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Principal Components Analysis
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PCA: the equation
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Examples: topic analysis 
Example document

Topics: earn

Text:

CHAMPION PRODUCTS <CH> APPROVES STOCK SPLIT

ROCHESTER, N.Y., Feb 26 - Champion Products Inc said its

board of directors approved a two-for-one stock split of its

common shares for shareholders of record as of April 1, 1987.

The company also said its board voted to recommend to

shareholders at the annual meeting April 23 an increase in the

authorized capital stock from five mln to 25 mln shares.

Reuter

article: Reuters data set
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Data matrix: “bag of words”
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Result of factoring
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Typical topic: corn, future, 
price, weather, market, …

Basis vectors often 
called “topics”
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Example: images

face images from Groundhog Day, extracted by Cambridge face DB project
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Data matrix
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Result of factoring
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Basis vectors are often 
called “eigenfaces”
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Eigenfaces

image credit: AT&T Labs 
Cambridge
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Example: collaborative filtering
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And so forth…

bibliometrics, spectral clustering, speech 
recognition, PageRank, …

image credit: http://www.cheswick.com/ches/
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If you have a hammer

image credit: Wikipedia
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This talk: some more nails

image credit: Wikipedia
14



…and some bigger hammers

image credit: Wikipedia
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Interesting nail #1: movies

Can we learn to predict future frames?
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Data matrix: pixel sequences
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Result of factoring
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Basis weights ut encapsulate 
state of system at step t

After factoring, we can try to 
learn to predict ut+1 from ut
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Movie example
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Movie example
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Interesting nail #2: histograms

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

21



Interesting nail #2: histograms
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Compressing a set of histograms

Points: observed histograms in ℝ3

Line: a 1-parameter family of multinomials
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Why compress histograms?

Robot beliefs
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Why compress histograms?

Single histogram = test performance 
distribution (of multiple students on one 
test, or one student on multiple tests)
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Interesting nail #3: relations
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Bigger hammers

Nonlinearity
Relational factorization
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Bigger hammer: nonlinearity
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And its brother: non-normality

image credit: risklab.ch
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Where do we need nonlinearity?

Bounds:
Images: can’t have pixel >1 or <0
Word counts: can’t be negative
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Where do we need nonlinearity?

Consistency of interpolation
Suppose x1, x2 are samples
Linearity means x1 + λ(x2 – x1) should 
make sense for any λ

31



Consistency of interpolation
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Figure 1. A. Factor graph for an LDS with state-space po-
tentials. B. Images corresponding to the training data and
outputs of different algorithms. Scatterplots of the first two
state component sequences (red = training, blue = simulated),
along with the approximate scale. Only our method results in
a realistic state simulation and correct clock structure. C.
Other videos we are working on: smoke, traffic, flag, hallway.

Learning in stochastic dynamical systems is an important
and well-studied problem. Recently, Linear Dynamical
Systems (LDS) [1], also known as Kalman Filters, have
been applied in computer vision to learn dynamic tex-
tures [2] from videos of visual phenomena that possess
certain stationary properties over time, such as smoke
rising, water flowing, etc. Several researchers have im-
proved on the original model, e.g. with Kernel Dynamic
Textures [3]. In principle, dynamic textures allow us to
learn and generate arbitrarily long realistic sequences of
the phenomenon. One impediment to this goal is insta-
bility in the underlying dynamics matrix which causes
simulated videos to degenerate quickly. This is addressed
by our paper at NIPS 2007 [4].

Another drawback of current work in dynamic textures is
the inability to represent dynamics that have more struc-
ture than the typically used examples such as smoke and
water. For example, in a texture with a moving object

(such as a swinging pendulum), even a stable LDS will
exhibit breakdown and blurring of the object (Fig. 1(B)
col. 3). This breakdown results from the LDS’s inherent
assumption of a convex probability density: given at least
two likely images (such as the pendulum in different po-
sitions), their average must be even more likely (resulting
in an inconsistent image with the pendulum in multiple
positions). Additional examples include flags waving in
the wind, time-lapse videos of clouds, and a camera mov-
ing past a static texture such as bricks or tiles.

Traditional dynamic texture learning uses PCA on a
block Hankel matrix of observations to find a low-
dimensional representation of the latent state [2, 4]. It
then uses linear regression to predict the state at time
t + 1 from the state at time t, and from the regression
weights it constructs an LDS with Gaussian errors (a
Kalman filter). In this work, we compare the original
and generated state sequences from such a model, and
note that the breakdown mentioned above often corre-
sponds to a pattern: the original state sequence lies on
a curved submanifold in latent space, while the gener-
ated sequence approximately covers the convex hull of
this manifold. Typically, the curvature is most obvious
in the latent dimensions corresponding to the first few
principal components of the Hankel matrix (Fig. 1(B)).

To remedy this problem, we propose learning an LDS
with non-Gaussian errors. As a first attempt at such a
model, we fit a mixture of k Gaussians to the first few
latent dimensions of the state sequence from the train-
ing data. We then add this representation of the fea-
sible manifold to the LDS factor graph as a potential
(Fig. 1)(A) which intersects with the belief distribution
at each time step. The result is that our belief state is
always a mixture of Gaussians instead of a single Gaus-
sian. Since the number of components in this mixture
grows over time, we limit it to m by sampling.

Experiments are performed on several real-world videos
that cannot be handled using existing dynamic texture al-
gorithms, with positive results as shown in Figure 1. One
near-term goal is to learn maps of indoor environments
using vision data from mobile robots.
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Where do we need non-normality?

Uneven variance
Error of ±3 in count of 5 vs. 50 vs. 500

Asymmetric errors
E.g., counts often have long tail
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Uneven variance, asymmetric 
errors

Original

Learned (PCA)
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Generalizing PCA

In PCA, had Xij ≈ Ui ⋅ Vj

What if
Xij ≈ exp(Ui ⋅ Vj)

Xij ≈ logit(Ui ⋅ Vj)
…
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Generalizing PCA

In PCA, had Xij ∼ Normal(μ), μ = Ui ⋅ Vj

What if
Xij ∼ Poisson(μ)

Xij ∼ Binomial(p)
… ?
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Exponential family review

Exponential family of distributions:
P(X | θ) = P0(X) exp(Xθ – g(θ))

g(θ) is always strictly convex, 
differentiable on interior of domain

means g’ is strictly monotone (in 1D)
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Exponential family review

Exponential family PDF:
P(X | θ) = P0(X) exp(Xθ – g(θ))

g’(θ) = E(X | θ)
g’ & (g’)–1 = “link function”
E(X | θ) = “expectation parameter”
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Examples

Normal(mean)
Poisson(log rate)
Binomial(log odds)
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Solving both problems at once

Let P(X | θ) be an exponential family with 
natural parameter θ
Predict Xij ∼ P(X | θij), where θij = Ui ⋅ Vj

e.g., in Poisson, E(Xij) = exp(θij)
e.g., in Binomial, E(Xij) = logit(θij)
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More precisely,

max   ∑ log P(Xij | θij)
s.t.     θij = Ui ⋅ Vj

“Generalized linear” or “exponential 
family” PCA

all P(…) terms are exponential families
analogy to GLMs

+ log P(U) + log P(V)
U,V

[Collins et al, 2001]
[Gordon, 2002]
[Roy & Gordon, 2005]
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Theorem

In GL PCA, finding U which maximizes 
likelihood (holding V fixed) is a convex 
optimization problem
And, finding best V (holding U fixed) is a 
convex problem
Further, Hessian is block diagonal

So, an efficient and effective optimization 
algorithm: alternately improve U and V
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Proof

Exponential family PDF:
P(X | θ) = P0(X) exp(Xθ – g(θ))

∑ log P(Xij | θij) = 
∑ [log P0(Xij) – Xijθij – g(θij)] =
∑ [log P0(Xij) – Xij(UiTVj) – g(UiTVj)]
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Special cases

PCA, probabilistic PCA
k-means clustering
Independent components analysis (ICA)
Poisson PCA
Max-margin matrix factorization (MMMF)
Almost: pLSI, pHITS, NMF

44



Example

Points: observed frequencies in ℝ3

Hidden manifold: a 1-parameter family of multinomials
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Example

Iteration 1
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Example

Iteration 2
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Example

Iteration 3
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Example

Iteration 4
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Example

Iteration 5
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Example

Iteration 9
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Robot beliefs example

Original

Learned (PCA) Learned (Poisson PCA)
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