
It’s a Small(-Rank) World,
After All

Geoff Gordon
SELECT Lab

Machine Learning Department
Joint work with Ajit Singh, Francisco Pereira, Nick Roy,

Byron Boots, Sajid Siddiqi

1

Principal Components Analysis

2

PCA: the equation

x1

x2

x3

.

.

.
xn

Data matrix X

≈

Compressed
matrix U

u1

u2

u3

.

.

.
un

v1
…
vk

Basis
matrix V

rows of V
span the low-

rank space

3

Examples: topic analysis
Example document

Topics: earn

Text:

CHAMPION PRODUCTS <CH> APPROVES STOCK SPLIT

ROCHESTER, N.Y., Feb 26 - Champion Products Inc said its

board of directors approved a two-for-one stock split of its

common shares for shareholders of record as of April 1, 1987.

The company also said its board voted to recommend to

shareholders at the annual meeting April 23 an increase in the

authorized capital stock from five mln to 25 mln shares.

Reuter

article: Reuters data set
4

Data matrix: “bag of words”

x1

x2

x3

.

.

.
xn

do
cu

m
en

ts
words

count for
word j, doc i

5

Result of factoring

u1

u2

u3

.

.

.
un

v1
…
vk

do
cu

m
en

ts

wordsbasis weights

ba
si

s v
ec

to
rs

Typical topic: corn, future,
price, weather, market, …

Basis vectors often
called “topics”

6

Example: images

face images from Groundhog Day, extracted by Cambridge face DB project
7

Data matrix

x1

x2

x3

.

.

.
xn

im
ag

es
pixels

8

Result of factoring

u1

u2

u3

.

.

.
un

v1
…
vk

im
ag

es

pixelsbasis weights

ba
si

s v
ec

to
rs

Basis vectors are often
called “eigenfaces”

9

Eigenfaces

image credit: AT&T Labs
Cambridge

10

Example: collaborative filtering

x1

x2

x3

.

.

.
xn

us
er

s
movies

did user i
like movie j?

11

And so forth…

bibliometrics, spectral clustering, speech
recognition, PageRank, …

image credit: http://www.cheswick.com/ches/

w
eb

 g
ra

ph

cells segmented

12

http://www.cheswick.com/ches/
http://www.cheswick.com/ches/

If you have a hammer

image credit: Wikipedia
13

This talk: some more nails

image credit: Wikipedia
14

…and some bigger hammers

image credit: Wikipedia
15

Interesting nail #1: movies

Can we learn to predict future frames?

16

Data matrix: pixel sequences

x1

x2

x3

.

.

.
xn

tim
e

st
ep

s
pixels from the future

17

Result of factoring

u1

u2

u3

.

.

.
un

v1
…
vk

tim
e

st
ep

s

predicted future pixelsbasis weights

ba
si

s v
ec

to
rs

Basis weights ut encapsulate
state of system at step t

After factoring, we can try to
learn to predict ut+1 from ut

18

Movie example

19

Movie example

20

Interesting nail #2: histograms

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

21

Interesting nail #2: histograms

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

22

Compressing a set of histograms

Points: observed histograms in ℝ3

Line: a 1-parameter family of multinomials

A

B C

A B C
0

0.5

1

1.5

2

2.5

3

23

Why compress histograms?

Robot beliefs

24

Why compress histograms?

Single histogram = test performance
distribution (of multiple students on one
test, or one student on multiple tests)

25

Interesting nail #3: relations

x1

x2

x3

.

.

.
xn

us
er

s

did user i
like movie j?

movies
x1

x2

x3

.

.

.

xn

genres

m
ov

ie
s

does movie i
have genre j?

26

Bigger hammers

Nonlinearity
Relational factorization

27

Bigger hammer: nonlinearity

!!

!"

!#

$

#

"

!

!!
!"

!#
$

#
"

!

!#%

!#$

!%

$

%

28

And its brother: non-normality

image credit: risklab.ch

29

Where do we need nonlinearity?

Bounds:
Images: can’t have pixel >1 or <0
Word counts: can’t be negative

30

Where do we need nonlinearity?

Consistency of interpolation
Suppose x1, x2 are samples
Linearity means x1 + λ(x2 – x1) should
make sense for any λ

31

Consistency of interpolation

Learning Non-Gaussian Stochastic Systems for Dynamic Textures

Byron Boots beb@cs.cmu.edu
Geoffrey J. Gordon ggordon@cs.cmu.edu
Sajid M. Siddiqi siddiqi@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213

. . .

. . .

. . .

! ! !

tx 1
t+1x1

t+1x2
t+nx2

t+nx1

tx2

t+1y t+nyty

10
52

10
4

10
4

10
4

Original Least Squares Stable Our Model

Other Training Sequences

A.

B.

C.

Figure 1. A. Factor graph for an LDS with state-space po-
tentials. B. Images corresponding to the training data and
outputs of different algorithms. Scatterplots of the first two
state component sequences (red = training, blue = simulated),
along with the approximate scale. Only our method results in
a realistic state simulation and correct clock structure. C.
Other videos we are working on: smoke, traffic, flag, hallway.

Learning in stochastic dynamical systems is an important
and well-studied problem. Recently, Linear Dynamical
Systems (LDS) [1], also known as Kalman Filters, have
been applied in computer vision to learn dynamic tex-
tures [2] from videos of visual phenomena that possess
certain stationary properties over time, such as smoke
rising, water flowing, etc. Several researchers have im-
proved on the original model, e.g. with Kernel Dynamic
Textures [3]. In principle, dynamic textures allow us to
learn and generate arbitrarily long realistic sequences of
the phenomenon. One impediment to this goal is insta-
bility in the underlying dynamics matrix which causes
simulated videos to degenerate quickly. This is addressed
by our paper at NIPS 2007 [4].

Another drawback of current work in dynamic textures is
the inability to represent dynamics that have more struc-
ture than the typically used examples such as smoke and
water. For example, in a texture with a moving object

(such as a swinging pendulum), even a stable LDS will
exhibit breakdown and blurring of the object (Fig. 1(B)
col. 3). This breakdown results from the LDS’s inherent
assumption of a convex probability density: given at least
two likely images (such as the pendulum in different po-
sitions), their average must be even more likely (resulting
in an inconsistent image with the pendulum in multiple
positions). Additional examples include flags waving in
the wind, time-lapse videos of clouds, and a camera mov-
ing past a static texture such as bricks or tiles.

Traditional dynamic texture learning uses PCA on a
block Hankel matrix of observations to find a low-
dimensional representation of the latent state [2, 4]. It
then uses linear regression to predict the state at time
t + 1 from the state at time t, and from the regression
weights it constructs an LDS with Gaussian errors (a
Kalman filter). In this work, we compare the original
and generated state sequences from such a model, and
note that the breakdown mentioned above often corre-
sponds to a pattern: the original state sequence lies on
a curved submanifold in latent space, while the gener-
ated sequence approximately covers the convex hull of
this manifold. Typically, the curvature is most obvious
in the latent dimensions corresponding to the first few
principal components of the Hankel matrix (Fig. 1(B)).

To remedy this problem, we propose learning an LDS
with non-Gaussian errors. As a first attempt at such a
model, we fit a mixture of k Gaussians to the first few
latent dimensions of the state sequence from the train-
ing data. We then add this representation of the fea-
sible manifold to the LDS factor graph as a potential
(Fig. 1)(A) which intersects with the belief distribution
at each time step. The result is that our belief state is
always a mixture of Gaussians instead of a single Gaus-
sian. Since the number of components in this mixture
grows over time, we limit it to m by sampling.

Experiments are performed on several real-world videos
that cannot be handled using existing dynamic texture al-
gorithms, with positive results as shown in Figure 1. One
near-term goal is to learn maps of indoor environments
using vision data from mobile robots.

References
[1] Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dy-

namical systems. Technical Report CRG-TR-96-2, U. of Toronto, Dept.
of Comp. Sci., 1996.

[2] S. Soatto, G. Doretto, and Y. Wu. Dynamic textures. In ICCV, 2001.

[3] Antoni B. Chan and Nuno Vasconcelos. Classifying video with kernel
dynamic textures. In CVPR, 2007.

[4] S. Siddiqi, B. Boots, and G. J. Gordon. A constraint generation approach
to learning stable linear dynamical systems. In NIPS, 2007.

training
data

Learning Non-Gaussian Stochastic Systems for Dynamic Textures

Byron Boots beb@cs.cmu.edu
Geoffrey J. Gordon ggordon@cs.cmu.edu
Sajid M. Siddiqi siddiqi@cs.cmu.edu

School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh PA 15213

. . .

. . .

. . .

! ! !

tx 1
t+1x1

t+1x2
t+nx2

t+nx1

tx2

t+1y t+nyty

10
52

10
4

10
4

10
4

Original Least Squares Stable Our Model

Other Training Sequences

A.

B.

C.

Figure 1. A. Factor graph for an LDS with state-space po-
tentials. B. Images corresponding to the training data and
outputs of different algorithms. Scatterplots of the first two
state component sequences (red = training, blue = simulated),
along with the approximate scale. Only our method results in
a realistic state simulation and correct clock structure. C.
Other videos we are working on: smoke, traffic, flag, hallway.

Learning in stochastic dynamical systems is an important
and well-studied problem. Recently, Linear Dynamical
Systems (LDS) [1], also known as Kalman Filters, have
been applied in computer vision to learn dynamic tex-
tures [2] from videos of visual phenomena that possess
certain stationary properties over time, such as smoke
rising, water flowing, etc. Several researchers have im-
proved on the original model, e.g. with Kernel Dynamic
Textures [3]. In principle, dynamic textures allow us to
learn and generate arbitrarily long realistic sequences of
the phenomenon. One impediment to this goal is insta-
bility in the underlying dynamics matrix which causes
simulated videos to degenerate quickly. This is addressed
by our paper at NIPS 2007 [4].

Another drawback of current work in dynamic textures is
the inability to represent dynamics that have more struc-
ture than the typically used examples such as smoke and
water. For example, in a texture with a moving object

(such as a swinging pendulum), even a stable LDS will
exhibit breakdown and blurring of the object (Fig. 1(B)
col. 3). This breakdown results from the LDS’s inherent
assumption of a convex probability density: given at least
two likely images (such as the pendulum in different po-
sitions), their average must be even more likely (resulting
in an inconsistent image with the pendulum in multiple
positions). Additional examples include flags waving in
the wind, time-lapse videos of clouds, and a camera mov-
ing past a static texture such as bricks or tiles.

Traditional dynamic texture learning uses PCA on a
block Hankel matrix of observations to find a low-
dimensional representation of the latent state [2, 4]. It
then uses linear regression to predict the state at time
t + 1 from the state at time t, and from the regression
weights it constructs an LDS with Gaussian errors (a
Kalman filter). In this work, we compare the original
and generated state sequences from such a model, and
note that the breakdown mentioned above often corre-
sponds to a pattern: the original state sequence lies on
a curved submanifold in latent space, while the gener-
ated sequence approximately covers the convex hull of
this manifold. Typically, the curvature is most obvious
in the latent dimensions corresponding to the first few
principal components of the Hankel matrix (Fig. 1(B)).

To remedy this problem, we propose learning an LDS
with non-Gaussian errors. As a first attempt at such a
model, we fit a mixture of k Gaussians to the first few
latent dimensions of the state sequence from the train-
ing data. We then add this representation of the fea-
sible manifold to the LDS factor graph as a potential
(Fig. 1)(A) which intersects with the belief distribution
at each time step. The result is that our belief state is
always a mixture of Gaussians instead of a single Gaus-
sian. Since the number of components in this mixture
grows over time, we limit it to m by sampling.

Experiments are performed on several real-world videos
that cannot be handled using existing dynamic texture al-
gorithms, with positive results as shown in Figure 1. One
near-term goal is to learn maps of indoor environments
using vision data from mobile robots.

References
[1] Z. Ghahramani and G. E. Hinton. Parameter estimation for linear dy-

namical systems. Technical Report CRG-TR-96-2, U. of Toronto, Dept.
of Comp. Sci., 1996.

[2] S. Soatto, G. Doretto, and Y. Wu. Dynamic textures. In ICCV, 2001.

[3] Antoni B. Chan and Nuno Vasconcelos. Classifying video with kernel
dynamic textures. In CVPR, 2007.

[4] S. Siddiqi, B. Boots, and G. J. Gordon. A constraint generation approach
to learning stable linear dynamical systems. In NIPS, 2007.

predicted
image

32

Where do we need non-normality?

Uneven variance
Error of ±3 in count of 5 vs. 50 vs. 500

Asymmetric errors
E.g., counts often have long tail

33

Uneven variance, asymmetric
errors

Original

Learned (PCA)

34

Generalizing PCA

In PCA, had Xij ≈ Ui ⋅ Vj

What if
Xij ≈ exp(Ui ⋅ Vj)

Xij ≈ logit(Ui ⋅ Vj)
…

35

Generalizing PCA

In PCA, had Xij ∼ Normal(μ), μ = Ui ⋅ Vj

What if
Xij ∼ Poisson(μ)

Xij ∼ Binomial(p)
… ?

36

Exponential family review

Exponential family of distributions:
P(X | θ) = P0(X) exp(Xθ – g(θ))

g(θ) is always strictly convex,
differentiable on interior of domain

means g’ is strictly monotone (in 1D)

37

Exponential family review

Exponential family PDF:
P(X | θ) = P0(X) exp(Xθ – g(θ))

g’(θ) = E(X | θ)
g’ & (g’)–1 = “link function”
E(X | θ) = “expectation parameter”

38

Examples

Normal(mean)
Poisson(log rate)
Binomial(log odds)

39

Solving both problems at once

Let P(X | θ) be an exponential family with
natural parameter θ
Predict Xij ∼ P(X | θij), where θij = Ui ⋅ Vj

e.g., in Poisson, E(Xij) = exp(θij)
e.g., in Binomial, E(Xij) = logit(θij)

40

More precisely,

max ∑ log P(Xij | θij)
s.t. θij = Ui ⋅ Vj

“Generalized linear” or “exponential
family” PCA

all P(…) terms are exponential families
analogy to GLMs

+ log P(U) + log P(V)
U,V

[Collins et al, 2001]
[Gordon, 2002]
[Roy & Gordon, 2005]

41

Theorem

In GL PCA, finding U which maximizes
likelihood (holding V fixed) is a convex
optimization problem
And, finding best V (holding U fixed) is a
convex problem
Further, Hessian is block diagonal

So, an efficient and effective optimization
algorithm: alternately improve U and V

42

Proof

Exponential family PDF:
P(X | θ) = P0(X) exp(Xθ – g(θ))

∑ log P(Xij | θij) =
∑ [log P0(Xij) – Xijθij – g(θij)] =
∑ [log P0(Xij) – Xij(UiTVj) – g(UiTVj)]

43

Special cases

PCA, probabilistic PCA
k-means clustering
Independent components analysis (ICA)
Poisson PCA
Max-margin matrix factorization (MMMF)
Almost: pLSI, pHITS, NMF

44

Example

Points: observed frequencies in ℝ3

Hidden manifold: a 1-parameter family of multinomials

A

B C

A B C
0

0.5

1

1.5

2

2.5

3

45

Example

Iteration 1
46

Example

Iteration 2
47

Example

Iteration 3
48

Example

Iteration 4
49

Example

Iteration 5
50

Example

Iteration 9
51

Robot beliefs example

Original

Learned (PCA) Learned (Poisson PCA)
52

