vs cluster

Onset vs coda

 So, these results compare and relate with the findings by Bosch-Galceran in speech acquisition by 293 healthy children

Conclusion:

- Students with development disabilities show a production similar to 3-4 year old children
- In ASR, this knowledge can serve to create lexicalaware systems