In vivo experimentation: An introduction

Robert G.M. Hausmann

Outline

- Motivation & definition
- 3 examples
 - Reflection on the 3 examples
- Distinguishing in vivo from other types of experiments
- Quiz & discussion
- IV track activities for rest of the week

What is the problem?

- Need external validity
 - Address real instructional problems & content
 - Authentic students (e.g., backgrounds, pre-training)
 - Authentic context (e.g., motivations, social interactions, etc.)
- Need internal validity
 - Control of variables to avoid confounds
 - E.g., instructor effects

Three approaches

- Traditional
 - Laboratory experiments
 - Classroom experiments
- Novel
 - In vivo experimentation
Lab experiments

- Students
 - Volunteers (recruited from classes?)
 - Motivated by money (or credit in psych course)
- Context
 - Instruction done in a lab (empty classroom?)
 - Experimenter or software does the instruction
 - Maximum of 2 hours per session
- Typical design
 - Pre-test, instruction, post-test(s)
 - Conditions differ in only 1 variable/factor
- High internal validity; low external validity

Chi, Roy, & Hausmann (2008)

Mastery Training: Newtonian Mechanics

Problem Solving Session

Posttest

(text unavailable)

Deep

Shallow

Classroom experiments

- Participants & context
 - Students from real classes
 - Regular instructors (not experimenter) does teaching
- Design
 - Train instructors to vary their instruction
 - Observe classes to check that manipulation occurred
 - Assess via embedded pre- and post-test(s), or video
- High external validity; low internal validity
 - Weak control of variables

In vivo experimentation

- Students and context
 - In a real classroom with real students, teachers
 - Software controls part of instruction
 - In-class and/or homework exercises
 - Records all interactions (= log data)
- Design
 - Manipulation
 - Software’s instruction differs slightly over a long period, or
 - More dramatic difference during one or two lessons
 - Assessment via regular class tests & log data
Outline

- In vivo experimentation: Motivation & definition
- 3 examples
 - Reflection on the 3 examples
- Distinguishing in vivo from other experiments
- Quiz & discussion
- IV track activities for rest of the week

1st example: Wang, Lui & Perfetti’s Chinese tone learning experiment

- Context
 - CMU Chinese course
 - On-line exercises
 - Given spoken syllable, which tone (of 4) did you hear?
 - Very difficult to learn
- Hypothesis
 - Earlier work → subtle wave form differences exist
 - Does displaying them help?

Chinese tones

/ma/ 1: ‘mother’
/ma/ 2: ‘linen’
/ma/ 3: ‘horse’
/ma/ 4: ‘scold’

Tone number
Pinyin

Design

- Conditions
 - All conditions select tone from menu
 - All conditions given sound +…
 - Experiment: wave form & Pinyin
 - Control 1: number & Pinyin
 - Control 2: wave form
- Procedure
 - Pre-test
 - One exercise session per week for 8 weeks
 - Several post-test
Preliminary results

- Error rates during training
 - Experiments < Controls on lessons 2, 5, 6 & 7
- Pre/Post test gains
 - Experiments > Control 1 on some measures
 - Control 2 – too few participants
- Tentative conclusion
 - Displaying waveforms increases learning
 - Second semester data being analyzed
 - Other data being analyzed

Why is this an in vivo experiment?

- External validity
 - Real class, student, teachers
 - Post-tests counted in students’ grades
 - Cramming?
- Internal validity
 - Varied only two factors: waveform, Pinyin
 - Collected log data throughout the semester
 - Who actually did the exercises?
 - Error rates, error types, latencies
 - Student profiles

Hausmann & VanLehn (2007)

- The generation hypothesis:
 self-explanation > instructional explanation
 - Quick—f ____ > Quick—fast (Slameka & Graf, 1978)
 - The fat man read about the thin ice. (Bransford et al.)
 - How can a worm hide from a bird? (Brown & Kane)

- The coverage hypothesis:
 self-explanation = instructional explanation
 - Path-independence (Klahr & Nigam, 2004)
 - Multiple paths to mastery (Nokes & Ohlsson, 2005)
 - Variations on help (Anderson et al., 1995)

Equation:

\[F_e = \text{abs}(q) \times E \]

Variable q defined for charge

- Electric Field
- Force due to Electric Field
- Bottom-out hint
- Immediate feedback via color
Terminology

- **Example** = problem + multi-entry solution
- **Complete example** = every entry is explained
 - “Because the force due to an electric field is always parallel to the field, we draw F_e at 17 degrees. It’s in this direction because the charge is positive. If it had been negative, it would be in the opposite direction, namely 197 degrees.”
- **Incomplete example** = no explanations of entries
 - “We draw F_e at 17 degrees.”

Study design

<table>
<thead>
<tr>
<th>Incomplete Example (each entry presented without explanation)</th>
<th>Prompted to paraphrase</th>
<th>Prompted to self-explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>No explanation \rightarrow no learning</td>
<td>Self-explanation \rightarrow learning</td>
<td></td>
</tr>
</tbody>
</table>

- **Complete Example** (explains each entry)
 - Instructional explanation \rightarrow learning

Procedure: Each problem serves as a pre-, mid- or post-test

- **Dependent variables (DVs)**
 - Log data from problem solving
 - Before, during and after the manipulation
 - Errors
 - Help requests
 - Bottom-out hints
 - Learning curves
 - Audio recordings of student’s explanations
 - Midterm exam
Butcher & Aleven (2007)

- Scientific Problem
 - Can coordination between and integration of visual and verbal information improve robust learning?
 - Can this integration be supported by scaffolds during tutored practice?

- Hypothesis
 - Interacting and self-explaining with geometry diagrams will:
 - Decrease use shallow problem-solving strategies
 - Support integration of verbal and visual knowledge

Study design

<table>
<thead>
<tr>
<th>Type of Explanation</th>
<th>TABLE (Non-contiguous)</th>
<th>DIAGRAM (Contiguous)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOMETRY RULE</td>
<td>(Verbal Explanation)</td>
<td>GEOMETRY RULE</td>
</tr>
<tr>
<td>GEOMETRY RULE + APPLICATION</td>
<td>(Verbal + Visual Expl.)</td>
<td>(Verbal + Visual Expl.)</td>
</tr>
</tbody>
</table>

Variable 1: Site of Interaction (Table v. Diagram)

- TABLE (Non-contiguous) GEOMETRY RULE (Verbal Explanation)
 - Diagram (Contiguous)
 - GEOMETRY RULE + APPLICATION (Verbal + Visual Expl.)

In vivo experimentation: 21

DV: Help requests

Supports the generation hypothesis: Instructional explanation → little learning

<table>
<thead>
<tr>
<th>Number of help requests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete Paraphrase</td>
</tr>
<tr>
<td>Complete Self-explain</td>
</tr>
<tr>
<td>Incomplete Paraphrase</td>
</tr>
<tr>
<td>Incomplete Self-explain</td>
</tr>
</tbody>
</table>

In vivo experimentation: 22

In vivo experimentation: 23

In vivo experimentation: 24
Variable 1: Site of Interaction (Table v. Diagram)

Variable 2: Type of Explanation (Rule vs. Rule + Application)

Results

3-way interaction: Test Time * Condition * Ability:

\[F(1, 38) = 4.3, p < .05 \]
Outline

◆ In vivo experimentation: Motivation & definition
◆ 3 examples
 – Reflection on the 3 examples
◆ Distinguishing in vivo from other experiments
◆ Quiz & discussion
◆ IV track activities for rest of the week

Reflection

◆ Domain
 – Chinese
 – Physics
 – Geometry
◆ Context
 – Homework
 – Lab work
◆ Duration
 – Hours
 – Days
 – Weeks

How does in vivo experimentation differ from course development?

◆ Research problem to be solved
 – Primary: “An open question in the literature on learning is …”
 – Secondary: “One of the hardest things for students to learn in <class> is …”
◆ Scaling up not necessary
 – One unit of curriculum may suffice
◆ Sustainability not necessary
 – OK to use experimenter instead of technology
How does *in vivo* experimentation differ from lab experimentation?

- Instructional objectives and content
 - Already taught in course, or
 - Negotiated with instructor
- Control group must receive good instruction
- Logistics
 - Timing – only one opportunity per semester/year
 - Place
- Participation not guaranteed
 - Count toward the student’s grade?

How does *in vivo* experimentation differ from classroom experimentation?

- Superficial differences
 - Treatment implemented by training teachers
 - And observing whether they teach as trained
 - Or better!
 - Can only do between-section, not between-student
 - Control groups are often absent or weak
- Underlying difference
 - Granularity of the hypotheses and manipulations
 - See next few slides

An example of a large-grained classroom experiment: PUMP/PAT

- Early version of CL Algebra (Koedinger et al.)
 - Tutoring system (PAT)
 - Curriculum (PUMP) including some teacher training
 - Whole year
- Hypothesis
 - PUMP/PAT is more effective than conventional instruction

A 2nd example of large grained classroom experiments: CECILE

- CECILE (Scardamalia, Bereiter et al.)
 - Networked collaborative learning software
 - Long, complex math activities done in small groups
 - Developed and published on the web
 - Whole year
- Hypothesis
 - CECILE community of learning increases gains
A 3rd example of large grained classroom experiments: *Jasper*

- Anchored instruction (Bransford et al.)
 - “Jasper” video provides a vivid, shared anchor
 - Long, complex math activities tied to anchor
 - Whole year
- Hypothesis:
 - Anchored instruction prevents inert knowledge

Outline

- In vivo experimentation: Motivation & definition
- 3 examples
 - Reflection on the 3 examples
- Distinguishing in vivo from other experiments
 - Quiz & discussion
- IV track activities for rest of the week

How would you classify this classroom experiment?

- Reciprocal teaching (Palinscar & Brown)
 - Small, teacher-led groups
 - Students trained two switch roles with teacher & each other
 - Multiple weeks
- Hypothesis: Reciprocal teaching is more effective than normal small group learning

How would you classify this classroom experiment?

- Andes tutoring system (VanLehn et al.)
 - Homework exercises done on Andes vs. paper
 - Same exercises, textbook, labs, exams, rubrics
 - Whole semester
- Hypothesis:
 - Doing homework problems on Andes is more effective than doing them on paper
How would you classify this experiment? (Lui, Perfetti, Mitchell et al.)

- Normal drill (used as pretraining)
 - Present Chinese character (visual) and pronunciation (sound)
 - Select English translation. Get applauded or corrected
- Manipulation
 - Select English translation. No feedback.
 - Present character, pronunciation, both or neither
- Co-training hypothesis
 - Drill with both character and pronunciation
 > drill with either character or pronunciation (not both)
 > no extra drill at all
- Pull out

Should this experiment be *redone in vivo*? (Min Chi & VanLehn)

- Design
 - Training on probability then physics
 - During probability only,
 - Half students taught an explicit strategy
 - Half not taught a strategy (normal instruction)

Critique of *in vivo* experimentation

1. Normal instruction for several weeks
 - Including use of Andes for homework
2. Hausmann’s study during a 2-hour physics lab period
3. Normal instruction for several more weeks
4. Craig’s study, also during a 2-hour lab period
5. Normal instruction for several more weeks

Outline

- In vivo experimentation: Motivation & definition
- 3 examples
 - Reflection on the 3 examples
- Distinguishing in vivo from other experiments
- Quiz & discussion
- IV track activities for rest of the week
Your job: Simultaneously design 3 elements of an *in vivo* experiment

- **A hypothesis**
 - Fits into literature on learning
 - High information value (in Shannon's sense)
- **A context**
 - unit of the curriculum & instructional objective
 - training content and assessments
- **A manipulation**
 - Tests the hypothesis
 - Fits well in the context

Schedule

- **Tuesday**
 - AM: Become familiar with course & tutoring system
 - Early PM: Become familiar with theory
 - Late PM: Start writing Letter of Intent (2 pgs)
 - State background lit, hypothesis, context, manipulation
- **Wednesday AM**
 - Letter of Intent (LOI) due 10:45 am
 - Feedback from course committee representatives
- **Wednesday PM & Thursday**
 - Revise design, add details, write proposal & slides
- **Friday**
 - Presentation

Contact Information

Robert G.M. Hausmann
University of Pittsburgh
706 Learning Research and Development Center
3939 O’Hara Street
Pittsburgh, PA, 15260-5179

Web page: http://www.pitt.edu/~bobhaus
Email: bobhaus@pitt.edu
Phone: 412.624.7536
Fax: 412.624.9149